aDVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 2018

Anna Matuszyńska

SOLVING DIFFERENTIAL EQUATIONS

You can simulate simple dynamic systems

Simple Logistic Growth Equation

Letting N represent population size and t represent time, this model is formalized by the differential equation:

$$\frac{dN}{dt} = rN(1 - \frac{N}{k})$$

N represents population size; r defines the growth rate; k is carrying capacity

 The function is a sigmoid curve. The initial stage of growth is approximately exponential; as saturation begins, the growth slows, and at maturity, growth stops.

2

Tasks for today

 Goal: Your goal is to write two Python scripts to solve two onedimensional problems: the logistic equation and the logistic equation with punishment for low population.

How to start:

- Mathematical description
- Initial conditions
- Parameter set
- Necessary tools for integration and plotting

Import

import numpy as np
import scipy
import matplotlib.pyplot as plt
import pylab

We will be using functions that are not built in as a standard one. Therefore we need to import specific packages.

NumPy is a Python extension module that provides efficient operation on arrays.

SciPy is a set of open source (BSD licensed) scientific and numerical tools for Python.

Matplotlib is a python 2D plotting library which produces publication quality figures.

GRAPHICAL PACKAGE

You can display the results graphically

Using graphical package

How to represent my data

Create a figure.

Create your data. We need X and Y values.

X = [1, 2, 3]	import numpy as <mark>np</mark>
X = range()	X = np.linspace()
	X = np.arange()

Use the pylab package to plot your results.

import pylab as pl
pl.plot()

Show results of screen

pl.show()

How to represent my data

- **1**. Plot function f(x) = x.
- 2. Plot sine and cosine functions on the same plot.
- **3.** Change the colours of the plot to red and blue.
- 4. Add legend, title and axes names.
- 5. Try to plot two plots next to each other.

SOLVING DIFFERENTIAL EQUATIONS

You can simulate simple dynamic systems

Simple Logistic Growth Equation

```
def logistic(y, t0, r, K):
    """ returns population growth """
    dY = r * y[0] * (1 - y[0]/ float(K))
    return
```

Note that t0 is not used by the function. Why do we supply it as an argument?

Practical: Introduction to Mathematical Modelling of Biological Systems

Simple Logistic Growth Equation

```
def logistic(y, t0, r, K):
    """ returns population growth """
    dY = r * y[0] * (1 - y[0]/ float(K))
    return
```

Note that t0 is not used by the function. Why do we supply it as an argument?

Provide values of r and K and starting population size.

params = (0.3, 10)Y = [1]

What is the type of the params value?

Simple Logistic Growth Equation: integration

growth = scipy.integrate.odeint(func, y0, t, args=(), ...)

Simple Logistic Growth Equation: integration

growth = scipy.integrate.odeint(func, y0, t, args=(), ...)

```
t = range(0,1000)
growth = scipy.integrate.odeint(logistic, y, t, args=params)
plt.plot(t, growth)
plt.show()
```


Modified Verhulst Equation

def modifiedVerhulst(N, t0, c=5., g =3, d = 1.,r= 2., k = 40.):
 """ returns the population growth rate
 modified Verhulst equation with the factor
 governing population behaviour at small sizes """
 dY = r * N * (g/r) * N/(N+c) - d/r - N/k
 return

Tasks for today:

- Integrate the model over the time of 1 year, how the population evolves?
- Find the stationary states of the model. Are they stable?
- Plot the bifurcation diagram for the new bifurcation parameter c.

- Lets consider population of two species that interact.
- One is a predator and second a prey.
- How to describe their dependent dynamics?

- b is the natural growing rate of rabbits, when there are no wolfs
- d is the natural dying rate of rabbits, due to predation
- c is the natural dying rate of wolfs, when there are no rabbits
- f is the factor describing how many caught rabbits let create a new wolf

- b is the natural growing rate of rabbits, when there are no wolfs
- d is the natural dying rate of rabbits, due to predation
- c is the natural dying rate of wolfs, when there are no rabbits
- f is the factor describing how many caught rabbits let create a new wolf

rabbits
$$\longrightarrow$$
 dr/dt = b*r - d*r*w
wolfs \longrightarrow dw/dt = -c*r + f*b*w*r

Task

- Solve the Lotka-Volterra model (also known as the predator-prey) and create plots of the evolution of the population for following cases:
 - a. r = d = c = f = 1 for variety of initial conditions

b.r = 1, d = 0.1, c = 1.5, f = 0.75 and t = 1000, for R = 10 and W = 5

- What does it mean that the population size is stable over the time?
- Play with parameters and initial conditions so different species will survive.

of both populations

```
Use X = [r, w] to describe the state
from numpy import *
import pylab as p
# Set parameters
a = 1.
b = 0.1
c = 1.5
d = 0.75
def dX dt (X, t=0):
    """ Return the growth rate
    of fox and rabbit populations. """
    return array([ a*X[0] - b*X[0]*X[1] ,
                 11 - c X[1] + d b X[0] X[1]
```


Simple biochemical network

We will use differential-equation-based models for biological regulatory networks to ulitmately simulate the change in concentrations over the time of substrate (S), enzyme €, substrate-enzyme complex (ES) and the final product (P) in the following reaction:

$$E + S \xrightarrow{k+1} ES \xrightarrow{k+2} E + P$$

$$k-1 \qquad k-2$$

FINAL PROJECT

You can do it! Prove it with your final project

Your task

Using your knowledge about ordinary differential equations (ODE) and programming in Python, you are asked to build an n compartment model that will give a good approximation to the pharmacokinetics of a selected drug or its compound.

Introduction to pharmacokinetics

Drugs on the market

Introduction to pharmacokinetics

Drug Discovery and Development

Pharmacokinetics

- the science of studying drugs in the body and how they are affected by different processes
- describes the behavior of an administered drug in the body over time
- uses mathematical equations to relate different variables to each other
- uses this to make predictions about drug behaviour in the body
- used to administer the drug appropriately and safely

Mathematical modeling of pharmacokinetics / pharmacodynamics (PKPD) is an important and growing field in drug development.

Vocabulary

- Compartment a concept, it can be a tissue or organ or an entire body
- Dose amount of drug administered
- Concentration amount of the drug in a given volume of plasma
- Clearance the volume of plasma cleared of the drug per unit of time
- Half-life time it takes for a substance to lose half of its pharmacological activity

Modelling Pharmacokinetics

Example of a 2 compartment model

Figure 3.1: *General scheme of the two-compartment model.* Source: Gilbert Koch, Modeling of Pharmacokinetics and Pharmacodynamics with Application to Cancer and Arthritis

Modelling Pharmacokinetics

Single administration

Administration every 24 hours

Practical: Introduction to Mathematical Modelling of Biological Systems

Collection of simple models in python

https://gitlab.com/ebenhoeh/models-for-teaching/tree/master