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“But technology will ultimately and usefully be better served by following

the spirit of Eddington, by attempting to provide enough time and intellectual
space for those who want to invest themselves in exploration of levels

beyond the genome independently of any quick promises for still quicker
solutions to extremely complex problems.”

Strohman RC (1977) Nature Biotech 15:199

FOREWORD

Systems Biology includes the study of interaction networks and, in particular, their dy-
namic and spatiotemporal aspects. It typically requires the import of concepts from
across the disciplines and crosstalk between theory, benchwork, modelling and simu-
lation. The quintessence of Systems Biology is the discovery of the design principles of
Life. The logical next step is to apply these principles to synthesize biological systems.
This engineering of biology is the ultimate goal of Synthetic Biology: the rational concep-
tion and construction of complex systems based on, or inspired by, biology, and endowed
with functions that may be absent in Nature.

This annual School started in 2002. It was the first School dedicated to Systems
Biology in France, and perhaps in Europe. Since 2005, Synthetic Biology has played
an increasingly important role in the School. Generally, the topics covered by the School
have changed from year to year to accompany and sometimes precede a rapidly evolving
scientific landscape. Its title has evolved in 2004 and again in 2012 to reflect these
changes. The first School was held near Grenoble after which the School has been
held in various locations. It started under the auspices of Genopole®, and has been
supported by the CNRS since 2003, as well as by several other sponsors over the years.

This book gathers overviews of the talks, original articles contributed by speakers
and students, tutorial material, and poster abstracts. We thank the sponsors of this
conference for making it possible for all the participants to share their enthusiasm and
ideas in such a constructive way.

Patrick Amar, Gilles Bernot, Marie Beurton-Aimar, Attila Csikasz-Nagy, Jirgen Jost, lvan Junier,
Marcelline Kaufman, Frangois Képeés, Pascale Le Gall, Sheref Mansy, Jean-Pierre Mazat, Victor Norris,
William Saurin, El Houssine Snoussi, Ines Thiele, Birgit Wiltschi.
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System Biology of Cellular Rhythms: Modeling the
Dynamics of the Mammalian Cell Cycle

Albert GOLDBETER!

1 ULB, B-1050 Brussels, Belgium

Abstract

Cellular rhythms originate from the regulatory feedback loops that control the
dynamics of biochemical processes and represent a phenomenon of temporal
self-organization. They illustrate how an emergent property, autonomous 0s-
cillatory behavior, arises from molecular interactions in regulatory networks.
This explains why oscillatory phenomena abound at the cellular level. After
providing an overview of biological rhythms and of their underlying mech-
anisms, I will focus on the cell cycle, which provides a major example of
rhythmic behavior at the cellular level.

The mammalian cell cycle, driven by an enzymatic network of cyclin-
dependent kinases, behaves as a self-sustained oscillator. A detailed compu-
tational model shows that the regulatory structure of this network results in
its temporal self-organization in the form of sustained oscillations that bring
about the orderly progression along cell cycle phases. The coupling of the
cell cycle to the circadian clock results in the synchronization of these two
major cellular rhythms. To understand the dynamics of the cell cycle we need
to characterize the balance between cell cycle arrest and cell proliferation,
which is often deregulated in cancers. We address this issue by means of
the detailed computational model for the network of cyclin-dependent kinases
(Cdks) driving the mammalian cell cycle.

Previous analysis of the model focused on how this balance is controlled
by growth factors or by the levels of activators (oncogenes) and inhibitors
(tumor suppressors) of cell cycle progression. Suprathreshold changes in the
level of any of these factors can trigger a switch in the dynamical behavior
of the Cdk network corresponding to a bifurcation between a stable steady
state, associated with cell cycle arrest, and sustained oscillations of the various
cyclin/Cdk complexes, corresponding to cell proliferation. Cell proliferation
can also be controlled by cellular environmental factors external to the Cdk
network, such as the extracellular matrix, and contact inhibition, which in-
creases with cell density. Whether the balance in the Cdk network is tilted
toward cell cycle arrest or proliferation depends on the direction in which the
threshold associated with the bifurcation is passed once the cell integrates the
multiple, internal or external signals that promote or impede progression in the
cell cycle.
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From a biological question to a mathematical model: an
example of understanding patterns of genetic alterations in
bladder tumorigenesis

Laurence CALZONE!

! Institut Curie, Paris, F

Abstract

I will start introducing our systems biology approach, from the definition of
the question to the construction of a mathematical model and the formulation
of predictions. I will then show how we applied our approach to bladder cancer
and attempted to explain the co-occurrence and mutual exclusivity of genetic
alterations in a set of genes frequently mutated in bladder tumours.

Bladder tumours progress along two main pathways: the CIS pathway
and the Ta pathway. The Ta pathway, less aggressive than the CIS pathway,
is characterized by a high frequency of activating fibroblast growth factor
receptor 3 (FGFR3) gene mutations, which are rare in the CIS pathway. We
combined mathematical modelling and statistical analyses to better understand
the diverse alterations observed in bladder tumorigenesis. In a dataset of
178 patients including both invasive and non-invasive tumours, we performed
statistical tests on a list of genes known to be frequently altered in bladder
cancer in order to identify co-occurrences or exclusivities between all these
alterations. We focused on genetic alterations (mutations, homozygous losses,
and amplifications) of genes frequently mutated in bladder cancer. We iden-
tified 9 associations and verified them in 3 other public datasets. We then
constructed a logical model of cell cycle and apoptosis entry in order to explain
the context for these patterns of genetic alterations. With the model, we formu-
lated some predictions that we verified back in each of the three datasets when
possible. Finally, we explored a method linking our transcriptomics dataset of
the 178 tumours to the stable states of our logical model and confirmed that
the invasive tumours are associated with proliferative stable states and non-
invasive tumours with apoptosis. We attempted to stratify patients based on
the solutions of the mathematical model.
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Genetic regulatory networks: focus on attractors of their
dynamics

Jacques DEMONGEOT!

1 UJF & IUF, Grenoble, F

Abstract

Genetic regulatory networks are devoted to the control and maintenance of
important functions like the the energy control of cells, and the morphogenesis
and defence of living organisms. Since the innate system of defence repre-
sented by the Toll Like Receptors (TLR, already present in insects), mammals
have developed an adaptive immune system during the embryonic maturation
of their T Cells Receptors o and 3 (I'C Ra and T'C'Rf3) from strategies of
DNA rearrangements essentially under the control of the RAG gene. We
will describe the immunologic networks (called “immunetworks”) in charge
of controlling the concentration of both TLR’s and TCR’s and show that the
circuits in the core of their interaction graphs are responsible of a few number
of dedicated attractors, responsible of the dynamics of receptors synthesis.

In the same spirit, we will describe a genetic network important for the
oxidative metabolism of the cell, the Ferritin (the iron-storage protein) control
network regulating the iron metabolism in mammals and eventually study the
Engrailed morphogenetic network.
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From art to engineering: 15 years of standards and tools
towards synthetic and digital organisms

Nicolas LENOVERE!

1 Babraham Institute, Cambridge, UK

Abstract
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Cells as Machines, Reactions as Programs:
a Computer Science Approach towards
Mastering the Complexity of Cell Processes!

Francois Fages*

* Inria Paris-Rocquencourt, Lifeware team, France
http://lifeware.inria.fr/

Abstract

Systems biology aims at understanding complex biological processes in terms
of their elementary mechanisms at the molecular level. The bet of applying
computer science concepts and tools for the analysis of biochemical reaction
systems in the cell, designed by natural evolution, has led to novel model-
based insights in cell biology and new challenges in computer science. In this
course, we shall review the development over the last decade of the biochemi-
cal abstract machine (BIOCHAM) software environment for modeling molec-
ular reaction systems, reasoning about them at different levels of abstraction,
formalizing biological behaviors in temporal logic, inferring kinetic param-
eter values, measuring robustness, and start deciphering natural biochemical
programs in the cell.

1 Introduction

At the end of the 90s, with the end of the human genome project, research
in bioinformatics started to evolve, passing from the analysis of the genomic
sequence and structural biology problems, to the analysis of complex post-
genomic interaction networks: expression of RNA and proteins, protein-protein
interactions, transport, signal transduction, cell cycle, etc. Systems biology
is the name given to a new pluridisciplinary research field, involving biolo-
gists, computer scientists, mathematicians, physicists, to promote a change
of focus towards system-level understanding of high-level functions of living
organisms, from their biochemical bases at the molecular level. The main
outcome of this effort has been the creation of, and easy access to, databases
and ontologies of cell components; repositories of models of cell processes
such as BioModels.net, through the definition of common exchange formats
such as the Systems Biology Markup Language (SBML); model editors and
simulation tools, making it possible to reproduce in silico analyses in articles,
with models published as supplementary material; and the construction of

!"These lecture notes are extracted from [1].
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a whole cell predictive computational model of the bacterium Mycoplasma
genitalium including its 525 genes by Karr et al. in 2012.

In this domain, formal methods from computer science have been suc-
cessfully applied to master the complexity of biological networks and deci-
pher biological processes, mostly at the molecular and cellular levels. The
distinction between syntax and semantics is particularly fruitful for designing
modeling languages and for reasoning about biological systems at different
levels of abstraction. While interaction diagrams are the key for interact-
ing with biologists, their transcription in formal graphs or formal languages
compels the modeler to eliminate any ambiguity, and enables the use of a
wide variety of structural or dynamic analysis tools. In these approaches,
the mathematical formalisms of ordinary differential equations (ODE) and
partial derivate equations (PDE) appear as low-level languages on top of which
high-level languages can be designed to directly reflect the structure of the
interactions, and apply novel static analysis methods. The notion of Petri net
transition-invariant is a key tool for analyzing extreme fluxes and optimizing
metabolic networks [2]. Place-invariants provide structural conservation laws
that can be directly used to eliminate variables in mathematical models based
on ordinary differential equation models. The notion of siphons and traps
provide sufficient conditions for persistence and accumulation of molecular
species in a network of reactions [3, 4].

In this paper, we review the development over the last decade of the Bio-
chemical Abstract Machine (BIOCHAM?) software environment for modeling
cell biology molecular reaction systems, reasoning about them at different
levels of abstraction, formalizing biological behaviors in temporal logic with
numerical constraints, and using them to infer non-measurable kinetic param-
eter values, evaluate robustness, decipher natural biochemical processes and
design new biochemical programs in synthetic biology.

2 Biochemical Reaction Systems

Let S be a finite set of s molecular species. A reaction is a triple (s, s/, f),

noted s N s’, where 5,8’ : S — N are multisets over S (stoichiometric
coefficients), and f : R®* — R is a mathematical function over molecule quan-
tities, called the rate function. Multisets are used for representing reactants
and products in reactions, and a reaction is fundamentally a multiset rewriting
rule. The chemical metaphor based on multiset rewriting has been proposed in
computer science to program concurrent processes and reason about them [5].
However in biochemistry, time matters, the reaction rates of the reactions may

http://contraintes.inria.fr/biocham
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differ by several orders of magnitude, and it is crucial for many properties to
consider the continuous-time dynamics of the reactions. Each reaction is thus
supposed to be given with a rate function.

A limited number of reaction schemas occurs in biochemical reaction net-
works. Binding reactions of the form

kAB

A B—C

bind two molecular compounds together, such as the complexation of two
proteins or complexes to form a bigger complex, or the binding of a promotion
factor (resp. an inhibitor) on a gene to activate (resp. inhibit) its transcription.
The mass action law kinetics used in that reaction states that the rate of the
reaction is proportional to the number of its reactants. The rate constant k
represents the affinity of the two molecules to bind together. The inverse
unbinding reaction is of the form

X% A B

with again a mass action law kinetics, where the rate constant characterizes the
stability of the complex.

A molecular species like a protein can also be modified under the action of
an enzyme, such as a kinase for a phosphorylation reaction, or a phosphatase
for a dephosphorylation reaction. This is represented by a reaction of the form

v. A/ (k+A)
—

with a Michaelis-Menten kinetics, which comes in fact for the reduction of

three elementary reactions with mass action law kinetics
ki1.A.FE

(A E ﬁ c-25B , E)) by quasi-steady state approximation.
2
Synthesis reaction, such as the synthesis of an RNA by a gene activated by its

promotion factor, are of the form

0. AT/ (k+A)™

— A,B

with a Hill kinetics of order n. That rate function provides a sigmoidal re-
sponse, i.e. a switch-like behavior to the synthesis process, and comes from
the reduction of a system of n cooperative reactions.

Degradation reactions of the form

k.A
A—_
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have the empty multiset as product, and either a mass action law kinetics in the
case of spontaneous degradation, or a Michaelis-Menten or Hill kinetics in the
case of an active degradation process under the action of other molecules.

These formal systems of reactions can be interpreted at different level of
abstraction in a hierarchy of semantics. The most concrete interpretation is
provided by the Chemical Master Equation (CME), which defines the proba-
bility of being in a state x at time ¢ as

C0@ = Y ) v~ Y fi@—vy) V)
j=1

jixe—r; 20

where v; is the change vector s”; — s of reaction j and f;(x) is the propensity
of reaction j in state  defined by the rate function.

The continuous semantics of a reaction system is a deterministic interpre-
tation, which describes the time evolution of the mean E[X (¢)] by an ODE.
The ODE derives from the CME by a first-order approximation. We have

4 px ) = m CpO(@) = S v BUIX(1)]

Jj=1

which gives, by first-order approximation of the Taylor series about the mean,
d n
wHt= Z”j-f(ﬂ)-
j=1

Given initial concentrations for species, such an ODE can be simulated by
standard numerical methods for stiff systems.

The stochastic semantics of a reaction system is defined by a Continuous
Time Markov Chain (CTMC) over integer numbers of molecules (discrete
concentration levels). The rate functions of the reactions lead to state transition
probabilities after normalization by the sum of the propensities of each reaction
in each state. The Stochastic Simulation Algorithm of Gillespie provides a
simulation method which computes numerical traces, most often similar to the
ODE simulation for large numbers of molecules, but may exhibit qualitatively
different behaviors in the case of small numbers of molecules, for instance in
the case of gene expression as a gene usually is in one single copy in a cell.

The abstraction of the stochastic semantics by simply forgetting the proba-
bilities, gives the non-deterministic Petri net semantics of the reactions, where
the discrete states define the number of tokens in each place, and the transitions
consume the reactant tokens and produce the product tokens. The abstraction
of the Petri net semantics in the Boolean semantics defined by the Boolean
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abstraction function over integers, 5 : N — {0,1} with (0) = 0 and
B(x) = 1if z > 0, is a non-deterministic asynchronous Boolean transition
system suitable for reasoning on the presence/absence of molecules.

In BIOCHAM, the Boolean semantics of the reactions associates several
Boolean transitions to one reaction. For instance, a complexation reaction like
A, B — B, is interpreted by 4 Boolean transitions, one for each possible
complete consumption of the 2 reactants: A A B — C A +A A £B. This
is necessary for the abstraction result to hold with respect to the Petri net or
stochastic semantics.

In [6], all these discrete and stochastic trace semantics of reactions systems
have been related by formal abstraction relationships (Galois connections) in
the framework of abstract interpretation. This shows that if a behavior is not
possible in the Boolean semantics for instance, then it is not realizable in the
Petri net or stochastic semantics for any kinetic laws and kinetic parameter
values.

3 Symbolic Model-Checking of Biochemical Systems

A Boolean state specifies the presence or absence of each molecule in the
system at a given time, and any set of states can be represented by a Boolean
constraint over the molecule variables. The Computation Tree Logic CTL* is a
modal logic that extends propositional logic with two path quantifiers, A and
E (A ¢ meaning that ¢ is true on all computation paths, and E¢ that it is true on
at least one path), and several temporal operators, X¢ (meaning that ¢ is true
on the next state on a path), F¢ (meaning that ¢ is finally true on some state on
a path), G¢ (globally true on all states on a path), U1 (until, meaning that v
is finally true and ¢ is always true before), and ¢R1) (release, meaning that
is either globally true or always true up to the first occurrence of v included).
In this logic, F'¢ is equivalent to trueU¢p, G¢ to ¢Rfalse, and we have the
following duality properties: - X¢ = X—¢, “E¢ = A-¢p, "F¢ = G-¢,
—(¢Uy) = ~yR—¢.

The fragment CTL of CTL* imposes that a temporal opertor must imme-
diately follow a path quantifier. This logic CTL can express a wide variety of
properties of biochemical networks like state reachability of ¢ (EF ¢), steady-
ness of ¢ (EG), stability (AG¢), reachability of a stable state (EFAG), ¢
checkpoint for 1 (—=pR), oscillations (EG(F—¢ A F¢) over-approximated
in CTL by EG(EF—-¢ A EF¢)) etc.

Our first result in [7] was to show the performance of a state-of-the-art
symbolic model checker using the representation of Boolean formulae by or-
dered binary decision diagrams (OBDD), on Kohn’s map of the mammalian
cell cycle. This map was transcribed in a reaction model of 732 reaction rules
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over 165 proteins and genes, and 532 variables taking into account the different
forms of the molecular species. The astronomical number of Boolean states
in this system, 2°32, prevents the explicit representation of the state graph,
however, a set of states in this space can nevertheless be represented sym-
bolically by a Boolean formula over 532 variables, and the transition relation
by a Boolean formula over twice that number of variables. For instance the
formula false represents the empty set, true the universe of all states, = the
set of 253! states where z is present, etc. The compilation of the whole 732
reactions into Boolean formulae took 29 seconds, and simple reachability and
oscillations properties could be checked in a few seconds. The negative answer
to the query concerning the oscillation of cyclin B revealed an omission of the
synthesis of cyclin B in Kohn’s map.

The encoding of biological properties in temporal logics provides a logical
paradigm for systems biology that makes a bridge between theoretical models
and biological experiments, through the following identifications:

biological model = transition system,
biological property = temporal logic formula,

model validation = model-checking,

model inference = constraint solving.

A formula ¢, learned from biological experiments, can be tested in a model M
by model-checking techniques to determine whether M |= ¢. Furthermore, a
model-checker can also compute the set of initial states for which a formula is
true, and suggest biological experiments to verify a CTL property predicted by
the model [8].

4 Quantitative Temporal Logic Constraints

4.1 Threshold and Timing Constraints

The temporal logic approach to the specification of imprecise dynamical prop-
erties of biological systems can also be made quantitative and applied to quan-
titative models over concentrations. The idea is to lift it to a first-order set-
ting with numerical (linear) constraints over the reals, in order to express
threshold or more complex constraints on the concentrations of the molecular
compounds and time [9].

For instance, the reachability of a threshold concentration for a molecule
A can be expressed with the formula F(A > v) for some value or free variable
v. Such formulae can then be interpreted on a finite numerical trace (extended
with a loop on the last state) obtained either from a biological experiment, or
from the numerical simulation of an ODE model.
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In BIOCHAM, we use the First-Order Linear Time Logic with linear con-
straints over the reals (FO-LTL(Ry;,,)) to specify semi-qualitative semi-quanti-
tative properties of a biological dynamical system. LTL is the fragment of
CTL* without any path quantifier and only time operators interpreted on a
trace. The grammar of FO-LTL(RR;;;,) formulae is
¢u= clo=>v[6Ad|dV|X|Fo| G| oUs | R

Timing constraints can be expressed with the time variable and free variables
to relate the time of differents events. For instance, the formula
G(Time < t;1 = [A] < 1 ATime > to = [A] > 10) A (t2 — t1 < 60)
expresses that the concentration of molecule A is always less than 1 up to
some time t1, always greater than 10 after time ¢;, and the switching time
between ¢1 and ¢5 is less than 60 units of time. A local maximum for molecule
concentration A can be defined with the formula F(A < 2 AX(A = 2AXA <
x)). This formula can be used to define oscillation properties, with period
constraints defined as time separation constraints between the local maxima of
the molecule, as well as phase constraints between different molecules.

In [10], it is shown how the validity domain Dy, . s, ¢ of the free vari-
ables of an FO-LTL(Ry;,,) formula ¢ on a finite trace (S0, .-, Sn), can be com-
puted by finite unions and intersections of polyhedra.

4.2 Parameter Optimization and Robustness

One major difficulty in quantitative systems biology, is that the kinetic param-
eter values of the biochemical reactions are usually unknown, and must be
infered from the observable behavior of the system under various conditions
(differences of milieu, drugs, gene knock-outs or knock downs, etc.).

In our quantitative temporal logic setting, this problem amounts to solve
the inverse problem of finding parameter values for an ODE model such that an
FO-LTL(Ry;;,) specification is true. However, the classical true/false valuation
of a logical formula is not well suited to guide the search. State-of-the-art
continuous optimization algorithms such as evolutionary algorithms, require
a fitness function to measure progress towards satisfiability. Such a continu-
ous satisfaction degree in the interval [0, 1] can be defined for FO-LTL(Ry;,,)
formulae, by replacing constants by variables, which was in fact our original
motivation for considering formulae with free variables.

Indeed, a specification of the expected behavior given by a closed for-
mula, for instance ¢ = F(A > 7 A F(A < 0)), can first be abstracted
in a formula with free variables by replacing constants with free variables,
eg. ¢ = F(A > y1 ANF(A < y3)) with the objective values 7 for y; and
0 for yo. Then, the validity domain Dr 4 of the formula ¢ on a trace T’
obtained by simulation for some parameter values, makes it possible to define
the violation degree vd(T, ¢, 0) of the formula on T" with objective o, simply
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as the distance between the validity domain and the objective point 0. A
continuous satisfaction degree in the interval [0, 1] can then be defined by
normalization as the inverse of the violation degree d plus one,

1
~ 1+vd(T, ¢, 0)

In BIOCHAM, we use the Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) of N. Hansen [11] as a black-box optimization algorithm, with
the satisfaction degree of an FO-LTL(RR};;,) specification as fitness function,
and unknown kinetic parameter values (initial concentrations and control pa-
rameters) as variables. This strategy for optimizing parameters with respect to
an FO-LTL(R};,,) specification allowed us to solve a wide variety of problems
in systems biology, for fitting models to experimental data in high dimension
(up to 100 parameters), revisiting the structure of the reaction network in
case of failure, making new biological hypotheses based on simulation, and
verifying them by new experiments, for instance for deciphering the complex
dynamics of a cell signaling network in [12]. The same strategy for parameter
optimization can also be used to compute control parameters to achieve a
desired behavior at the single cell of cell population levels. This has been used
for the model-based real-time control of gene expression in yeast cells using
a microfluidic device in [13], and at the whole body scale, to couple models
of cell cycle, circadian clock, drug effects, DNA repair system, and optimize
anti-cancer drug chronotherapeutics in [14].

Kitano gives a general definition of the robustness of a property ¢ of a
system S with respect to a set P of perturbations given with their probability
distribution, as the mean functionality of the system with respect to ¢ under
the perturbations, with the system’s functionality defined in an ad hoc way
for each property. In our framework, this definition can be instanciated to
a complete definition for FO-LTL(Ry;,) properties, simply by taking their
continuous satisfaction degree as functionality measure, as follows [15]:

Rsop = / prob(p) sd(Ty, ¢) dp.
peP

sd(T, ¢, 0)

This definition of robustness can then be evaluated in a model by 1) sampling
the perturbations according to their distribution; 2) measuring the satisfaction
degree of the property for each simulation of the perturbed model; and 3)
returning the average satisfaction degree.

5 Conclusion

This line of research in systems biology based on the vision of cell as com-
putation, aims at mastering the complexity of cell processes, through the use
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of concepts and tools from computer science and the establishment of formal
computation paradigms tightly coupled to experimental settings in cell biology.
While for the biologist, as well as for the mathematician, the sizes of the
biological networks and the number of elementary interactions constitute a
complexity barrier, for the computer scientist the difficulty is not that much
in the size of the networks than in the unconventional nature of biochemical
computation. Unlike most programs, biochemical computation involve transi-
tions that are stochastic rather than deterministic, continuous-time rather than
discrete-time, poorly localized in compartments instead of well-structured in
modules, and created by evolution instead of by rational design. It is our
belief however that some form of modularity (functional if not structural) is
required by an evolutionary system to survive, and that the elucidation of these
modules in biochemical computation is now a key to master the analog aspects
of biochemical computation, understand natural biochemical programs, and
start controlling the cell machinery.

References

[1] F. Fages, “Cells as machines: towards deciphering biochemical programs
in the cell (invited talk),” in Proc. 10th International Conference on
Distributed Computing and Internet Technology ICDCIT’ 14 (R. Natara-
jan, ed.), vol. 8337 of Lecture Notes in Computer Science, pp. 50-67,
Springer-Verlag, 2014.

[2] 1. Zevedei-Oancea and S. Schuster, “Topological analysis of metabolic
networks based on petri net theory,” In Silico Biology, vol. 3, no. 29,
2003.

[3] D. Angeli, P. D. Leenheer, and E. D. Sontag, “A petri net approach
to persistence analysis in chemical reaction networks,” in Biology and
Control Theory: Current Challenges, vol. 357 of LNCIS, pp. 181-216,
Springer-Verlag, 2007.

[4] F. Nabli, F. Fages, T. Martinez, and S. Soliman, “A boolean model for
enumerating minimal siphons and traps in petri-nets,” in Proceedings
of CP’2012, 18th International Conference on Principles and Practice
of Constraint Programming, vol. 7514 of Lecture Notes in Computer
Science, pp. 798-814, Springer-Verlag, Oct. 2012.

[5] G. Berry and G. Boudol, “The chemical abstract machine,” Theoretical
Computer Science, vol. 96, 1992.

[6] F. Fages and S. Soliman, “Abstract interpretation and types for systems
biology,” Theoretical Computer Science, vol. 403, no. 1, pp. 52-70, 2008.



30

9/9/2015- page #30

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY

[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

N. Chabrier-Rivier, M. Chiaverini, V. Danos, F. Fages, and V. Schichter,
“Modeling and querying biochemical interaction networks,” Theoretical
Computer Science, vol. 325, pp. 25-44, Sept. 2004.

G. Bernot, J.-P. Comet, A. Richard, and J. Guespin, “A fruitful appli-
cation of formal methods to biological regulatory networks: Extending

Thomas’ asynchronous logical approach with temporal logic,” Journal
of Theoretical Biology, vol. 229, no. 3, pp. 339-347, 2004.

F. Fages and P. Traynard, “Temporal logic modeling of dynamical
behaviors: First-order patterns and solvers,” in Logical Modeling of
Biological Systems (L. F. del Cerro and K. Inoue, eds.), ch. 8, pp. 291—
323, John Wiley & Sons, Inc., 2014.

A. Rizk, G. Batt, F. Fages, and S. Soliman, “Continuous valuations of
temporal logic specifications with applications to parameter optimization
and robustness measures,” Theoretical Computer Science, vol. 412,
no. 26, pp. 2827-2839, 2011.

N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evolutionary Computation, vol. 9,
no. 2, pp. 159-195, 2001.

D. Heitzler, G. Durand, N. Gallay, A. Rizk, S. Ahn, J. Kim, J. D. Violin,
L. Dupuy, C. Gauthier, V. Piketty, P. Crépieux, A. Poupon, F. Clément,
F. Fages, R. J. Lefkowitz, and E. Reiter, “Competing G protein-coupled
receptor kinases balance G protein and (-arrestin signaling,” Molecular
Systems Biology, vol. 8, June 2012.

J. Uhlendorf, A. Miermont, T. Delaveau, G. Charvin, F. Fages, S. Bottani,
G. Batt, and P. Hersen, “Long-term model predictive control of gene
expression at the population and single-cell levels,” Proceedings of the
National Academy of Sciences USA, vol. 109, no. 35, pp. 14271-14276,
2012.

E. De Maria, F. Fages, A. Rizk, and S. Soliman, “Design, optimization,
and predictions of a coupled model of the cell cycle, circadian clock,
dna repair system, irinotecan metabolism and exposure control under
temporal logic constraints,” Theoretical Computer Science, vol. 412,
pp. 2108-2127, May 2011.

A. Rizk, G. Batt, F. Fages, and S. Soliman, “A general computational
method for robustness analysis with applications to synthetic gene
networks,” Bioinformatics, vol. 12, pp. i1169-il78, June 2009.



9/9/2015- page #31

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 31

Unlocking plant metabolic diversity
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Abstract

Plants produce a tremendous array of natural products, including medicines,
flavours, fragrances, pigments and insecticides. The vast majority of this meta-
bolic diversity is as yet untapped, despite its huge potential value for hu-
mankind. The recent discovery that genes for the synthesis of different kinds
of natural products are organised in clusters in plant genomes is now opening
up opportunities for systematic mining for new pathways and chemistries.
Improved understanding of the genomic organization of different types of spe-
cialized metabolic pathways will shed light on the mechanisms underpinning
pathway and genome evolution. It will also provide grist for the synthetic
biology mill.
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Abstract

Most plants perform photosynthesis during the day and use the captured solar
energy to reduce carbon dioxide to build sugars. These sugars are stored in
the form of starch, an extremely compact and insoluble carbohydrate polymer.
There are essentially two types of starch: storage starch, which is stored long
term and is found e.g. in potato tubers, and transitory starch, which is stored in
leaf cell chloroplasts and is regularly broken down during the night. Various
aspects make studying starch metabolism from a theoretical perspective chal-
lenging. First, the turnover of transitory starch is extremely well timed, so as
to avoid starvation near the end of the night while optimally using the stored
reserves under a wide variety of conditions. Second, starch is a macroscopic
and insoluble entity, therefore both starch synthesis and degradation processes
involve enzymatic reactions taking place on the granule surface. These include
polymer chain elongation and shortening, branching and debranching, as well
as phosphorylation and dephosphorylation reactions. Further, at least during
synthesis, biophysical processes play an important role in forming crystalline
layers. In summary, carbohydrate storage metabolism in plants involves a
variety of diverse processes, which are tightly controlled and timed. In order
to reconstruct starch synthesis in a synthetic biology approach it will therefore
be necessary to understand how the macroscopic structure of a starch granule
emerges from the underlying microscopic biochemical and biophysical pro-
cesses.

1 Introduction

Starch is a natural product produced by most land plants and algae with re-
markable physico-chemical properties. Starch is composed of two polymers
of glucose: amylose, a predominantly linear polymer of «-1,4 linked glucose
units, and amylopectin, which also contains « -1,6 linkages (branch points)
resulting in a tree-like structure [1]. The simple constituents of starch (one
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type of monomer and two types of linkages) is contrasted by its complex and
highly ordered structure, in which crystalline and amorphous layers alternate
in a defined and regular fashion. This structure gives starch unique physico-
chemical properties, which make it an exceptionally tightly packed energy
storage that is of such tremendous importance for the human diet and economy
as a whole. Despite decades of intense research, it is still not understood
how precisely starch granule biogenesis initiates and progresses. A relatively
small number of enzymes are involved, but it is unclear how their activities
are coordinated in order to ultimately control the structure and properties of
starch.

From a socio-economic perspective, starch is extremely important. Not
only is it the main calorific intake of humankind, but it also serves as a major
bulk commodity for the chemical industry. Natural occurring starch displays
a considerable variation in starch granule morphology, structure and com-
position between different botanic origins. All these factors are influencing
starch properties, which are relevant for downstream functional applications,
in particular in the light of further biotechnological and chemical applications.
It would therefore be extremely useful if one could predict the emergent macro-
scopic physico-chemical properties of starch from the underlying microscopic
biochemical and biophysical processes. Such ability would require reliable and
realistic mathematical models, which can explain the emergent macroscopic
properties from the underlying molecular mechanisms. However, the develop-
ment of such models is extremely challenging due to a number of factors.

In the following we will discuss some of the remarkable aspects of starch
metabolism and outline the reasons why they are difficult to treat from a theo-
retical perspective. The article will conclude with a perspective how synthetic
biology approaches aiming at producing starch and controlling its properties
may be approached.

2 Timing of Metabolism

In a multitude of experiments it has been demonstrated that plants of the
species Arabidopsis thaliana have the remarkable capability to adapt their
starch turnover rates to the photoperiod in such a way that at the end of the
night almost all starch reserves, which were stored during the day, are con-
sumed. Thus, the transiently stored starch is used in an optimal way, because
the plant knows when dawn will arrive and energy and carbon can again be
acquired by photosynthesis [2, 3]. More surprisingly even was the outcome of
the pioneering experiment by Alexander Graf and coworkers, who imposed a
sudden early night by placing plants, which were adapted to a 12:12 photope-
riod, into darkness already after 8 hours of daylight. Remarkably, the plants
immediately adjusted the starch breakdown rate to the lower starch content
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and longer dark period such that again almost all starch was consumed by
the end of the night [4]. Understanding this enormous adaptability requires
understanding various related phenomena. First, which regulatory mecha-
nisms might allow the integration of cues from the circadian clock and the
environment to arrive at such a fine-tuned regulation of starch synthesis and
breakdown. Second, how can a plant determine how much starch it currently
has stored and how can it determine how much time is left to dawn? Third,
even if these quantities are somehow known to the plant, how does it perform
the arithmetic division of these two quantities that is required to set the correct
degradation rate? The latter of these problems was addressed by Scialdione
and coworkers, who studied possible molecular interaction networks which
can give rise to an arithmetic division algorithm [5] and could derive ex-
perimentally testable hypotheses on the nature of the molecular components
performing the division. Even if the precise mechanisms plants use to perform
the algorithmic division is not yet fully known, we at least understand how
this task can in principle be achieved. This still leaves the problem how the
two quantities, which need to be divided, i.e. starch content, .S, and time-to-
dawn, 7', can be measured. For the time-to-dawn, there are various conceivable
molecular networks, which would serve as internal timing mechanisms. In
principle, they are all based on some coincidence timing mechanism, by which
a regularly expressed clock output gene is used to 'reset’ a molecular concen-
tration (either by rapid degradation or by induced production) and a light cue
(either presence or absence of light) will have a slower, but opposite effect on
the molecule in question. This can easily result in a concentration which is
proportional either to 7" or to 1/7T" [6, 7]. However, it remains mysterious how
the plant is able to decide how much starch it currently has left. The difficulty
here is that starch is insoluble and therefore osmotically neutral. In contrast
to soluble substrates, it’s amount is not trivially determining rates of enzymes
using it as substrate — see below in Section 3. The fundamental question how
a system with a regular input from a clock and a light-dependent stimulus
must be designed in order to exhibit the observed accelerated starch synthesis
in short days and accelerated starch breakdown in long days was addressed
by a simplified model in [8], which provides a framework to understand the
underlying principles behind this regulation.

Notwithstanding the gaps in our knowledge regarding this fundamentally
important regulatory mechanism, mathematical models could provide consid-
erable insight also into molecular mechanisms which might be used to im-
plement such regulation. Based on a multitude of experimental observations,
we could develop a more detailed model [9], in which we present specific
candidates for the molecules playing the role of a molecular timer and an
integrator of circadian and external cues.
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3 Surface-active enzymes

Unlike most intermediates in cellular metabolism, starch is insoluble. More-
over, starch granules can have a huge size (depending on botanic origin, up
to more than 50pm) [10]. Therefore, most of the starch is unavailable as a
substrate for enzymatic or other chemical processes, because it is compactly
stored and hidden beneath the starch granule’s surface. Evidently, when devel-
oping mathematical models involving starch as a substrate or product, starch
cannot simply be treated as any other soluble metabolite, because the reaction
space is restricted to the granule’s surface.

In contrast to classical enzymes acting on substrates in aqueous solutions,
for which a comprehensive theoretical description was already developed by
Michaelis and Menten over 100 years ago [11], a consistent treatment of surface-
active enzyme is far less established [12, 13]. Often, the difficulty in providing
a mechanistically correct and consistent description of enzymatic reactions
on the starch surface is avoided by treating starch as an external metabo-
lite [14, 15]. The reason why a more realistic treatment is often avoided is
clearly the complexity of surface-active enzymatic processes. Once one starts
to systematically investigate generic surface-active processes, one realises that
a multitude of factors start to play a role which can safely be neglected in the
case of soluble substrates. The simplest approach is to assume that enzymes
adsorb and desorb from the reactant surface and perform some modification
of the surface when they are in an adsorbed state [16]. This immediately
poses the question which adsorption model should be used. Only the simplest,
the Langmuir adsorption model [17], is analytically solvable. It assumes that
the surface is composed of regular, non-overlapping binding sites. This is
clearly a simplification, but already the still rather simple random sequential
adsorption model makes finding analytic solutions for the binding equilibrium
impossible [18]. Regardless which adsorption model is applied, assuming a
rapid binding equilibrium leads to an overall rate equation which formally re-
sembles the Michaelis-Menten equation known for the case in solution. How-
ever, there are a few remarkable differences between surface-active enzymes
and their classical counterparts. Most importantly, the specific rate is — in
contrast to enzymes acting in solution — no longer independent on the enzyme
concentration. This can be explained by crowding effects: once the enzyme
concentration is so high that a considerable part of the available surface area is
occupied, many enzymes will be unbound and therefore catalytically inactive.
Moreover, the apparent Michaelis constant is dependent on substrate properties
as well as total enzyme concentrations. In particular, for particles with a high
specific surface area (small particles), the Michaelis constant appears smaller,
and higher enzyme concentrations leads to a higher apparent Michaelis con-
stant [16].
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4 Enzymatic reactions on polymers

A further difficulty when theoretically describing processes involved in starch
synthesis or breakdown is the polymeric structure of starch and the pathway in-
termediates. Starch metabolism involves chain elongation, shortening, branch-
ing and debranching of carbohydrate polymers. Many of the involved en-
zymes are specific to a submolecular region, such as the non-reducing end
of a glucan, but the specificity is often independent on the remaining part of
the molecule. For example disproportionating enzyme 1 (DPE1), a glucan-
otransferase important in starch degradation, transfers a number (usually 2 or
3) glucosyl residues from one glucan to another, independent on their precise
length [19]. This means that, theoretically, this enzyme catalyses an infinite
number of reactions. Until recently, a comprehensive theoretical treatment
of polymer systems was restricted to chemical systems [20, 21], which were
already developed in the 1940’s. In was not until a few years ago that we could
illustrate how enzymatic systems on polymers can be described by concepts
derived from statistical thermodynamics [22].

Essentially, different chain lengths (or degrees of polymerisation, DP) can
be associated with different energy states, by describing a glucan of a certain
DP by the total bond enthalpy contained in its interglucosidic linkages. In
this framework, a polymer-active enzyme catalyses the transfer of particles
between different energy states while observing certain constraints [23]. For
example, the action of DPE1 can be described by raising one particle a number
q of energy states up, while simultaneously lowering a particle the same num-
ber of states down. This analogy between biochemical systems on polymers
and statistical thermodynamics opens tremendous new opportunities. Most
directly, all formalisms developed for statistical physics can be directly applied
to the biochemical systems, which allows for an easy calculation of the equi-
librium states and furthermore provides an understanding which factors deter-
mine the equilibrium distribution and why. Conversely, since the biochemical
systems are experimentally accessible through in vitro experiments, in which
the temporal evolution of the DP distribution can in principle be monitored,
there now exist experimental systems which may be used to test predictions
from the still intensely researched field of non-equilibrium thermodynamics.

For practical applications to simulate starch-related pathways, stochastic
simulations are a convenient compromise. For example, theoretical studies
could illustrate and support the hypothesis how the involvement of polymer-
active enzymes in the maltose consumption pathways leads to an increased
robustness against fluctuations by implementing an entropy-driven metabolic
buffer [22, 24].
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5 Outlook: towards synthetic biology of starch

It is apparent that the processes of starch synthesis and breakdown and the
mechanisms regulating these are highly complex and involve a number of dif-
ferent classes of factors. How then, and why, should one approach a synthetic
biology project aiming at producing starch in a non-plant system?

There are two obvious answers to why one should embark on such an
endeavour: First, there is the fundamental science aspect that we truly only
understand a system if we are able to reconstruct it. Starch synthesis involves
a diverse, but still rather limited number of enzymes, belonging to the three
main classes of synthases, branching enzymes and debranching enzymes, and
further involves non-enzymatic, biophysical processes. Still, the complexity
is apparently too high to be understood by simple intuition. Therefore, a
combined theoretical and experimental approach to reconstruct starch granules
from scratch will result in a fundamental understanding how the macroscopic
structure of a starch granule emerges from the basic microscopic processes.
As such, understanding this emergence of the higher-ordered structure of a
starch granule is a case study and a very first step to address the principle
question in biology how living organisms emerge from the underlying mi-
croscopic processes. On a more practical side, starches of different physico-
chemical properties are extremely important for dietary and industrial appli-
cations. In particular, differences in the branching patterns of amylopectin
result in quite different properties of the granules. Being able to control these
branching patterns and therefore the physico-chemical properties is invaluable
for biotechnological applications. Again, a controlled biosynthesis of starch
granules with desired properties seems only possible by a combined theoretical
and experimental approach aiming at synthetically producing starch in a non-
photosynthetic organism or even in a cell-free environment in vitro.

Agreeing that the reconstruction of a complex entity as starch is in itself
an important and worthwhile enterprise and adopting the engineering view
that understanding a system can only be achieved by the availability to build
it de novo, lets us immediately derive priorities where one should start in a
starch synthetic biology project. The regulatory mechanisms timing synthesis
and degradation according to the day length are important and interesting
in their own, but represent a higher level problem arising only once starch
production is understood. Starch breakdown is also an interesting system,
which in itself is difficult to understand. It does therefore make sense to try
to investigate these two pathways separately. For this, an environment that
usually does not produce starch is ideal. These can represent heterotrophic
microorganisms such as E. coli or yeast, or even cell free in vitro systems. It
appears a logic choice to start with starch synthesis because synthesis can run
without degradation, while the reverse is not possible.
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Still Life, Pencils of Nature and Fingerprints: Biotech Art,
Synthetic Biology and the new Green

Jens HAUSER!

! University of Copenhagen, DK

Abstract

Since the earliest anthropomorphic statues, myths of vivification surround arte-
facts made by the artist’s hand. The animation of malleable matter stands in a
long pictorial tradition, and from the 19" century, the biological metaphor is
continued in the discussion of the artwork itself as an organism. By means
of form, material or process, a touch of aliveness is staged, aiming at in-
volving the viewer viscerally. Art has imagined, represented and mimicked,
then simulated and — quite recently — manipulated living beings and systems
for real. After painting, sculpture, automata etc., art in the late 20" century
has employed “dry” informatics and robotics to stage aliveness, as well as,
since shortly, “wet” cell and molecular biology. Transgenics, the synthesis
of DNA sequences, so-called biobricks, molecular biological visual imaging
media such as gel electrophoresis or DNA chips, cell and tissue engineering
observable in real-time growth, the use of retroviruses and the cloning of
bacterial plasmid DNA belong to the repertoire of a still marginal but resolutely
experimental form of contemporary art today. Contemporary artists who enter
the labs are particularly ‘close to life’, and the new discipline of Synthetic
Biology is well suited to upgrade art historical paradigms. In parallel, the de-
mocratization of lab tools leads to their appropriation by tinkerers and tactical
media activists who apply the critical potential of open source culture from the
digital age of Media Art to grassroots DIY biology and biohacking.

Curator of the exhibition assemble | standard | minimal, Berlin 2015.
(http ://foerderband.org/_data/150121__PI_Cohen_VanBalen_en. pdf)
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Genome evolution in synthetic yeast
Joel BADER!

! Johns Hopkins U., Baltimore, US

Abstract

The Saccharomyces cerevisiae 2.0 project (Sc2.0) aims to create a yeast cell
with an entirely synthetic genome, with several fully synthetic chromosomes
already complete. The synthetic genome has been designed to provide unique
capabilities for exploring genome evolution: transposons, repetitive sequences,
and other elements with questionable fitness benefit have been removed; tR-
NAs are being located to a synthetic neochromosome; and loxPsym sites,
symmetric synthetic versions of loxP recombination sites recognized by Cre
recombinase, have been added to permit rapid genome rearrangement through
Synthetic Chromosome Recombination and Modification by LoxP-mediated
Evolution (SCRaMbLE). We report on genome rearrangements observed in
synthetic strains subjected to SCRaMbLE. Patterns of deletions are able to
identify genes required for viability and fast growth. Analysis of inversions
demonstrate that swapping 3> UTRs often has little functional consequence.
Large duplications are also observed and are hypothesized to result from a
double rolling circle mechanism relevant to plasmid copy number maintenance
and to rearrangements in human cancer. Finally, we present a physical model
for recombinations based on DNA looping.
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Mitotic catastrophe: insights from synthetic yeast
Damien COUDREUSE!

L IGDR, U. Rennes, F

Abstract

Proper progression through the cell cycle is fundamental for cellular life. From
the control of mitotic entry to the regulation of the onset of DNA replication,
the cyclin-dependent kinase (CDK) family is the primary node of the circuit
driving the eukaryotic cell division cycle. Modulation of CDK activity relies
on a host of inputs, highlighting the complexity of this critical process. How-
ever, discerning essential controls from secondary regulation is a challenge that
may limit our understanding of the core engine behind cell cycle progression.
Building on past studies demonstrating that a single cyclin is sufficient for
driving this process in fission yeast, we generate and analyze basic synthetic
systems providing controlled CDK activity levels and bypassing a large part of
the endogenous regulatory network.

This approach allows us to bring an alternative view of cell cycle control,
suggesting a system whose central architecture may be simpler than expected.
Interestingly, the simplicity of the synthetic yeasts we have built makes them
particularly adapted for mathematical modeling and theoretical dissection of
the organization of cell cycle control. I will show how a combination of
modeling and experimental approaches using fission yeast cells operating with
minimal cell cycle networks allowed us to propose a novel mechanism for the
origin of mitotic catastrophe, a lethal result of major deregulation and overlap
of cell cycle phases. Our studies highlight the importance of coupling classical
genetics with synthetic biology and mathematical modeling for understanding
normal and pathological cell cycle events.
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Opportunities in enzyme discovery and engineering for
synthetic biology

Magali REMAUD!

L LISBP / Toulouse White Biotech, F

Abstract

As key actors of biotransformation, enzymes can provide innovative solutions
to develop sustainable processes and access to a large variety of bio-based
molecules for food, feed, cosmetic, pharmaceutical, chemical or fine chem-
ical industries. Nowadays, numerous approaches are available to discover
and isolate novel enzymes from biological resources. In addition, we have
now the ability to adapt the enzymes to desired applications and render then
more specific, robust and well-adapted to specific usages. More and more
sophisticated possibilities are also offered to design new enzymes that have no
equivalent in nature.

Exploiting this natural or synthetic diversity is a real challenge for inno-
vation. In the search for an appropriate catalyst for a given process, one first
option is to explore and screen the existing biodiversity. To this end, one can
turn to functional genomics or metagenomics supported by data mining and
efficient screening protocols. Alternatively or in parallel, protein engineering
can also be envisaged to tailor enzymes. Rational or semi-rational approaches
combined with structural computational biology are indeed very efficient ways
to enhance enzyme stability, change enzyme specificity in particular to opti-
mize or build new metabolic pathways and deliver green synthetic tools meet-
ing requested specifications.

These various approaches and their recent developments will be presented
and discussed through illustrations issued from the recent achievements of the
group of catalysis and enzyme molecular engineering of LISBP, Toulouse.
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Elementary flux modes, minimal cut sets, and the design of
optimal cell factories

Jiirgen ZANGHELLINT!

L ACIB, Graz, AT

Abstract

Elementary flux modes (EFMs) are non-decomposable steady-state pathways
in metabolic networks. They characterize phenotypes, quantify robustness
or identify engineering targets. In fact, EFM analysis is ideally suited for
metabolic engineering as it allows for an unbiased decomposition of metabolic
networks in biologically meaningful pathways. By identifying desired and
undesired network properties and using the concept of (constraint) minimal
cut sets optimal production hosts can be designed. We will introduce the
different approaches, highlight several applications, and discuss the limitations
and possible exit strategies to overcome these limitations.
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Systems pharmacology of levodopa absorption
Marouen Ben Guebila' and Ines Thiele*!

1Molecular systems physiology group, Luxembourg Center for Systems Biomedicine,
University of Luxembourg, Campus Belval, Luxembourg.

Abstract

Parkinson’s disease patients are recommended to follow either a low protein
diet (LPD) or a redistributed protein diet (PRD) during levodopa treatment,
due to a reported competition between amino acids and levodopa for intestinal
absorption. PRD showed a better clinical outcome that can be the result of
a synergestic functional interaction between amino acids and levodopa in in-
testinal antiporters. In order to study the complex interaction between both
compounds, we have combined a whole body physiologically based phar-
macokinetic (PBPK) model of levodopa with genome scale metabolic model
of the small intestine enterocyte. We have identified the kinetic parameters
(e.g. absorption, clearance) of the whole body model through curve fitting
on levodopa pharmacokinetic data. The parameters were concordant with
experimentally measured values reported in the literature. This approach will
allow the generation of a mechanism-based hypothesis about the superiority of
PRD over LPD and ultimately provide an evidence based augmenting diet for
Parkinson’s disease patients.

1 Introduction

Levodopa has been the gold standard treatment for Parkinson's disease for
more than 40 years [1]. The biotransformation of the prodrug into dopamine
in the brain allows to reverse the symptoms of Parkinson's disease. Its chem-
ical structure is highly similar to aromatic amino acids (e.g. tyrosine is the
synthesis precursor of levodopa). Both groups of metabolites share the same
intestinal transporter for the absorption from the lumen and for the efflux
into the portal vein. Consequently, levodopa compete with aromatic amino
acids [2] for transport, which affects the clinical outcome of the treatment.
Therefore, it is generally recommended either to lower the proteins in the
diet (LPD) or to redistribute the daily allowance of proteins (PRD). Different
studies reported a better clinical outcome with PRD [3]. It is hypothesized that
dietary amino acids can improve the absorption of levodopa in specific cases.

*Corresponding author: ines.thiele@uni.lu
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No systemic analysis of dietary amino acids uptake and levodopa absorption
has been done yet. A computational modeling approach may help to formu-
late mechanism based diet recommendations (LPD vs PRD) for Parkinson’s
disease patients [4, 5]. Such computational modeling approach would require
the consideration of the spatio-temporal relationship between levodopa and
dietary amino acids in the small intestine, including their absorption, distri-
bution, metabolism and excretion. Pharmacokinetic modeling could capture
this aspect. Constraint based reconstruction and analysis (COBRA) methods
allow to add genome-scale depiction of the biochemical pathways in the area
of interest, which in our study is the gut wall.

The COBRA approach [6, 7] has been used for constructing manually
curated, stoichiometry-based networks of biochemical reactions occurring in
a defined biological system (e.g. metabolism of an organism). The recon-
struction process has [8] starts from the genome annotation and the survey
of corresponding biochemical reactions from the literature pertaining to the
organism of interest. The condition-specific model is then obtained from the
reconstruction by conversion into a mathematical format as following:

Reaction : A+ B — 2C

is converted to the stoichiometric matrix S

-1
Smn=|—1
+2
where the rows represent reactions and the columns represent metabolites. The
same approach is applied to all the reactions in the system, which allows to
obtain a matrix of reactions, metabolites, and their stoichiometric coefficients.
After defining an objective function (i.e. a reaction that the system optimizes
for, such as production of biomass). By applying different types of constraints
(e.g. mass conservation, thermodynamics equalities, and inequalities), the
possible solutions of the mathematical model are reduced (i.e. leading to a
smaller set of possible system behaviors). These constraints allow to derive
many different condition-specific models from one reconstruction [9]. These
models can have different states, which can be translated biologically into
different phenotypes (e.g. secretion of specific metabolites) [7].

The assembly of the human genome-scale metabolic reconstruction (RE-
CON 1) [10] and its extended version (RECON 2) [11] allowed comprehensive
modeling of human organ-specific metabolism (e.g. muscle, liver, enterocyte
[12, 13, 14]).

RECON 2 includes 7440 reactions and 5063 metabolites involved in 354
metabolic functions [10]. The predictability of this metabolic network has been
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demonstrated, e.g. for the study of the inborn errors of metabolism (IEM) [12,
15]. Recently, the reconstruction of a small intestine epithelial cell (sSIEC) [12]
has been published and provided a deeper insight into the impact of diet and
enzymopathies on the metabolism of the small intestine.

The major drawback of COBRA is that it does not permit to model metabo-
lite concentrations and times series profiles as it assumes the modeled system
to be in a steady state. Consequently, steady-state fluxes are computed that
balance mass. This approach is also called flux balance analysis (FBA) [16].
Physiological ordinary differential equations (ODEs) based model can over-
come this shortcoming. In particular, physiologically-based pharmacokinetics
(PBPK) [17] whole body generic models have been formulated to describe
the drug and metabolites distribution in the human body. These ODE models
allow the representation of concentrations of compounds (e.g. xenobiotics)
as a function of time. However, they require knowledge about many kinetic
parameters. PBPK models have two groups of parameters, physiological pa-
rameters (e.g. volume of organs, blood flow through organs) and compound
parameters related to the xenobiotic (e.g. permeability and dissolution param-
eters). The physiological parameters are taken from the literature, if available.
Otherwise they can be identified from pharmacokinetic data using curve fitting
techniques [17]. Usually, the unknown parameters are less than 10, which
considerably decreases the complexity of the system. Combining these two
approaches holds the promise that metabolic parameters can be computed us-
ing COBRA modeling, while concentration and time profiles can be captured
by PBPK modeling.

In this study, we achieve such combination by coupling the absorption
module of the PBPK model and the small intestine enterocyte metabolic model.
The absorption module depicts the entire process of absorption with respect
to seven compartments corresponding to seven anatomical segments of the
intestine (from duodenum to the ileum). This module is also referred to as the
Advanced Compartmental Absorption and Transit (ACAT) model [18]. These
techniques will help to identify the dietary factors that are at the origin of
levodopa fluctuations.

2 Materials and methods
2.1 Small intestine epithelial cell model

The small intestine epithelial cell (sSIEC) model was obtained from [12]. The
sIEC contains 433 metabolites taking part in 1282 reactions encoded by 611
genes. We added levodopa transport reactions as well as the genes encoding
for these transporters according to the recently published experimental find-
ings [2]. The transport of levodopa involves at the luminal level: an amino acid
antiport encoded by SLC7A9 and SLC3A1 (Entrez gene ID 11136 and 6519);
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and at the basolateral side: an amino acid antiport encoded by SLC7A8 and
SLC3A2 (Entrez gene 23428 and 6520) and an aromatic amino acid uniport
coded by SLC16A10 (Entrez gene ID 117247). The computation of the flux
distribution is performed using FBA, using the COBRA toolbox [7]. The
steady state assumption dictates that mass is conserved and the concentration
of metabolites stays the same, thus

Sv=0

where S is the m#n stoichiometric matrix (with m metabolites and n reactions)
and v represents the flux vector through each biochemical reaction. In addition,
constraints are subjected to the model by limiting the lower (Vi,min) and
upper (V'i, max) bound on each reaction, if known, such that

Vi,min < V(i) < Vi,max

If no experimental information on the bounds was available,

(Vi,min) = 0 mg/ml/hour and (Vi,max) = 1000 mg/ml/hour was
defined for irreversible reactions and (Vi, min) = —1000 mg/ml/hour and
and (Vi,max) = 1000 mg/ml/hour for reversible reactions.

2.2 Whole body physiologically based pharmacokinetics model
of Levodopa

A generic whole body physiologically based kinetic model was implemented
in order to describe the pharmacokinetics of levodopa. The human physi-
ological values (e.g. blood flow, organ volumes) were fixed based on the
literature [17]. The compound parameters were estimated through data fitting
but constrained to stay close to the parameters that are reported in the literature
from in vitro or in vivo experiments (Table 1).

Parameter Model parameter Literature value
Molecular weight 197.18 g/mol 197.18 g/mol [23]
Blood plasma coefficient 0.927 -
Elimination constant 5000 ml/hour | 35000 ml/hour [25]
Log of permeability -4.737 -2.39 [23]
Unbound fraction 0.65 0.6-0.9 [23]
Effective luminal intestinal permeability 1.72 cm/hour 1.22 cm/hour [24]
Transcription factor 7.3 -
Intestinal basolateral effective permeability 15.38 -

Table 1: Parameters obtained through curve fitting of levodopa kinetics on
whole body PBPK model. Units are mentioned with the corresponding
parameters and dimensionless otherwise.
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The levodopa plasma concentrations were taken from a previous experiment [19]
of therapeutic drug monitoring of 200 mg of levodopa of standard formulation
with 50 mg of benserazide (i.e. a levodopa peripheral metabolism inhibitor) in
healthy volunteers. The fit was performed using the fmincon algorithm with
the GlobalSearch option implemented in Matlab (Matlab Release 2014b, The
MathWorks, INC., Natick, Massachusetts, United States.). The goodness of
fit was determined using the Kolmogorov-Smirnov test (99.94%) and visual
inspection of the predicted values (Figure 2 - center).

2.3 Coupling both models

We coupled both models indirectly [20], which allowed us to dynamically link
stoichiometric and kinetic models. This approach is extended up in scale as
seven sIEC models are combined to the seven segments of the ACAT model
(Figure 1).
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Figure 1: Combined compartmentalized absorption and transit model. The nu-
trients/drugs are modeled in different physical states (solid/dissolved in, respectively
dark grey/light grey) throughout the stomach, small intestine, and colon. The sIEC
models (medium gray) are combined to form the small intestine anatomical parts. S,
D, J, I and C stand for stomach, duodenum, jejunum, ileum, and colon. The comp-
artments are further segmented in the jejunum (1 and 2) and ileum (1, 2, 3 and 4).

The coupling is achieved in five steps [20]:

1. Divide the simulation time into steps and simulate ODE model for one
time step.
2. Use the absorption rate as an upper bound for the COBRA model.

3. Simulate COBRA model, while levodopa luminal transport is the objec-
tive function.

4. Use obtained COBRA flux values and set them as rates for the ODE
model.

5. Simulate ODE model for the next step .
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3 Results

3.1 System identification of levodopa kinetics

Levodopa is a hydrophilic molecule. The active transport mechanisms hap-
pening at the site of action (i.e. brain) and elimination (i.e. kidney, liver) [21]
allows for the distribution outside the blood, into the organs [22]. The kinetics
of levodopa showed two phases of elimination from the body, consistent with
the expected drug distribution in the peripheral tissue after the distribution
in the central compartment (i.e. plasma) (Figure 2 - bottom). The obtained
parameters are listed in table 1 and present a good compromise between data
fitting and measured biological values. The blood plasma parititon (BPC)
coefficient represents the fraction of levodopa that is absorbed by the red blood
cell. The value is inferior to one, attesting a weak distribution into the red blood
cells, which is expected for hydrophilic molecules. The overall elimination
constant (Ke) is seven fold inferior to the reported parameter in the litera-
ture. In fact, the elimination of levodopa occurs through its transformation
to dopamine, the elimination by the liver and by the kidneys. Modeling these
elimination pathways did not improve the fitting (data not shown). These re-
sults underscore the fact that tissue specific elimination requires the measuring
of levodopa concentrations in the eliminating organs. The effective luminal
intestinal permeability (Peff) represents the rate of absorption of levodopa
from the luminal side of the enterocyte and the intestinal basolateral effective
permeability (BLeff) represents the secretion of levodopa from the basolateral
side of the enterocyte into the portal vein. Although the latter parameter was
not reported in the literature, it was demonstrated that the basolateral rate is
superior to the luminal rate [18]. The identification of the kinetic parameters
is the first step towards the coupling with the stoichiometric model of the
enterocyte.

3.2 Coupled system

The indirect coupling of seven sIEC models to the corresponding anatomical
segments was performed through an update loop that allowed for a feedback
control between both types of models (i.e. kinetic and stoichiometric). When
no additional constraints were imposed to the COBRA model, the combined
model reached the upper bound and showed the same behavior as the kinetic
model alone (Figure 2 - top). The addition of constraints, which represent the
competition of amino acids and levodopa through a reduction of fluxes of the
corresponding transporters, would reduce the secreted amount of levodopa in
the systemic circulation, thus a lower concentration is expected.
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Figure 2: System identification of levodopa kinetics. Healthy volunteers levodopa
plasma concentrations fit on whole body model (top) and goodness of fit plot
(center) and the combined stoichiometric-kinetic model simulation without constraints
(bottom).

4 Future perspectives

A recently published study identified the luminal and basolateral transporters
of levodopa. These transporters are at the same time antiporters of dibasic
and neutral amino acids. The presence of amino acids at the intracellular
and extracellular space can interfere with the absorption of levodopa in many
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ways. Modeling the competition between levodopa and amino acids will al-
low to predict the pharmacokinetic profile of levodopa and identify the group
of patients that needs dietary intervention (e.g. suppression of proteins in
diet). Moreover, the presence of aminoacids in the portal vein representing
the postprandial state, would enhance the absorption of levodopa in vitro. In
this case, the coupled model could be used as a translational tool to assess the
impact of this phenomenon in humans. The combined model will allow us to
provide an evidence based hypothesis to clinically relevant observations such
as the comparison of the outcomes of the low protein diet and the redistributed
protein diet on levodopa kinetics and the optimization of diet composition for
levodopa treated Parkinson’s disease patients.
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Marc Bouffard!, Franck Molina? and Patrick Amar*!2

LRI, Université Paris Sud - UMR CNRS 8623, Bat. 650, F-91405 Orsay Cedex
2Syszdiag, FRE CNRS 3690, 1682 rue de la Valsiere, F-34184 Montpellier

Abstract

In this article we will show how synthetic biology can be used to design artifi-
cial bio-devices that can perform successively the samples intake, its analysis
and provide an integrated response.

The main part of our study is focused on the analysis task. This task will be
performed by a logic function applied to the output of the sensors that respond
to the bio-markers of the targeted pathology. This logic function is computed
using logic circuits made of interconnected logic gates.

For this purpose, a library of basic logic gates that can be wired together
so as to function correctly in the same environment, will be automatically
extracted from the metabolic networks of living organisms.

1 Introduction

Depending on the pathology, traditional medical diagnostic is often hard to
perform or invasive for the patient, or need heavy equipments. We want to use
synthetic biology to design diagnostic devices that can be easy to use, cheap
and non invasive.

Our goal is to design artificial biosystems that can sense the presence, or
the absence of some of the biomarkers of a specific human pathology, and give
back an easy-to-read response (e.g. colorimetric) [7]. These bio-computers
could be used mixed with blood or saliva, or urine samples as a quick and non
invasive medical diagnosic system. In a futuristic view, they could even be
directly absorbed by the patient to diagnose some pathologies of the digestive
system.

These bio-devices have to include material to perform three different types
of functions: (i) biosensors to detect the biomarkers, (ii) a computing system
to integrate the response of the biosensors and (iii) a display system to show
the results. In this article we show how to build the logic circuits that are part
of the computing system.

The use of synthetic biology to build logic circuits is not that recent [5].
Several authors [3, 9] have already shown that it was possible to build molecu-
lar logic gates, and even to chain them [6, 8]. But unfortunately, the molecular

*corresponding author: pa@lri.fr
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logic gates shown in these studies use specific properties of some molecules
which make them hard to wire together and therefore not very easy to use to
build large circuits.

In our approach, a logic gate is implemented by a set of reactions where
the inputs are the metabolites that are the substrates and the output is the
product of a cascade of reactions catalysed by enzymes. We will show how to
assemble independent functional units, the biochemical logic gates, to get large
biochemical logic circuits. To maximise the efficiency of our logic gates, we
will try to make them as little dependent as possible on the enzymes kinetics.

To avoid erratic behaviours that may be due to the stochasticity or to high
local concentrations, we use a large enough number of copies of enzymes and
metabolites to insure that the mixture is well stirred.

2 Biochemical logic gates

We wish to design logic micro-systems using biochemical reactions between
various molecular species. To obtain a full circuit implementing a given boolean
function, we need to design logic gates that can be connected together. Our
logic gates will take as input a set of signals representing the boolean values
true and false, then process them to output the same kind of signal. So we
need to translate the boolean information in a type of signal that can be pro-
cessed by biochemical reactions. To do this we use specific molecular species,
metabolites, to implement the value of the boolean information at each point
of the circuit (i.e.: the equivalent of the wire that connects the output of a gate
to the input of the next one in electronic circuits).

A given metabolite will represent the boolean constant false if its average
concentration in the vesicle is below a predefined threshold, th;. Conversely,
the boolean constant true will be represented by a concentration above another
predefined threshold, thy > th;. We assumed that if, at the beginning the
computation of a logic function, the concentration of each input metabolites is
not between the two thresholds, even if during the transient phase of computa-
tion, some of the metabolites concentrations may lie between th; and the, at
the end, the concentrations of the output metabolites are either below th; or
above tho.

Using this representation of boolean values, we will need as many different
molecular species as the number of connections needed to build the circuit. For
example, a logic gate with two inputs and one output, will need three different
molecular species; To connect its output to one of the inputs of the next gate,
this gate must use the same molecular species for this input.

We define the biochemical logic gates by their truth table, the set of molec-
ular species representing the inputs, the molecular species representing the
output, and the metabolic network implementing the gate.
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A gate is made of a set of enzymes that catalyse reactions between metabolites.
A complex gate is implemented by a cascade of enzymatic reactions. A gate is
starting to work when at least a few of its inputs become available to the first
reaction. Then the next reactions can begin, producing new metabolites while
consuming the ones produced by the previous reactions in the cascade. Finally,
the gate begins to produce its output when the last reaction has its substrates
available.

The number of layers (i.e. successive reactions) needed to implement a
particular gate may vary, depending on its complexity and on its number of
inputs. If a logic gate is complex enough, many different enzymatic networks
can be used to implement it, which can lead to different numbers of layers.

2.1 Simple Gates

A simple logic gate, with two inputs and one output, can be built with only one
layer:

e AND Gate: we use a reaction catalysed by an enzyme E that needs
two substrates, A and B (the inputs) to produce a metabolite, C (the
output) (fig. 1 left).

e OR Gate: we use two reactions that produces the same metabolite, C (the
output) one from a substrate A (first input) the other from a substrate
B (second input). We can use one (or more probably two different)
enzymes, E1l that catalyse A — C and E2 that catalyse B — C (fig. 1
right).

Figure 1: Simple networks for two inputs AND (left) and OR (right) biochemical
logic gates.

These logic gates are made of one or two enzymes in only one layer. An
important characteristic of these gates is that they do not depend on the kinetics
of the enzymes to compute the correct boolean value. Furthermore, the two
inputs of the gate do not need to be strongly synchronised, the gate is correctly
working regardless the order of arrival of the input values.
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For the inverter (NO gate) or when one of the inputs must be inverted or if it is
the output that must be inverted (NAND, NOR gates) the main problem is to
be able to react to the absence (or low concentration) of a metabolite.

To address this problem, we have used two different methods (i) inhibition
and (ii) competition. Here is an example of two versions of the C = A A B
gate based on each of these principles. In both versions, the low concentration
of the input A metabolite leads to a concentration of the output product that
follows the concentration of the input B metabolite:

e C = A A B gate using inhibition: we use an enzyme E that catalyses
the reaction B — C, where metabolite B is one input, and C is the output
product. This enzyme E being inhibited by the second input metabolite
A (fig. 2 left).

e (' = A B gate using competition: we use an enzyme E; that catalyses
the reaction R : B — C. Another reaction, Ry, catalysed by E» using
both the input metabolites A and B to produce an unused metabolite P,
is running concurrently. When metabolite B is present, the presence of
metabolite A leads to the consumption of B by the reaction Rg, such
that reaction R; is not very active, so the output metabolite C has a low
concentration (fig. 2 right).

A common drawback to both of these methods is that they are heavily de-
pendent on the relative kinetics of the reactions. For the inhibition method,
it is crucial that the inhibition is stronger than the reaction B — C. For the
competition method, reaction Ro must have a higher kinetics than reaction R;.

L]
)

Figure 2: C = A A B gate using inhibition (left), or competition (right)

2.2 Circuit wiring

In order to wire gates together, the molecular species representing the output
of a gate must be the same as the one used for an input of the following gate,
the next layer (fig. 3).
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This is a strong constraint that must be satisfied by the implementation of the
gates in order to get the desired circuit.

Figure 3: Circuit computing D = (AA B)V C'; The product int of enzyme E; must
be the same as the substrate of enzyme Es in order to wire the output of the AND gate
to on input of the following OR gate

The most important difference between the metabolic and the electronic im-
plementations of a circuit computing a given boolean function lies in the way
the wiring is made. The electronic gates use wires, insulated from each others,
according to a permanent connection scheme. In an electronic circuit, all the
instances of the same kind of gate are identical since they are connected using
non cross talking wires.

Our biochemical implementation does not benefit from this clear separa-
tion between each basic gate. The wires we use are insulated because they
are not made of the same material (metabolic species), therefore they can
reside in the same environment without any cross talk because of their very
nature (fig. 3). There are two consequences to this: (i) each occurrence of a
given kind of gate must be unique to avoid short circuits and (ii) the connection
scheme is not permanent since a connection begins to exist (i.e.: carrying
the true boolean value) when the concentration of the corresponding molec-
ular species raises above a threshold, and disappear when its concentration
decreases under another threshold.

In our approach, the metabolites that implement the connections are cre-
ated, processed and consumed, so they have a limited lifetime for most. We
can consider that when after a while some metabolites are consumed, the corre-
sponding wires no longer exist. The logic gate implemented by a biochemical
network is in some way built only at the moment the metabolites representing
its inputs are present, building (i.e. activating) each layer of reactions until the
final one. When all the input and internal metabolites are consumed, the gate
is deconstructed, each enzyme that is part of this gate could be even reused to
build another (type of) gate.
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3 NetGate: from a metabolic network to a set of logic gates

There are many environmental factors (temperature, pH, etc.) that may have an
influence on the functioning and on the kinetics of the reactions catalysed by
enzymes. Since our ultimate goal is to build biochemical nano-systems using
enzymatic reactions that take place in the same environment (lipidic vesicles
or droplets), it is best to use enzymes and metabolites that are already part
of the same metabolic network in the same environment in vivo. Hence the
idea to extract as many different logic gates we can from an existing metabolic
network.

Before describing in details the algorithms implemented by NetGate, let’s
set some definitions that will help to understand them:

1. A metabolic network is a set of interconnected reactions involving metabo-
lites (substrates or products) and enzymes (catalysts or modulators).
They form a dense and usually strongly connected network.

2. Tied reactions: two reactions are tied if they share at least one common
molecular species.

3. A logic gate is an abstract construction with at least one input and one
output. A truth table is associated to the gate; The truth table gives the
value of each output for each possible boolean pattern of the inputs. The
set of logic gates NetGate is searching for are described by their truth
table in a parameter file.

4. An implementation of alogic gate is a subnetwork of the input metabolic
network where the inputs and output are identified. The number of
inputs of the subnetwork may exceed the number of inputs of the gate.
If the value of one of these extra-input does not change the behaviour
of the gate, this input is left free and will be ignored. Conversely, if
any variation of the value of an extra-input changes the behaviour of the
gate, then a fixed boolean value is assigned to this input in order to get
the correct truth table for the gate.

3.1 Overview

NetGate takes as inputs (i) a SBML file describing a metabolic network and
(ii) a list of truth tables corresponding to the logic gates that are to be searched
in the metabolic network.
First, all the possible implementations of the logic gates are enumerated; Then,
these implementations are checked against the given list of truth tables and the
gates found are sorted and output.

The gates implementations are searched in subnetworks extracted from
the original metabolic network. These subnetworks are built starting from
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one reaction of the original network, the seed, then adding successively other
reactions that are tied to this seed. To get all the subnetworks, this process is
repeated starting from all the reactions of the original metabolic network.

Then, for each of the given gate description, all the possible implementa-
tions are searched within each subnetwork. All the mappings of the inputs of
the gate to the inputs of the subnetwork are successively checked to see if all
the lines of truth table of the gate description can be obtained.

3.2 The algorithm in-depth
3.2.1 Metabolic network conversion

The input metabolic network is translated to a reaction matrix, where the
lines are the reactions and the columns the molecular species (metabolites and
enzymes). As we assume a stoichiometry of 1, we use -1 for a reactant that will
be consumed, +1 for a reactant that will be produced, and 0 when a reactant is
neither produced nor consumed. The network on fig. 4 will be translated to the
reaction matrix on fig. 5.

All the metabolic reactions are reversible, but depending on the enzyme
that catalyses the reaction, the equilibrium can be unbalanced; In this case, the
reaction is considered irreversible. The reversible reactions are split into two
reactions: the forward reaction and the reverse reaction. An artificial enzyme
will be used to catalyse the reverse reaction while the real enzyme will catalyse
the forward reaction.

Q Rs3 )@
LI

Figure 4: A simple metabolic network.

| Reaction# [ E; [ E [ E3 [A[B|C|[ D] E |

Ry Cat| O O |-1|-110|+1] 0
Ra O [Cat| O |O]O|-1|+41] O
Rs 0 O |Cat| O | O] O|-1]+1

Figure 5: Reaction matrix of the network of fig. 4. (Cat means that the enzyme is
needed to catalyse the reaction)
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3.2.2 Decomposition in subnetworks

To enumerate all the subnetworks of the original metabolic network a tree-like
greedy algorithm on the original network will be used:

1. start from one reaction of the metabolic network to constitute the first
size one subnetwork.

2. build a new subnetwork by aggregating to the current subnetwork one
reaction taken from the original network, which is tied to one of the
reactions of the current subnetwork. The added reaction must not be
the opposite reaction of an already included reversible reaction (i.e. the
forward or the reverse reaction may be part of the subnetwork but not
both).

3. repeat step 2 until no new reaction can be added.

To build all the subnetworks, this algorithm is re-applied on all the reactions
on the metabolic network, using each time a different initial reaction. It is very
probable that the same subnetwork appears more than once, so the algorithm
actually used has been optimised to cut down the exploration tree starting
from a subnetwork that has already been explored. Eventually, this process
enumerates all the different subnetworks of the initial metabolic network.

3.2.3 Finding the gates implementations

At this point of the process, for each gate we are interested in, we will look
for all the implementations we can find in each of the subnetworks built at the
previous step.

There is a huge number of potential implementations because frequently, a
logic gate has a small number of inputs compared to the number of inputs of the
average subnetwork. The naive way to find all the potential implementations
for a logic gate with n inputs and one output that can be extracted from a
subnetwork with & > n inputs and m > 1 outputs, is for each of the m outputs,
to enumerate the number of combinations of n among k (fig. 6). Therefore we
can obtain up to m - (%) potential implementations, but some of them may be
clearly discarted if one of the inputs has no effect on the output. Moreover,
many of these potential implementations may be identical if one (or more) of
the k — n extra-inputs also have no effect on the output.

We can optimise the search by computing for each output of the subnet-
work, the list of its predecessors: the molecular species that are inputs of the
subnetwork, which may influence the output. Then a set of potential inputs
associated to a given output is made using the predecessors of this output.
Each one of these sets of reactions constitutes a potential implementation for a
logic gate.
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Figure 6: Subnetworks with k inputs and m outputs. One of the m - (’]z) possible
logic gate implementation with n = 2 inputs and one output is shown with thick
arrows. For each of the logic gate searched, a coarse grained simulation is made in
order to see if there is a match with each line of its truth table. This is done for all the
binary combinations of the extra-inputs.

3.2.4 Testing the gates implementations

Overview of the test procedure

Once we have a potential implementation, we compare it to each logic gate
that we are interested in, in order to find a possible match. To do this, we
evaluate the output of the implementation (the reactions subnetwork) for all
the possible boolean configurations of the inputs in order to find if one of these
evaluations matches the truth table of a specific logic gate.

To evaluate a line of a truth table, firstly we initialise the concentrations of
the input metabolites with values corresponding to the boolean values of that
line. Then, the other extra-inputs of the subnetwork are successively set to the
metabolites concentrations that correspond to all their possible binary config-
urations. Finally, a coarse-grained simulation of the dynamics of the reaction
network is applied in order to give us an approximation of the concentration of
the output metabolite, and therefore an approximation of its binary value.

This process is performed for all the lines of the truth table of each logic
gate that are searched, and for all the valuations of the extra-inputs in order to
find if this logic gate can be implemented by this reaction network according
to these values of the extra-inputs.

Coarse-grained simulation algorithm

The simulaton of the dynamics of the network is very similar to the simulation
of a Petri net: the places are the molecular species and the transitions are the
reactions. An initial valuation of all the places is made and then a certain num-
ber of simulation steps are performed. The update scheme used is deterministic
(each time a transition can be fired, it is fired) and synchronous (all the fireable
transitions are fired at the same time).
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Here, the tokens represent the concentrations of each molecular species, and
the transitions are computed directly from the reaction matrix. Our simulation
system is coarse-grained in the sense that since we are primarily interested in
a boolean behaviour, the concentrations of the metabolites (and consequently
of the enzymes) are represented by a few tokens. Initially, the places corre-
sponding to inputs set to the boolean value false have 0 tokens, and those set to
true have 10 tokens. The extra-inputs initially set to ¢rue have a high value of
1000 tokens. All the places corresponding to enzymes have initially 2 tokens.
The inhibited reactions are represented by the artificial consumption by the
inhibitor of the enzymes catalysing the reactions.

Conversely, at the end of the simulation, the number of tokens in the places
representing metabolites are converted to the boolean value false when this
number is less than 4, and to true otherwise.

Using these conventions, the boolean values of the inputs for each line of
the truth table of the currently tested gate are converted to the corresponding
initial number of tokens in each place, and the simulation process may begin.

| Time index [ E; [Es [ A | B | D | E | Reactions |

0 22 |10[/10]0}| O

1 212191910 ]|R;

2 2 1218|811 ]|R&Ry
3 2 21717 |1]2|Ri&Rs
9 2 2 1 1 1] 8 |Ri&Ro
10 21217010 1]9|Rse

11 212101 0]0]10

Figure 7: Coarse-grained simulation of the subnetwork of fig. 4 made of only
reactions R; and Rj3. This simulation shows that when inputs A and B are set to
the boolean value frue, after a certain amout of time, the output E switches from false
to true (which is a good start for an AND gate).

The simulation process is quite simple: at each iteration, all the fireable tran-
sitions are triggered and the number of tokens in each place is updated. This
process continues until either there are no more fireable transitions, or a pre-
determined maximal number of iterations is reached (to avoid infinite cycles
when there is a loop in the reaction network).

A reaction is triggered when all its substrates (-1 in the reaction matrix)
are present and the enzyme that catalyses the reaction is also present. All the
reactions are triggered synchronously, therefore to avoid negative numbers of
tokens, if there are not enough tokens in some places, the reactions using these
places are not triggered (fig. 7).
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We can see a token as a unit of metabolite quantity of matter. The value of time
slice associated to each iteration is not defined and we do not know the kinetics
of the reactions. But nevertheless, this coarse-grained computing model allows
us to have a good idea of the global dynamics of a small set of reactions, and
therefore can predict with a good accuracy if this set of reactions can or cannot
implement a given logic gate.

3.2.5 Sorting and storing the gates

It is highly probable to find multiple versions of the same logic gate, imple-
mented by the same set of reactions but extracted from different subnetworks.
For example, a specific logic gate can be found in a subnetwork SN of size 3
(made of 3 reactions), and also in another subnetwork SNy of size 4, which is
just an extended version of SNj.

It is also possible to find multiple versions of the same model of logic
gate (i.e. same truth table, and same molecular species for the inputs, and the
output) but implemented by different sets of reactions, and different sets of
extra-inputs (and/or valuations for them).

To avoid these kinds of useless redundancies, we will keep only the simplest
version of each gate. The simplest version of a gate is the one implemented by
(i) the smallest set of reactions, and (ii) the smallest number of extra-inputs.

If a new implementation of an already stored gate is found, and if the new
implementation has the same number of extra-inputs, and the same number of
reactions but if at least one reaction is different, this new implementation is
also kept (it is a good alternate version of the same gate).

This last part of NetGate is implemented using association lists that allows
the validation subroutine to quickly find whether the new found gate imple-
mentation is to be discarted or must replace or is to be added to the already
found set of implementations of the same logic gate.

3.3 Validation and results

NetGate is written in the C++ programming language. It has been compiled
using gcc on the Linux, MacOSX and Windows 7 operating systems on 32
bits and 64 bits architectures. The program is parallelised, using one specific
thread per type of logic gate searched. The default set includes 7 of the most
commonly used two-input logic gates.

In less than 16 seconds, on a quad-core Intel IS Apple MacBook Air com-
puter, NetGate has found 1759 logic gates with at most 4 reactions per gate,
in a 35 enzymes version of the B. subtilis central carbon metabolism. During
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its execution, the program has created 820 subnetworks, evaluated 2,155,496
potential logic gates and has found 836 AND and 923 OR gates.

Many thousands implementations of the logic gates found by NetGate have
been verified using the HSIM stochastic simulation system [1, 2]. A specific
format converter have been written to automatically translate the output of
NetGate to input models for HSIM.

These models share these common characteristics:

o the reactions take place in a virtual spherical vesicle of 0.4 pum of diam-
eter (volume ~ 0.0335 pm?).

o The initial concentrations of the metabolites for all the inputs having the
true boolean value are set to ~ 1 mM (20,000 copies).

e The concentration of the enzymes is set to = 2.5 uM (50 copies).

e The threshold used to determine a boolean true value is ~ 0.5 mM
(10,000 copies).

All the simulations showed that the logic gates implementations found by
NetGate reproduced correctly their truth tables.

To test extensively NetGate we used a dataset downloaded from the KEGG
pathway database [4]. This dataset includes 72,095 different metabolic net-
works coming from various living organisms. The sizes of the metabolic
networks varies from one to eighty reactions. These validation tests have been
made only on the metabolic networks that have more than five reactions.

4 Conclusion

NetGate proved useful to create a library of logic gates that can be inter-
connected together and that can function correctly when located in the same
environment. The validation tests have shown that our model of biochemical
logic gates were robust and very well adapted to our purpose.

The next step of the computer aided design of diagnosis bio-devices is
to be able to automatically propose various biochemical implementations of
a given boolean function. Another step is to also propose pre-built circuits
that implement complex functions, such as timers, oscillators, memories, finite
state machines, etc.
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Abstract

In this article we present a modelling framework that links the well known
modelling framework of gene network introduced by R. Thomas and Markov
chains. In a first development we introduce a Markov chain having as state
space the set of all possible states of the R. Thomas models: we generate the
transition probabilities by examining all the possible parameterizations of the
interaction graph. The second development focuses on a stochastic framework
where several parameterizations of a same qualitative gene interaction graph
are considered and transition probabilities allow one to jump from a state to
another one which can potentially be in another parameterized model. The
idea is to consider only parameterized qualitative models of R. Thomas which
abstract biological knowledge, and to use transition probabilities to allow to
jump from one to another, if information coming from biological experiments
reinforces the belief in a particular model.

1 Introduction

Regulatory networks are models based on graphs which are used to obtain a
simpler view of gene regulation [6, p. 101]. Gene regulation is defined as
the process of turning genes on and off which is made possible by a network
of interactions that includes chemically modifying genes and using regulatory
proteins. Gene regulation guarantees that appropriate genes are expressed at
proper times specially during early development where cells begin to take on
specific functions; it also helps an organism respond to its environment [8].

The different frameworks for modelling gene networks can be classified
into three main groups. The systems of differential equations have been largely
used in order to represent a lot of systems with a lot of details (transcription,
traduction, transports ...). The second group consists of stochastic frameworks
like Markov chains. The Markov modelling framework supposes that, given
the past and the present, the future only depends on the present [9, p. 163].

30On research leave from De La Salle University, Philippines. Funded by Emma in the
framework of the EU Erasmus Mundus Action 2.
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This framework is well adapted to biological systems but supposes a strong
effort in the enumeration of all entities (and interactions between them) that
play a role in the system. The third group of approaches consists of qualitative
frameworks in which details have been abstracted and only main causalities
have been taken into account. Two paradigmatic frameworks can be classified
in this group: the Boolean networks first introduced by Kauffman [5] and the
multi-valuated modelling framework first introduced by R. Thomas [13].

In this paper we present a modelling framework that links the well known
modelling framework of gene network introduced by R. Thomas and Markov
chains. In a first development we introduce a Markov chain having as state
space the set of all possible states of the R. Thomas models: we generate the
transition probabilities by examining all the possible parameterizations of the
interaction graph. Thus the Markov chain represents the possible behaviours
obtained by superposition of all parameterized models. We then extend this
stochastic framework to a Markov chain in which we distinguish the states
of each parameterized model and where the probabilities are computed on a
smaller set of parameterizations. The idea is to consider only parameterized
qualitative models of R. Thomas which represent well the biological knowl-
edge and to use transition probabilities to allow the system to jump from a
particular dynamics to another one.

The earliest qualitative model for a gene regulatory network was intro-
duced by Kauffman [5]. In Kauffman’s model, a gene is modelled as a binary
variable (0 or 1) which takes only one of the possible Boolean functions of its
inputs. When the gene is on it takes the value of 1, otherwise it takes 0. The
outputs of a gene at time ¢ 4+ 1 depends only on the activity at time ¢. In this
group of qualitative modelling frameworks, we can also cite the framework
of R. Thomas in which each gene can have several levels of expression [13].
Thomas’ model allows the gene to be represented as a multilevel logical vari-
able (0,1,2,...); the number of possible values depends on the number of
distinct actions it does on the network. In this case, the actions refer to a
gene acting as an activator or repressor of some of the genes in the network.
For each distinct action, a threshold value is assigned to specify from which
expression level the influence takes place. So a variable with n distinct actions
has n thresholds and this variable becomes an (n+ 1)-level variable. Allowing
multilevel logical variables guarantees that no two distinct actions can happen
simultaneously.

In order to illustrate our modelling approach, we focus on the gene regula-
tory network of the pathogen Pseudomonas aeruginosa, more specifically on
the subsystem which is responsible for mucus production in the lungs of indi-
viduals with cystic fibrosis. Although the global gene regulatory network of
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Promotor  algU mucA mucB mucC mucD

mucus + AlgU
synthesis

Figure 1: Portion of the gene regulatory network of the pathogen Pseu-
domonas aeruginosa, responsible for the mucus production; an arrow indicates
activation or stimulation while a T-symbol represents repression [1, 2].

this pathogen consists of 690 genes and 1020 regulatory interactions between
their products [3], the subsystem controlling the mucus production consists of
some genes and proteins, see Figure 1. Because the mucus production worsens
the respiratory problem of the patients which is often the cause of death [2,
p. 75], elucidating the behaviour of this subsystem may be of great help to
address this outcome.

The paper is organised as follows. Section 2 is devoted to sketch the
qualitative modeling framework of R. Thomas. Section 3 explains how to
build a Markov chain from the set of all possible parameterizations of an
interaction graph. We can then push this idea forward and propose, when
biological knowledge allows to reduce the set of possible parameterizations, a
unique stochastic model where it becomes possible to jump from one qualita-
tive model to another, see Section 4. Finally Section 5 is devoted to conclusion
and discussion.

2 Reminding of R. Thomas’ Modelling Framework

The biological regulatory network controlling the mucus production in Pseu-
domonas aeruginosa can be abstracted by the simple directed graphs of Fig-
ure 2 in which positive and negative signs indicate activation and repression,
respectively, following the direction of the edge they label. These interaction
graphs would suffice if we are only interested in applying Kauffman’s model
but if we want to apply Thomas’ model there must be a threshold indicator for
each distinct action of the gene as seen in Figure 2.

Such interaction graphs, as those in Figure 2, are called biological regula-
tory graphs [1, Definition 1] and are represented by graphs G = (V, E), where
V is the set of genes in the network and E' represents the set of interactions
between the genes in V. Each vertex v € V has a boundary b, that is less
than or equal to its out-degree (unless its out-degree is zero in which case we
take the boundary to be one) while each edge is labelled by an ordered pair
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containing the threshold ¢ and action € (activation “+” or repression “—").

a) b)

Figure 2: Two simple interaction graphs representing the system controlling
the production of mucus in Pseudomonas aeruginosa (see Figure 1). The
variable x denotes the gene algU and the protein AlgU while y denotes the
gene mucB and the anti-AlgU. Both biological regulatory graphs differ by the
labelling of edges outgoing from node z: the thresholds are not the same.

In Figure 2, we have V = {z,y} and £ = {(z — z), (z — y), (y — x)}.
The interaction x — mucus is not taken into consideration since mucus has
no action backward toward x and y: it is a by-product of x which is produced
when z is at its highest level (the regulation (x — mucus) is labelled by the
threshold 2 since x has two distinct actions on y and on itself). The variable
y has a unique action (repression of x) so the only possible threshold of the
regulation (y — x) is 1. Lastly note that Figure 2 does consider two possible
biological regulatory graphs because the ordering between thresholds labelling
edges outgoing from node x is not well known: we have to consider the two
possible orderings.

In order to build the the dynamics of a biological regulatory graph, we
first introduce the states of the network. A state of a regulatory network is a
tuple denoted by (n,,...,n,,), where p denotes the number of genes and
for each n,, € N (natural numbers / non negative integers) n,, < b, [L,
Definition 3]. We have now to define the resources of a vertex v; with respect

to a state (1y,,...,7My,). Given a regulatory network, a state (1., ...,n,,)
and an edge (v; — v;) with label (¢,¢), the vertex v; is a resource of v; if
and only if n,, > tand ¢ = + orn,, < tand € = — [1, Definition 4]. The

intuition is that the absence of an inhibitor plays the same role as the presence
of an activator. Finally, a biological regulatory network refers to the biological
regulatory graph G = (V, E) together with a set of parameters .2~ = {k, .},
wherev € V,w C G~ (v) = {u | (u — v)is an edge in G} and k, ., < b, [1,
Definition 2]. The parameter £, ., gives the value towards which v is attracted
when the set of resources of v is w.

An easy way to represent the dynamics of a regulatory network is to as-
sociate with each state, the state towards which the system is attracted, when
considering that each variable v changes at the same time to its current attrac-
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tion value k, ., (w being the current set of ressources of v). This defines the
so-called synchronous state graph . = (S, T): The set of vertices S contains
all possible states, and the edges of 7" are of the form (n,,,...,ny,) —
(k,‘(v1 wi)r e k(vp,w,,)) such that for every 7, wj is the set of resources of v; at
the state (1, ..., n,,) [1, Definition 5]. Unfortunately, the parameters ky .,
are not measurable in vivo [1, p. 342] so we are left with several possibilities
which results to obtaining several synchronous state graphs.

The synchronous state graph is not well adapted to represent evolution
of the biological system because it is improbable that two (or more) genes
reach their thresholds exactly at the same time and because a gene cannot
directly jump two or more consecutive thresholds. To correct these drawbacks,
one has to desynchronize each transition. Each transition (1n,,,...,n,,) —
(M5 - - -5 My, ) is replaced by the set of its desynchronizations which are of the
form (M, ..oy My~ 1, Mgy Mgt 15+ -5 M) = (Mg o oy Moy — 15 Mgy 0, My 41,

., Ny, ) for i such that n,, # n;, and 6 = 1 when n,, < n;,, otherwise
0 = —1 [1, Definition 6]. The desynchronization step allows some states to
transition to more than one other state. Thus, the dynamics of the regulatory
graph is represented by the asynchronous state graph ¥ = (S,T') where
the set S of vertices is the set of states and the set 7" of transitions contains
all desynchronized transitions of the synchronous state graph [1, Definition
7]. Note that two different synchronous state graphs may lead to the same
asynchronous state graph since the desynchronization step can reduce two

distinct synchronous transitions to the same set of desynchronized transitions.

Yy A T | Yy A \'/ Yy A \"/
L g QA

Figure 3: A possible qualitative dynamics in the modelling framework of R.
Thomas (left). This asynchronous state graph can correspond to an inward
spiral (centre) or to an outward spiral (right).

The global modelling approach consists of identifying all variables of the
system, as well as their interactions and then the identification of parameters.
Unfortunately, sometimes, it is not clear which parameters to choose. Consider
the possible qualitative dynamics shown in Figure 3 (left) where we see that
the state (2, 1) is a stable state and that the system presents a counterclockwise
oscillation between states which have a level of x less or equal to 1. It is clear
that both the inward spiral (Figure 3 centre) and the outward spiral (right) are
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represented by the same qualitative model. But it could be more convenient to
represent the inward spiral by the model where transition (1,0) — (2,0) does
not appear: the small part of the domain (1,0) from which the stable domain
(2,1) is reachable, is integrated in the domain (2,0), and when a grand tour
is done in the inward spiral, it become impossible to reach the stable domain

(2,1).
3 Markov Chains in Gene Regulatory Networks

When Kauffman proposed the Boolean model, the output of the genes at time
t + 1 were only dependent on the activity of its inputs at time ¢ [5, p. 441]
which resembles the Markov property where given the past and the present,
the future only depends on the present [9, p. 163]. In Kauffman’s model
a gene at time t transitions only to exactly one state at ¢ + 1 while in a
Markov chain, the transition probabilities allows the system to go from a state
at time ¢ to more than one other state at ¢ + 1. In this section, we discuss
briefly several ways of setting up Markov chains for gene regulatory networks
based on available literature (see the works of Skornyakov et al. [12], Kim et
al. [7] and Shmulevich et al. [11]) and then we give a basic Markov chain that
represents the asynchronous dynamics of the interaction graphs of Figure 2.

In these three articles [7, 11, 12], a state can be thought of as a snapshot
of the activity level of all the genes with respect to a given time. In [11], these
states were referred to as maps. The Markov chain was applied to Kauffman’s
Boolean model of a gene regulatory network but it requires that the cooperation
between interactions are well specified. In [7], the Markov chain allowed
each gene to take three states, namely -1 (under-expressed), O (equivalently-
expressed) and 1 (over-expressed) and it makes use of conditional probabilities
to compute the transition probabilities. The Probabilistic Boolean Network
(PBN) [11] addresses the deterministic nature of Kauffman’s Boolean model.
Both works [7, 11] can be easily extended to Thomas’ model. However, the
updates on all the genes in a PBN are done synchronously to simplify computa-
tion while preserving the generic properties of global network dynamics [11].

In Thomas’ modelling framework, there are several possible values for the
parameters k., ,,, where v; denotes the ith gene while w; denotes the ith gene’s
resources. The variability of these parameters results to potentially enormous
(exponential) number of synchronous state graphs, but this number can be
largely trimmed by considering the following constraints:

kyp=0andw C w' = kyw < Ky (1)

When a gene v has no resources, its expression level is not supposed to in-
crease. Hence, a value of zero is assigned to k, g. When a gene loses some of



9/9/2015- page #83

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 83

its resources its expression level may drop while increasing its resources may
increase its expression level. Because of the constraints in (1), the number
of synchronous state graphs for each regulatory graph in Figure 2 is reduced
to 28 which is now a reasonable number of graphs to work with. These
synchronous state graphs can be obtained by playing with the different values
of the parameters of Table 1 with the previous constraints of inclusion of
resources in mind.

State Next State State Next State

Ty w y Ty x y

AT AT
a) b)

i ‘1) ’gw,{y} ’]zy,{x} } (1’ Zx,{z,y} 8

2.0 Frgagy  Kyga 2 0 kypgayr Kygay

2 1 Regey  kygay 2 1 Kegey Ry

Table 1: Tables giving the parameters of interaction graphs according to the
current state: Tables a) and b) correspond to Figures 2(a) and 2(b), respectively.

We now recall the foundations of Markov chains in discrete time on a
countable state space. Let p;; denote the probability that state j can be reached
from state  in n steps. If n = 1 we have the entries p;; of the transition matrix
P while the n-step transition probabilities p;; (n > 1) are contained in the
matrix P". If for any couple of states (4, j) we can find an n € NT (positive
integers) such that p% > 0 and p?i > 0, then we say that the states communi-
cate with each other. This indicates that all the states belong to a unique class
(Markov chain is irreducible). A state ¢ has period d if p}; = 0 whenever
n is not divisible by d and d is the greatest integer with this property [9,
p- 169]. In an irreducible aperiodic Markov chain the states are either all
transient or null recurrent (finite number of visits) or positive recurrent (infinite
number of visits) with a unique stationary distribution {7;,j = 1,2,...},
where m; = lim;, . p?j > 0 [9, Theorem 4.3.3]. Note that an irreducible
Markov chain with a finite state space cannot have transient states because the
chain will eventually stop once it has visited all the states in a finite number of
time which should not be the case [9, p. 170]. Thus, in such a chain, all the
states must be positive recurrent.

Let p15; denote the expected number of transitions needed to return to state
J starting from j. When state j is positive recurrent y;; < oo [9, p. 173] and
when the Markov chain is aperiodic and irreducible, we have lim,,_, p?j =
1/55 [9, Theorem 4.3.1]. It follows that in such a Markov chain, we have
7j = 1/p;;. An aperiodic irreducible positive recurrent Markov chain is called
ergodic [9, p. 177]. In an ergodic Markov chain we have a limiting matrix
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II = lim,,_. P™ with all rows having the same vector w = (71,72, ...)
of positive probabilities with sum equal to 1; the probability m; denotes the
long-run proportion of time that the Markov chain stays in state ¢

@ 1 0o ©On 1, 4,H 20 @D B | 00 ©OhH 1O 1,H) 20 @D
OO 120 6 0 0 0 00| 12 0 6 0 0 0
©on 22 o o0 0 0 0 on/2 o 0o 0 0 0
Lol 9 o s 95 45 0 w2 0o 8 0 18 0
aplo 21 7 0 0o o0 anlo 6 9 0 o0 3
enlo o 75 0 9 1s  @onlo o 75 0 9 11.5
en o o o0 165 85 3 enlo o o 165 85 3

Table 2: Sum of the probabilities assigned to each possible transition over
all asynchronous state graphs. (A) and (B) are built from Tables 1(a) and 1(b)
respectively. These numbers take into account the multiplicity of asynchronous
state graphs.

To model the asynchronous dynamics by a Markov chain, we examine
all the possible asynchronous state graphs. Since different synchronous state
graphs may lead to an identical asynchronous state graph, the number of dis-
tinct asynchronous state graphs can be less than the number of distinct syn-
chronous state graphs. In that case, we also have to take into account the
multiplicity (number of occurrences) of each distinct asynchronous state graph.
In each asynchronous state graph, we assign appropriate probabilities to tran-
sitions (the transitions outgoing from a same state receive the same probability
if no knowledge contradicts this hypothesis). Once this is done for each asyn-
chronous state graph, we multiply the probabilities assigned to each possible
transition by the multiplicity of the asynchronous state graph and take the sum
of all such terms over all the possible asynchronous state graphs.

We now set-up the transition probability matrices for Tables 1(a) and 1(b)
which are obtained by simply dividing the entries of Table 2 by the total num-
ber of synchronous state graphs which is 28 as already mentioned. We have:

502 0 0 0 50 2 0 0 0
1 00 0 0 0 1 0 0 0 0 0
9 5 19 9 1 2 9
p= (= 5 F m ow Vfggp,—|u § g 0 u
0 3 £ 0 0 0 0o &£ B o0 o0 2%
00 L o 2 2 0o 0 B g o B
0 0 %6 33 %§ 536 0 0 %6 33 %§ 536
L 56 56 28 L 56 56 28

The order of the entries in P, and P;, follow the order given in Table 2.
These Markov chains are ergodic, which guarantees the existence of a unique
stationary probability m; which gives the long-run proportion of time in <.
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e Evaluating limy, .., Py, we have m gy = 0.339, m(g 1) = 0.096, 7(1 o) =
0.304, 7(1,1) = 0.128, (5 9y = 0.091, and 7(3 1) = 0.042. In the long-
run, the most visited states are (0,0), (1,0), and (1,1). Given the long-run
probabilities, we can also compute the average number of transitions
required to return to each state. Recall that p;; denotes the expected
number of transitions needed to return to state ¢ starting at state 7. For
this chain, the mean return times for the states (0, 0), (0,1), (1,0), (1,1),
(2,0) and (2, 1) are given by 11 = 2.949, poo = 10.424, us3 = 3.285,
taq = 7.818, uss = 11.014, and pge = 23.944, respectively.

e For P, we obtain lim,, ., P} which gives the stationary distributions
7T(070) = 0073, 7T(071) = 0022, 7['(170) = 0285, 7T(171) = 0101, 71'(270) =
0.347, and (5 1) = 0.172. The most visited states are (2, 0), (1,0), and
(2,1). For this chain, the mean return times are given by p;; = 13.592,
oo = 46.125, pusz = 3.508, pag = 9.884, uss = 2.883, and pegs =
5.824.

Both chains show that 70% of the time in the long-run y = 0 which means that
x is not inhibited; we then expect that in the long-run x # 0 most of the time.
On one hand, this is true for P since the most visited states in the long-run
are the states (2, 0) and (1, 0). On the other hand, in the case of P, these
both states are visited only close to 40% of the time. Moreover a drawback of
setting up a Markov chain this way is the inability to show the steady-states or
circuits of the asynchronous state graphs.

4 Probabilistic Gene Network (PGN)

In the previous model, the Markov chain comes from a superposition of all
the parameterized qualitative models. In order to distinguish the different
asynchronous state graphs, we introduce a Markov chain which memorizes
the asynchronous state graph a particular state is in. Because all asynchronous
state graphs can differ drastically, we limit this Markov chain to a set of asyn-
chronous state graphs that behave closely (see below).

In PGNs, we take into consideration attractors. The attractors of a network
are the smallest sets of states from which one cannot escape [10, Section 2.5].
This can be a stable state which is a state without successors or a group of states
that demonstrates sustained oscillations without exits. These latter attractors
are said to be cyclic and, naturally, it is not possible to reach a stable state
starting from a cyclic attractor. Note that every asynchronous state graph has
at least an attractor. The stable states of an asynchronous state graph results
to having absorbing states in the Markov chain built on it. The presence
of absorbing states may result to obtaining an absorbing Markov chain; this
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happens when it is possible to eventually reach an absorbing state from every
state [4, p. 416]. To show a Markov chain is absorbing, we need to find an
n € NT such that all the entries of P™ are non zero, P being the transition
probability matrix. An absorbing Markov chain give the expected times of
absorption and the probability of absorption from every transient state.

Let .4~ = {Njy,...} denote a subset of Thomas’ networks (asynchronous
state graphs). This set can correspond to all asynchronous state graphs that are
coherent with some biological knowledge, in that sense, the set is supposed to
be largely smaller than the total number of asynchronous state graphs. This
set can result e.g. from a filtering step which selects only asynchronous state
graphs which are coherent with behavioural properties expressed in a formal
language [1]. We introduce an ordering relation between Thomas’ networks:
for distinct networks N and N’, we have N > N’ if and only if N’ is a sub-
graph of N. This ordering relation leads to consider the set of models equipped
with this relation as a lattice with possibly several minimal elements. Denote
by S = {s1,s2,...} a set of states (this set is common to all asynchronous
state graphs).

The intuition is the following. A biological system can be represented
by a set of different dynamics (asynchronous state graphs). In a particular
environment, the biological system can behave exactly as one of these dynam-
ics but according to some changes of the environment, the behaviour of the
biological system can adopt the dynamics of another asynchronous state graph.
It becomes natural to allow the Markov chain to jump from one asynchronous
state graph to another. But it is unlikely that the biological system jumps
from a state of a certain network toward another state in another network with
a very different dynamics from the initial network. This is the reason why
the jumps are possible only under some conditions on the ordering relation
between Thomas’ networks.

A probabilistic gene network (PGN for short) on .4 satisfies the following
conditions:

i. For each N € .4 and each transition s — s’ on the asynchronous state
graph N a probability of Py (s — s') is attached in such a way that for
every s, > ucg Pn(s — s') = 1.

ii. For each pair of networks N, N € .4 such that N > N’ and there
exists no other network N” such that N > N” > N’, a probability is
attached to (N — N') in such a way that the sum of all such probability
for a given N is less than 1.

Once a probabilistic gene network has been established, we define its cor-
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responding probabilistic state graph. Let (N, s) denote the set of nodes of
the probabilistic state graph, where N € .4 and s € S. The set of edges
(transitions) is defined by (N, s) — (', s) if and only if s — s’ (with s’ # s)
is a transition of N and P(N — N’) = 0. The probability P((N,s) —
(N',s")) is defined by

P((N,s) = (N',8))
) W (N1 syen) (N) Pr(s — o) o
DY WIN ) mgryen (N¥) Py« (s — 5%)
N*e N s*eS

where 14(-) is the indicator function and W () denotes the weight of the
network N which pertains to its multiplicity in the set of all possible asyn-
chronous state graphs of .4#". When the transition does not involve a change of
network, we replace N’ by N to compute for the corresponding probability.

The probabilistic state graph is used to set up a Markov chain that would
hopefully give a better representation of the dynamics of a gene regulatory
network. More precisely the probabilistic state graph allows one to walk inside
the set of considered asynchronous state graphs. Thus, a probabilistic gene
network gives information not only on the state of each genes but also the
network containing the state.

We present an illustration of a Probabilistic Gene Network by considering
the networks of Figure 4. For N = Nj (resp. N>), the value of Py (s — s) is
computed making the assumption that in the network /N the probability of tran-
sitioning from s to any of its successor is equally likely which is 1 divided by
the number of transitions outgoing from s in N. Moreover we suppose that ./
contains twice /N7 and once No, which can be interpreted as: staying in Ny is
more likely than jumping from N7 to INo. The transition probability matrix is:

N,(0,O) /1 0 0 O 0 0 0 O 0 0 0 O
Ni,(0,1)[2/3 0 0 0 ©0 0 1/3 0 0 0 0 O
Ni,(1,o)[2/3 0 0o o o0 0 1/3 0 0 0 0 O
N,(L1) [ 0o 1/31/3 0 0 0 0 1/6 1/6 0 0 0
N,200[ 0 0o 0o o 1 0 0 0 0 0 0 0
N,21)[ 0 0o o 1/31/30 0 0 0 0 1/3 0
Npy0,00f 0 o o 0 0 0 1 0 0 0O 0O O
Npyo,)f 0 0o 0o o o0 0 1 0 0 0 0 O
Npy(Lboy[f o o o o o 0 1 0 0 0 0 O
NoyL,h) [ 0 0 0o 0o o0 0 O 1/2 1/2 0 0 O
Npy200l o o o o o 0o 0o 0 0 0 1 0
Npyy21)\0 0 0 0 0 0 0 O 0 0 1 0
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We can note that it is not possible to escape from (N1, (0,0)) and (N1, (2,0)).
This is due to the fact that to jump from an asynchronous state graph to an-
other one, it is mandatory to be in a state which is not stable in the initial
asynchronous state graph. Thus stable states in non minimal asynchronous
state graphs (in the lattice) become absorbing states of the chain. In this
illustration, the resulting Markov chain is an absorbing Markov chain so we
can generate the expected time of absorption from each transient state and
its corresponding probability of absorption in the stable states as shown in
Tables 3 and 4, respectively.

1 Network 1 (V1)

1 -— -
AR -
0 1 2
K Network 2 (N2)
I N,
R 2N R
A

L -
<* (3,
0 1 2

Figure 4: Two asynchronous state graphs (left) associated with interaction
graph of Figure 2(a) on which we illustrate the construction of the probabilistic
gene network (right). The numbers labelling the transitions (right) correspond
to the numerator of Equation 2.

When involved networks have only cyclic attractors, the resulting Markov
chain gets divided into several classes whose number would depend on the
number of networks in the subset and on the structure of the lattice. Because
the chain only allows a transition from a larger network to a smaller one, all
the states in a network form a class of transient states except the states in the
smallest networks (according to the lattice structure of the set of networks)
which constitute different classes of recurrent states.

Transient | Expected Time of Transient | Expected Time of
States Absorption States Absorption
(N17(0v 1)) 1 (N27(051)) 1
(N17(170)) 1 (N2a(150)) 1
(va(lal)) 2 (N27(1’1)) 2
(N1,(2,1)) 5/3 = 1.666 (NV2,(2,1)) 1

Table 3: Expected time of absorption (number of transitions) from any of
transient state to any of the absorbing states for the networks in Figure 4.
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Transient Probability of Absorption
States (N1,(0,0))  (N1,(2,0))  (N2,(0,0)) (N2, (2,0))

(N, (0,1)) 2/3 0 173 0
(N1, (1,0)) 2/3 0 1/3 0
(N1, (1,1)) 4/9 0 519 0
(N1, (2,1)) 4127 1/3 527 13
(N3, (0,1)) 0 0 1 0
(N, (1,0)) 0 0 1 0
(N2, (1,1)) 0 0 1 0
(N3, (2,1)) 0 0 0 1

Table 4: The transient states in the smaller network can only be absorbed in its
own steady states because it is not allowed to leave the network. The transient
states in the bigger network can be absorbed by any of the absorbing states of
the networks under consideration, see Figure 4.

5 Discussion and conclusion

In this article we mixed two different frameworks of gene networks allowing to
take advantage of the formal framework of R. Thomas modelling theory and
to use transition probabilities of Markov chains to change the parameterized
model. According to Figure 3, the modelling framework of R. Thomas leads
to a single unique model, both the inward spiral and the outward spiral. In
a natural way, it could be more efficient to represent the inward spiral by the
model where transition (1,0) — (2, 0) does not appear. In such a case, it could
be interesting to consider in a unique framework both discrete state graphs and
to allow the trajectory to jump from one to another, if information coming
from biological experiments reinforces the belief in a particular model. For
example, longer are the observed traces around the qualitative cycle, bigger
the belief in the model representing the inward spiral.

In such a way, it becomes natural to consider each asynchronous state
graph as the dynamics of the biological system in a particular context. When
the environment changes the context, the qualitative dynamics can also change.
Probabilistic Gene Networks presented in this article, constitute a first frame-
work allowing to jump from a qualitative dynamics to another one.
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Abstract

In metabolic network analysis, Elementary Flux Modes (EFMs) play an
important role. Although they are of great interest, it is still hard to compute
them, due to their large number. Therefore, it is desirable to develop methods
which simplify the computation of EFMs in a given network. Here, we
present a new approach that uses flux coupling relations in order to reduce the
search space for EFM computation. Flux Coupling Analysis (FCA) determines
coupling relations between the reactions in a network. Two reactions are
partially coupled, if zero flux through one reaction implies zero flux through
the other. Whenever there are several reactions that are partially coupled to
each other, it is sufficient to take one reaction of this class as a representative.
There is no need to check if the other reactions in this class are carrying flux
or not. Coupling relations are used to speed up the mixed-integer optimisation
method for computing EFMs proposed by de Figueiredo et al. (2009). With the
help of the representatives, the number of binary variables and consequently
the size of the search space can be significantly reduced. Including additional
information on directional coupling relations leads to further improvements.

1 Introduction

In systems biology, genome-scale metabolic network reconstructions are
used to develop an in silico model of a system. The metabolic network
is assumed to be in steady state, i.e., we consider the so-called flux cone

C = {v e RR | Sv =0, ULpey > 0} of all flux distributions over the network
at steady state. Here, S € RM*™ denotes the stoichiometric matrix for a set of
(internal) metabolites M and a set of reactions R. The set Irrev C R contains

the irreversible reactions. The vectors v € C' are called (feasible) flux vectors
and can be interpreted as pathways in the corresponding metabolic network.

Definition 1 (Support). The support of a flux vector v € R is the set of active
reactions in v: supp(v) = {i € R | v; # 0}.

We can now define the elementary flux modes of a metabolic network [1].
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Definition 2 (Elementary flux mode (EFM)). An elementary flux mode (EFM)
is a feasible flux vector e € C \ {0} which has minimal support with respect
to set inclusion, i.e., there exists no feasible flux vector v € C \ {0} with

supp(v) & supp(e).

EFMs define minimal sets of reactions that can operate together in steady
state. Minimal in the biological context means: If any of the reactions is
deleted, then the whole flux cannot operate in steady state anymore. EFMs are
a popular approach to analyse metabolic networks because every behaviour of
the network can be represented with the help of the EFMs [1,2]. For a recent
survey on EFMs and their applications, we refer to [3]. Although the EFMs
are of great interest, it is still a demanding task to enumerate them. Different
approaches haven been proposed, such as the Double Description Method [4]
and refinements [5], or mixed-integer programming methods like the algorithm
of de Figueiredo et al. [6].

One way to understand the topology and robustness of a metabolic network
is Flux Coupling Analysis (FCA) [7]. It can be performed quite fast [8] and
recently has been generalized via a lattice-theoretic framework to arbitrary
qualitative models [9]. Here we will formally define a partial order induced
by the coupling relation of reactions. We will show how this leads to a
reduced search space for algorithms that use binary variables to indicate
whether a reaction is used or not. This allows us to define an improved
version of the algorithm in [6] so that we can enumerate elementary modes
with smaller mixed-integer linear programs (MILPs). We implemented our
resulting algorithm and discuss runtime advantages of our implementation
EFM-Recorder (EFM enumeration via reaction coupling order) in compar-
ison with previous approaches.

2 Reaction Coupling Order

As mentioned before we assume the network being in steady state. Thus we
consider the steady state flux cone C' = {v €ERR| Sv =0, Unrey > 0}.

Definition 3 (Blocked reactions). A reactionr € R is called blocked iff v, = 0
forallv e C.

Since blocked reactions can never occur in an EFM, we assume from now on
that they have been removed from the network.

For two unblocked reactions r,s € R we can define three different
coupling relationships [7, 8].
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Definition 4 (Coupling relations).
r st sis directionally coupled to r iff v, = 0 implies vs = 0 for allv € C.
revs: s is partially coupled fo r iff v, = 0 & v, =0 forallv € C.

r~s: sis fully coupled to r iff there exist A # 0 such that v, = \vg for all
vedl.

Remark 2.1. If two reactions are fully coupled, then they are also partially
coupled (but not necessarily the converse).

The coupling relation =0 is reflexive and transitive, and thus defines a preorder
[10]. The relation 2V is also symmetric and therefore an equivalence relation.
This means that the set of reactions R can be partitioned into equivalence
classes [r] = [r]i? ={seR| T‘:<—>08}. We have R = Uj,er [r], where

R=R/ =2 denotes the set of all equivalence classes.

An equivalence class can be represented by any of its elements. We say
that r is a representative of [r] or that [r] is the coupling class of r. Note
that [r] = [s] iff ress. Coupling classes are similar to the enzyme subsets
introduced by Pfeiffer et al. [11]. Enzyme subsets are groups of reactions that
are fully coupled to each other. Here, we relax this condition and also consider
reactions that are only partially coupled.

Definition 5 (Reaction coupling order <_o). The partial ordering on the
coupling classes <—, C R x R defined by

(1] <=0 [s] :& r=s
is called the reaction coupling order (rcorder) induced by the coupling relation

=0
=.
Note that his construction works, because isa preorder [10].

Fig. 1 shows an example network with its corresponding rcorder. The
network in Fig. la contains two pairs of fully coupled reactions, namely
{r1,m2} and {rs, r¢}. The reactions {r4, 77 } are partially coupled. These three
sets can be represented by 71, 75 and 74 or just the indices 1, 5, 4. Fig. 1b now
shows the Hasse diagram of =0, where the nodes represent reactions. If a
reaction has zero flux, then exactly those reactions that are connected by a
path going strictly upwards have zero flux, too. For example, reaction 7 is
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(a) Reactions {r1,72}, {rs, 76} and {ra, 77 } are coupling classes, (b) Hasse diagram
where {r4, 77} are partially but not fully coupled. of rcorder <=0

Figure 1: Reaction coupling Zisa preorder of the reactions. It induces a partial
order <.

A knockﬂout of reaction r; implies inactivity in reaction rs, rs and others, but not in
reaction 75. Thus, 1:—93 and 1:—98 but — 1:—95). This results in 1 Ki‘) 3and 1 <ig 8
for the rcorder <=_9, but 1 and 5 are incomparable.

The Hasse diagram visualizes this by having downward directed paths starting in the
greater and ending in the smaller of each pair of coupled reaction representatives, in
our example from 3 to 1 and from 8 to 1, but not from 5 to 1. A knock out of reaction
4 implies inactivity in all reactions.

coupled to r3, i.e., 71 :—97“3, but r; is uncoupled to reaction 5. More on Hasse
diagrams can be found in [10].

One of the main advantages of coupling classes is that, if one reaction of a
class is not carrying flux, no other reaction in the class does, and vice versa.
Therefore, in every approach where binary variables are used to indicate if
a reaction appears or not, it is enough to consider one reaction from every
coupling class instead of considering all of them. Depending on the number
of reactions and associated coupling classes, this may significantly reduce the
number of variables that are needed.

3 Application to EFM computation

In the following we assume that the networks consist only of irreversible
reactions. If the original network contains reversible reactions, then these
reactions can be split into two irreversible reactions (one for every direction
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of the reversible one), see e.g. [12].

3.1 Finding EFMs with less binary variables

In 2009, de Figueiredo et al. [6] introduced an algorithm that allows enumerat-
ing elementary modes (EFMs) of the steady state flux cone using mixed-integer
linear programming (MILP):

(OriginalMILP) min ) _ a; (1)
IER
S.t. Sv=20 2)
a; < v; VieR 3)
viSM-ai VieR @)
> ai>1 )
1€ER
Y ZFai< (> 2z -1 Vk 6)
IER IER

a; € {O, 1},1)1‘ > 0.

The algorithm minimizes (1) the number of active reactions in a steady
state flux vector (2). As before, S denotes the stoichiometric matrix and v is a
flux vector. To determine the active reactions, binary variables are used such
that a; = 1 iff reaction r; is carrying flux. If a; = 0, then v; = 0, see (4), thus
reaction 7; is not allowed to carry flux. Here, M >> 0 is some big constant
(“Big M”). Conversely, a; = 1 implies v; > 1, which is ensured by (3). To
get a feasible flux vector different from the zero flux, (5) forces at least one
reaction to be active. By definition, ZF equals 1 if reaction r; is carrying flux
in the EFM which was computed in the k-th step, otherwise Zf is 0. Thus (6)
guarantees that the EFMs which were computed in the previous steps are not
enumerated again. For more details, we refer to [6].

Based on the reaction coupling order, we can now use binary variables
corresponding to the coupling classes [r] instead of using binary variables for
every individual reaction. Thus we can rewrite the algorithm of de Figueiredo
et al. in the following way:
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min Z |[r]|a[r] (7)
[rlerR
s.t. Sv=0

ap) <wvs Y[r] € Rand Vs € [r]
vs < M -ap) V[r] € Rand Vs € [r]
Z Q] >1 V[’I“] €ER

[rlerR
Y Zrag < (Y ZH) -1 vk
[rlerR [rlerR
ap) € {0, 1}
V; Z 0

[[r]] in (7) denotes the cardinality of the coupling class [r]. Thus, we compute
the shortest EFMs w.r.t. the number of reactions and not the number of
representatives.

The main advantage of our method is that we need only ‘ﬁ’ instead of |R|
binary variables. For many genome-wide networks, this reduces the number
of 0-1 variables by about 1/2, as shown in Tab. 2.

To further improve our approach, we may add the coupling constraints (8)
and explicitly help the solver to set coupled variables to their correct values:

ap) < s if s=t with t € [r] (8)

Here we use directional coupling properties of the representatives. With
this additional information, we do not reduce the number of binaries, but may
speed up the running time of the algorithm.

3.2 Computational results

In a preprocessing step, we identified blocked and coupled reactions for
different genome-wide network reconstructions using the software F2FC [8].
The results are given in Tab. 1. From this, we created Tab. 2, which shows
the effect of using coupling classes instead of the original set of (unblocked)
reactions. For most of the networks it is sufficient to work with as few as a
third of the original number of reactions.

Next we ran our implementation EFM—Recorder on different metabolic
networks for different choices of binary variables and constraints. All
computations were done on a desktop machine with two processors Intel(R)
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Model unblocked fully partially time in
reactions coupled coupled seconds
Human recon 2 5837 5468 220 1801.1
E. coli1JO1366 2369 2143 2308 199.8
E. coli 1AF1260 2167 1867 396 126.7
S. cerevisiae IND750 744 84 19.8
M. tuberculosis iNJ661 800 8567 7588 19.3
S. aureus iISB619 583 1204 874 11.7
H. pyloriilT341 501 4167 5212 6.4
E. coli textbook 95 0 0.48

Table 1: Number of reaction couplings (computed with F2FC [8]) for different genome-wide

metabolic networks and the corresponding running times.

Model reactions unblocked representatives
Human recon 2 7440 5837 4032
E. coli 1JO1366 2583 2369 1399
E. coli 1AF1260 2382 2167 1276
S. cerevisiae IND750 1266 744 446
M. tuberculosis iINJ661 1025 800 412
S. aureus iISB619 743 583 292
H. pylori ilT341 554 501 209
E. coli textbook 95 95 60

Table 2: Number of representatives for different genome-wide metabolic networks (computed

with the F2FC [8]).
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Time ratio
Model EMs

reps coup
10 8.7 27.7

E. coli textbook 100 13.7 38.9
1000  96.5  220.7

10 0.66 0.7

H. pylori ilT341 100 237 32.6

1000 187.1 167.7

10 4.2 5

S. aureus 1ISB619 100 64.1 88.6

1000 178 2394

10 0.2 0.3

M. tuberculosis iINJ661 100 1.4 2.9

1000 0.4 1.1

10 4 44

S. cerevisiae IND750 100 64.9 98.7
1000

Table 3: Speed up of the algorithms compared to the standard algorithm by de
Figueiredo et al. [6]. For example, 8.6986 means that the method reps is 8.36986
times faster then all.

Core(TM) i15-2400S, CPU 2.50GHZ, each 2 threads. Tab. 4 shows how long
it takes to calculate a desired number of EFMs, namely 10, 100 and 1000. In
Tab. 3 the time ratio of the original algorithm compared to the ones introduced
here are shown. Using coupling classes results in smaller MILPs (less binary
variables), so we can expect shorter running times. The results in Tab. 4
meet these expectations especially for a large number of EFMs. In most
cases, the method coup combining coupling classes with directional coupling
constraints yields the best results.
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99

Model Nr. of EMs Method
all reps coup
10 15.8 1.8 0.57
E. coli textbook 100 323.9 23.6 8.3
1000 20524 2127 93
10 11 16.6 15.6
H. pylori iIT341 100 1058.5 44.7 32.5
1000 167490  894.9 999
10 29.2 7 5.9
S. aureus iISB619 100  3281.7 51.2 37
1000 107240 602.4 448
10 10.1 42.8 38.4
M. tuberculosis iNJ661 100 199.5 138.6 68.6
1000 2056 51824 18359
10 29.2 7.3 6.7
S. cerevisiae IND750 100 6151.1 94.7 62.3

1000

Table 4: Time (in secs) needed to compute a given number of EFMs for different

modelling approaches.

all: Each unblocked reaction r has its own binary variable a, = 1 < v, > 1.
reps: Only coupling class representatives [r] € R have binary variables af,) = 1 <

vg > 1 for s:<—>0t, witht € [r] .

coup: Same as reps, but with additional directional coupling constraints ap) < vs,

for all [r] € R with s—5¢, where ¢ € [r].
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Abstract

In the article we revisit the study [1], which described novel extensions to the
method of model checking Thomas networks, which is a computer science
approach to analysis of dynamical behaviour of biological systems. Here we
provide new algorithms for the methods described in [1] and show how to
extend these so that a wider range of biological data can be used.

1 Introduction

One of the main bottlenecks of modelling in systems biology is the absence
of kinetic parameters and the complexity of identifying them. The scarcity of
data and the non-linearity of the systems in question makes the task of reverse
engineering in biology usually very difficult. Qualitative approaches try to
circumvent the problem by using coarse abstractions under the assumption that
biological systems are robust to changes in their environment. In turn, due to
the simplicity of the abstract models, it is possible to completely describe and
analyse their emergent behaviour. Here we focus on the modelling framework
of R. Thomas [2] where behaviour of a system is described via multi-valued
logical functions. If the kinetic parameters and consequently the logical func-
tions are unknown, one can enumerate all the possibilities and select only those
that fulfil certain constraints. This process is usually referred to as parameter
identification. This is in our work conducted via model checking [3], which is
one of the most prominent methods for automated model analysis.

In the article [1] we showed how to extend the model checking process to
obtain additional knowledge. In particular we argued that when fitting a model
to time-series data, the models that reproduce the data using with a small
number of changes to the state of the system (e.g. producing and degrading
a protein) are more preferable. We also provided paths of the system that
match the behaviour and lastly assessed its robustness. However, the method
of [1] was constrained to time series data, whereas here we extend it to the
full expressiveness of the underlying model checking approach. Also, in [1]
we were checking multiple models (usually 32) at once. While this approach
provided a performance boost in practice, we found it too complex to describe

*corresponding author: adam.streck@fu—berlin.de
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or extend and here we therefore only work with one model at a time. In
summary, we present algorithms for the methods of [1], show that they have
good time and space complexity, and provide functional extensions to them.

2 Background

In this section we introduce the modelling framework [2] and present the
relevant notions. The key concepts are illustrated in a case study in Figure 1,
which models the mammalian circadian clock, based on results of [4].

In the logical modelling of biological components one abstracts from ac-
tual molecular concentrations and instead uses activity levels, each of which
corresponds to a qualitatively different behaviour of a component. The system
is described as a set V' of named components, each of which has a maximal
activity level assigned via a function p : V — N. The space of all con-
figurations of a system is called state space and is denoted and defined as
SK =T1,ev [0, p(v)]. The superscript K is used to later distinguish between
different state sets. Note that an s € S is an integer-valued vector, therefore
we use the notation s, to refer to the value of v € V in the state s.

We focus on models with so-called asynchronous update, meaning that in
each discrete state s € S we usually have multiple possible successors. The
dynamics of the system—all the possible traces of a discrete simulation—can
be in full described as an oriented graph, a so-called Kripke structure (KS)
K = (SK,—K). Having the set S* there are multiple ways of obtaining
the relation —%, e.g. by setting logical equations, as illustrated in Figure 1b.
Important for our purposes are the following characteristics of KS. For each
s € S itis required that there is either only a loop s —X s or each successor
of s differs from it exactly by 1 in exactly one of the components. Denote
succl (s) = {s'|s —& s'} the set of successors of s in the relation —, then
for all s € S we have succ’ (s) = {s',...,s7} such that either succ’ (s) =
{s} or for each i € [1, ] there is an integer vector e € ZIV| s.t. |e| = 1 and
s' = s+ e. Note that the length of one of e means that it has zeroes in all
values except for exactly one which is in {—1,1}.

2.1 Model Checking

To explore the behaviour of a system, we use the model checking [3] procedure,
which allows to query whether a system has a certain property and obtain a
truelfalse answer. Since we are usually interested in testing multiple KSs,
each for a different regulatory function, we conduct multiple tests to obtain the
set of the models for which the query resolves to true. We employ the Linear
Temporal Logic (LTL) as the querying language and we resolve a query using
the Biichi Automata [3] (BA) approach. In this method a property is described
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Bmall’ «—=Rev_erba
Cryl’ «Bmall A DbpA
—Per2 A mRev_erba
Dbp' «Bmall A —~Per2
Per2' «Bmall A Dbp A = Per2

Rory' «—Bmall A =Per2A

—Rev_erba
(a) A regulatory network with S = (b) Change in value of a component
{0,1}5, therefore |SE| = 64. based on the current state.

P 000000B

| 1oooo1cA\ \A101oooc |
| 101001 |‘ | TT000C | T—{A}, F={4)

111001C ¢ =Bmall A Cryl A DbpA

Per2 A Rev_erba N\ Rory
¥ ==Bmall A =Cryl A ~DbpA
TG —Per2 N =Rev_erba A ~Rory

111011C

(c) A excerpt from STW. Each node (d) A DBA encoding the requirement
is a state with 6 values for the com-  that the system must infinitely oscillate
ponents, in the lexicographical order ~ between states (1,1,1,1,1,1) € S¥
and one letter for a state of BA. and (0,0,0,0,0,0) € SK.

Figure 1: An illustrative study of the mammalian Circadian clock,
based on [4]. The system (a) has the six boolean components V =
{Bmall,Cryl, Dbp, Per2, Rev_erba, Rory}, all of which are required to
oscillate (c) and for each v € V' we have p(v) = 1. The behaviour is driven by

the logical rules (b) and is partially depicted in (d).
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as an oriented graph. Having this graph, a product with a KS describing a
system is created. The query is true iff there exists a specific path in the
product, as detailed below.

We describe the BA as a four-tuple A = (54, m, IA, F4), where £L(V)
is a language of propositional formulas [5] with the alphabet {v*n|v € V,x €
{<,>,<,>,=}n € [0,p(v)]} and T4 C S4, F4 C S4 are the sets of
initial and final states respectively. To resolve whether a property described
by automaton A holds in a structure K we create a synchronous product and
search inside it for a so-called lasso, as further explained. The product P =
A x K =(S,—,1,F) is obtained as follows:

e S=854xSK. T=14x SK.:F=FA x SK,
° (SA,SK)H(TA,TK) = (SKHTK)A(sAﬂrA)/\(sK = ),

where (s¥ = ¢) denotes the standard semantic consequence, i.e. the formula
¢ € L(V) is true in the state s/, Having a product P the property encoded
by automaton A is satisfiable in the structure K, denoted —(K = —A), iff
there is a path (s!,...,s/,...,s¥) € ()’ for any j > 1 such that s' € I,
s? € F,and s/ = s* [3]. This path is then called a witness of satisfaction of
Aby K in P. We denote W7 the set of all witnesses in P. Lastly we need to
mention that in our approach we expect that many possible update functions
may be considered and the check is run many times with only small changes in
KS [1]. Subsequently we construct S explicitly and each of our algorithms is
provided the total function succ! as an input. This is the core of the approach
of [1], since we can test different regulatory functions by only making local,
usually very small, changes to succ? .

Throughout the article we distinguish between three sorts of BA—terminal
BA, deterministic BA, and non-deterministic BA. The terminal BA (TBA)
allow for encoding of regular properties [3], e.g. the time-series property [1].

The great simplification of these is that every final state has a loop, formally A
true

is TBA iff for each f € F4 it holds that f — f. We therefore know that a
path exists whenever s/ = s* exists and only have to focus on searching for a
path from s' to s7. We also require a TBA to be deterministic and total. For a
KS K over the set V' and an automaton A of the formula ¢ € £(V') denote:

val(s%) = ({s% € 85151 L+ 5 = 6})acn.

A BA A is deterministic and total iff for each state of the system, exactly one
of the labels is true, i.e. (\val(s4) = @ (deterministic) and | Jval(s4) = S&
(total). The advantage is that the number of transitions for each state in K
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remains the same for each corresponding state in the product, since we always
pair them with exactly one transition from A. A BA which is deterministic,
but not terminal is called deterministic BA (DBA) and an extension of the
approach from BA to DBA is the main contribution of this article. Later we
also consider the non-deterministic BA (NBA), which allow to encode any
LTL formula [3]. Our approach requires the transition function of an NBA
to be total. However it can be easily shown that having a non-total NBA, we
can just add a sink state with a loop and redirect all missing transitions there,
allowing us to use any NBA.

2.2 Result Analysis

We start with the cost metric, which is based on the assumption that the all
functions of a cell is optimized and changes to its state happen only if nec-
essary. Consequently we are looking for witnesses with minimal number of
steps, since these are most likely to represent an energy efficient behaviour.
The cost is then the length, in states, of a shortest witness, defined as:

cost? = min({k|(s',...,s") e WF} U 0).
Of special focus in our approach is the set of witnesses with minimal cost:
SWE ={(s',...,5")|cost!’ =k # o0} C W7,

which we also compute. While it can be argued that a single witness path is
sufficient, having the set STV’ has additional advantages. First, it highlights
areas with a strong requirement for order of changes in the system, as illus-
trated in Figure lc. Second, we use the set S to compute the robustness
w.r.t. the property satisfaction. The robustness is an illustrative measure that
states how likely it is that if we take a random walk of the length equal to
the cost, we actually find a witness. This value creates an ordering on the
set of models that satisfy a property, in which the results that have higher
robustness, i.e. are more probable to meet the specification, may be considered
as preferable. Note that there is no probability assigned to any transition, we
therefore assume a uniform distribution, i.e. in a random walk the probability
of taking any transition from a state s is given as one over the out-degree of s.
For a path (s!,...,s*) € (S)7 we get the probability as:

k—1 1
pT’Ob(w) = H m,
=1

and since the probability of starting in any state is also uniformly distributed,
the robustness is obtained as:

robustnesst = ZWESWP (prob(w))
' 1]
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3 Case study

To illustrate our approach we present a short case study, based on the mam-
malian circadian clock model published in [4], depicted in Figure la. The
logical rules in Figure 1b were obtained from the original differential equations
in [4], where activation is converted as positive term, inhibition as negative,
and multiplication as logical conjunction. Since in framework we do not model
time explicitly, we do not consider the delays as in [4].

The system is expected to oscillate in all its components. We modelled
the clock cycle as a requirement that the system oscillates between an initial
state and a state that has the values of the components negated, see example in
Figure 1d. Note that this could be also expressed as a time series, however we
wanted to illustrate the use of DBA. Since we did not know the exact order of
changes we tested all 64 options for the initial state. The cost is either 13, 15,
or 17. This suggest that some of the configurations are harder to achieve. The
robustness ranges between 0.000132 and 0 . The highest robustness and the
lowest cost was shared by the property in Figure 1d and the one where ¢ and v
are swapped. This suggests that the most effective behaviour is to switch off all
the components and then to switch them on again. Lastly, in Figure 1c we show
an excerpt of the SW, showing the switch-on pathway. Note that the order of
activations is highly deterministic and elucidates component dependencies. In
particular we see that the order of components does not fully match the results
of [4], e.g. Dbp must be activated before Rev_erba, as dictated by the logical
function. The authors would suggest that this behaviour is due to absence of
delays in our model and that in future this network should be remodelled using
a boolean network with delays.

4 Algorithms

In this section we present the three algorithms that are used, in sequence, for
the analyses of network dynamics. At first we show how to employ each of
these algorithms with a property encoded by TBA. Later the extension to DBA
is made. Lastly, we argue that the same extension can also be used with NBA
and discuss the implications of non-determinism in terms of complexity and
semantics. Due to lack of space we do not prove complexity and correctness,
only show the key ideas of the proof. The main feature of our algorithms is that
we exploit the cost value for practical performance. First please note several
aspects of the problem:

TRobustness of 0 can occur due to representation of floating-point (rational) numbers in a
computer, which we discuss in Section 4.3.
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gorithm 1 Calculate Check(succ, I, F, full).

S J G G Gy U
SV X IFDINRRN O

: X — I, X'« (), cost + oo,depth +— 1
: for s € Sdo
visit]s] <« oo
end for
: while X # 0do

R AN A S

for x ¢ X do
visit[x] = depth
if (z € F) A (cost = o0) then
cost «— depth
end if
X' — X' U succe(x)
end for
if (cost # 00) A (= full) then
X 0
else
X «— X' n{z|visit[z] = oo}
end if
X" < 0, depth < depth + 1

: end while
. return (cost, visit)

For a network with |V'| components, the out-degree of any state in a KS
over V is at most 2 - |V/| since we can only increment or decrement by
one in each dimension.

Each component has at least 2 values, so |S| > 2V and |V| < log,(|S]).

The DBA guarantees that for each state of K there is only one edge
allowed in A, therefore for P = (S, —, I, F') we have | — | < (2 |5] -
log,(|S])). For brevity we will further use Size?” = 2 -|S| - logy(]S]).

The product is fully constructed, i.e. the time complexity of any al-
gorithm is at least O(Size”). Also in practice we need O(Size!’) of
memory to search through the graph.

The transition system, if seen as a random process, has a Markov prop-
erty. If we simulate the model by taking a random walk in K (or P), the
the choice of following state depends only on the current state.
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4.1 Property Checking

First we present the Algorithm 1 for model checking. Recall that we assume
that the property was encoded by TBA, i.e. for a product P = (S,—, I, F)
we only need to decide whether there is a path from I to F' using the product
successor function, succ?. The algorithm is in its core a simple breadth-first-
search (BFS), however it is modified so we obtain the cost value and also a
labelling visit : S — N U oo, that stores for each state the depth at which we
visited the state. Note that if the shortest path has length k then cost = k and
for any s € S we have either visit[s] € [1, k] or visit[s] = co. Also note that
we use an additional input parameter, called full. Currently we set it to false,
however it will become useful in Section 4.4 for checking with DBA.

Proposition 4.1 Algorithm 1 is correct. For P = A x K = (S,—,1,F) it
holds that (Check(succ? | I, F, false)); # oo <= —(K |= -A).

Proof outline The algorithm is very similar to other implementations of BFS,
e.g. [6] and consequently each state is visited at most once. The correctness of
the labelling is then trivial.

Proposition 4.2 SPACE(Check(succl I, F, false)) € O(Sizel),
TIME(Check(succt I, F, false)) € O(Sizel)

Proof outline For the space we only use the labelling visit for each state and
store of size at most |.S|, which can be done in log,(]S|) space.

The time is given by the fact that we search from each state only once,
looping through all the outgoing edges, so again at most Size! . However note
that if the cost is low we can exit the procedure early, examining only a subset
of states, which is usually the case in practice.

4.2 Witness

To obtain a witness, we use a recursive depth-first-search (DFS), again mod-
ified for our purposes. Recall from Section 2.2 that we are looking for all
the shortest paths. However, due to the strong non-determinism, the number
of shortest paths grows exponentially w.r.t. cost. To prevent the exponen-
tial explosion in space and time complexity, we only store individual transi-
tions that are on some w € SW'. Denote the set of transitions in SW as
SWTE = {(s%, sT1)|(s!,..., s, s, ... 5 € SWP}. Since the choice
of successor is independent of all the previous steps and since all the paths
in SWT have the length of cost, we can reconstruct SW¥ from SWT?F as
SWPE = {(s',...,5%%) | Vi € [1,cost) : (s',s"t1) € SWTT}.
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To keep the complexity low and avoid searching through the paths we have
already visited, we use altogether three distinct state labels. The visit label is
already provided by Algorithm 1. The found label notes if a state lies on a
known witness path and where. The used label marks states that we already
visited in DFS. Additionally we use the value branch which points to the state
where we branched from the last path that was found to be a shortest witness
path. When a state is known to be part of a shortest witness, either by being
a final state or by lying on some already known SW path, we just store the
transitions from the last branch to the current depth, avoiding duplicities.

Proposition 4.3 Algorithm 3 is correct. If (cost” | visit") « Check(succ?,

I, F, false), then Witness(succt', I, F,visit" cost”) = SWTF,

Proof outline There are two parts to be proven. First, we need to show that
the algorithm traverses through all the acyclic paths of length up to cost. In the
algorithm we stop traversing in three cases. If the condition on line 1 is met,
then we found the state in BFS sooner than now in DFS and therefore there
must exist a shorter path to that state. If the condition on line 5 is met, then we
found the witness. Lastly, if the condition on line 11 is met, then we either are
at maximal depth or we already traversed from the state.

Second, we need to show that each transition is stored exactly once. When
a new path is found we see that all transitions are stored on lines 6-9. At this
point we set branch to the current depth and only decrement by one with each
backtracking step. Therefore when storing transitions, we know that those in
between 1 and branch have been stored already. Also, when we hit a found
state, we know that all transitions up from that state have been stored already.

Proposition 4.4 TIM E(Witness(succt’, I, F,visit?, cost?’)) € O(Sizel)
and SPACE(Witness(succt, I, F,visit" cost”)) € O(Sizel).

Proof outline The space is again simple—we only use space for states la-
belling, this time twice. For time complexity we again know that we do
traverse any edge twice, since we label a state (used) after conducting a search
from it and never search from it again.

4.3 Robustness

Lastly we focus on the robustness metric. For computation of robustness we
utilize the set SWT! as we know that only the transitions from the set lie
on the shortest witness paths. Additionally we also know that since we use
the shortest paths, there is no state that would be repeated on any of those
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Algorithm 2 Calculate DF'S(x,depth,branch). The labellings visit,
found, used, the sets Wit, I, the sequence Path, and the function succ are
shared between the recursive calls.
1: if visit[x] < depth then
2 return branch
3: end if
4: Path|depth] «— x
5. if (x € F) V (found|x] < depth) then
6
7
8
9

for d € [branch, depth) do
Wit «— Wit U (Path|d], Path[d 4 1])
found[z] «— depth
: end for
10: branch < depth
11: else if (depth < cost) A (—used|z]) then

12: for 2’ € succ(x) do

13: branch «— min(DFS(x', depth + 1, branch), depth)
14: end for

15: end if

16: used|x] « true
17: return branch

paths. We can therefore simply descend through the set of shortest paths in a
BFS manner, as we are sure that each state appears in only one iteration of the
algorithm. Consequently the probability of reaching a state s € S in any of the
shortest paths is equal to the probability of reaching it in visit[s] steps, which
is the invariant of the algorithm.

Proposition 4.5 Algorithm 4 is correct. If (cost” | visit?) « Check(succt,

I, F, false), and Wit" « Witness(succt, I, F,visit?, cost?). Then

Robustness(succt’, I, F, cost”, Wit"") ~ robustness®.

Algorithm 3 Calculate Witness(suce, I, F, visit, cost).

for s € S do
found[s] « oo, used[s] «— false
end for
Wit — 0, Path «— (L)cost
fori € I do
DFS(i,1,1)
end for
return Wit

S A U SR S
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Proof outline The invariant of the proof is that after k iterations, all the states
up to the depth k are labelled with the reaching probability by any shortest
witness path. Thus, after cost steps we have a labelling for all the final states
at distance cost from I. Note that we state that the values are possibly only
similar since we consider a possibility of having a slight rounding error for
fractions for the sake of storage space.

Proposition 4.6 SPACE(Robustness(succt, I, F,cost” Wit?)) €
O(Sizel’), TIM E(Robustness(succt’, I, F, cost” , Witl)) € O(Sizel).

Proof outline Again we use just one label for all the states—in this case a
fraction, which we store in at most log,(|.S|) space, having a possible rounding
error in practice. Since we have no loops in SW !, we certainly propagate from
each state at most once through each edge, providing the bound of |SW T | <
Space®.

4.4 Extending to Deterministic BA

Up till now we have discussed usage of the algorithm for properties encoded
by TBA. We can however extend the algorithms also to DBA, by stacking
multiple calls of each of the algorithms. As explained in Section 2.1, to check
for a property encoded by DBA, we are looking not only for a path from some
i € I to some f € F, but we also need a cycle containing f. We therefore
need to first obtain the set reach(F) C F of all reachable final states and
then we need to decide whether there is a cycle on any f € reach(F). Also,
previously we indicated that some of the advantages of the algorithm stem from
the witnesses being acyclic, which does not hold any more as we are looking
for a cycle on f. However we can break this cycle by creating a copy of f—a
new state that has the same successors as f, but does not share its labels:

Vs € St suce(sPY) = suce(s) N s“PY &€ S.

Lastly, in Algorithm 5 we denote Wit[f“PY/ f] the set of transitions where
f°PY was replaced by f.

Proposition 4.7 Algorithm 5 is correct. Analyze(P) = (cost?, SWTT ro-
bustness®).

Proof outline First note that we determine the cost already at lines 3-6. Later
we are therefore only searching for paths that we already know are minimal.
This is then done by joining shortest paths from [ to f and from f to itself.
Also for such f we know that its initial probability is given as probability
of reaching it from /. Since in Algorithm 4 we set on line 4 the probability

prob[f] = ﬁ = 1, we gain the final probability by multiplying the two.
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Algorithm 4 Calculate Robustness(suce, I, F, cost, Wiit).

L X —I1,X «—0,rob—0
2: for s € Sdo
3: if s € I then

4: prob[s] «— ﬁ

5: else

6: probls] < 0

7: end if

8: end for

9: for d € [0, cost] do

10 for z € X do

11: swlz] — {2'|(x,2") € Wit}
12: X' — XU swlx]

13: for 2/ € sw(z] do

14: prob|x’] «— prob[x'| + | gz(éi@)‘
15: end for

16: end for

17: X — X’

18 X' 0

19: end for

20: for f € F do

21: rob < rob + prob[f]
22: end for

23: return rob

Concerning the time complexity of the algorithm we can see that there is a
stark increase w.r.t. the size of the set reach(F"). In the worst case the time
is a square of what we had for TBA. Therefore if we expect a big reach(F)
set, one may probably want to trade the results provided by our analyses for
performance gain of traditional model checking algorithms.

Proposition 4.8 SPACE(Analyze(P)) € O(Size) and TIM E(Analy-
ze(P)) € O(Size? - |F|)).

Proof outline For the space we see that we keep results of at most two execu-
tions of Check, Witness, and Robustness which is only a constant increase.
Concerning the time we have two C'heck executions for each of the reach(F’)
members, with two executions of Reach and Witness. These have again a
time bound of O(Size?), together O(Sizel” - |F|).
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Algorithm 5 Calculate Analyze(P) suchthat P = A x K = (S,—,I,F)
where A is a DBA.

1: (cost_reach,visit_reach) <+ Check(succt, I, F,true)

2: cost < 00

3: for f € (F'N{s € S|visit_reach[s] # oo}) do

4: (cost_loop, visit_loop) «+ Check(succl, f¢PY, f, false)

5: cost < min(cost,visit_reach|f] + cost_loop)

6: end for

7: Wit «+ 0, Rob + 0

8: for f € (F N {s e S|visit_reach[s] # c}) do

9 (cost_loop, visit_loop) «+ Check(succl, f¢PY, f, false)

10: if visit_reach|[f] + cost_loop = cost then

11: Wit_reach «— Wintess(succ, I, f,visit_reach, cost_reach)
12: Wit_loop «— Wintess(suce, fPY, f, visit_loop, cost_loop)
13: Rob_reach <+ Robustness(suce, I, f, cost_reach, Wit_reach)
14: Rob_loop « Robustness(suce, fPY, f, cost_loop, Wit_loop)
15: Wit — Wit UWit_reach U Wit_loop[f<°PY ] f]

16: Rob +— Rob + Rob_reach - Rob_loop

17: end if

18: end for

19: return (cost, Wit, Rob)

4.5 Extending to Non-deterministic BA

Lastly we give a short comment on usage of NBA. There are two main prac-
tical differences between DBA and NBA. First, the complexity bound of each
algorithm in terms of both space and time is dependent on the term Size® .
If A is however non-deterministic, it no longer holds for P = A x K =
(S, —,I,F) that Sizel” < 2-|S| -logy(|S|). However we can easily adjust

the complexity bounds by considering the maximal out-degree of any state
in the DBA. More precisely, have an NBA A = (54, ﬂ, T4, F4) and
denote out(s?) = {(s,r)|(s% ) €ZYL). Then Size? < 2|9 -
logy(]S]) - maz({out(s*)|s? € S4}), which we can readily use in all the
previous complexity statements. The second, more elusive, difference is in the
nature of witness and robustness analysis. While we still are correct w.r.t. to
the definitions of Section 2.2, we do not have any longer one-to-one correspon-
dence between transitions in S and S¥. Consequently, different encodings of
one property can yield different robustness. For this problem we do not have
any formal solution, and it should be taken into consideration by the user.
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5 Conclusion

We revisited our previous results [1] that discussed usage of BFS model check-
ing, witness search and a robustness metric, and provided novel, efficient al-
gorithms for computing these. Moreover, we showed that two properties of
our problem—having the transition system on the input and searching for the
shortest witnesses of a property—provide advantages for the computation and
can lead to a decrease in the complexity of the algorithms. Also, when using
TBA-encodable properties, the complexity in both time and space is identical
for all the algorithms, allowing for efficient pipelining.

Second, we showed how the algorithms can be used to extend the model
checking procedure from simple reachability properties to the full LTL lan-
guage, albeit under the cost of increase in time complexity. However as this
cost is dependent on the set of reachable final states in an automaton, we
argue that for properties that have a small reachable set of final states, e.g. a
measurement is available, the increase in complexity is quite small in practice.

All the algorithms are experimentally implemented in the currently un-
published tool TREMPPI, a successor to the Parsybone tool [1]. The devel-
opment version, which was used for the case study, is currently available at
https://github.com/xstreck1/TREMPPI and is to be fully released in 2015.
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Abstract

Synthetic biology is an emerging research field at the interface between biotech-
nologies and engineering sciences with a unique potential. Inspired by elec-
tronics, our work deals with the design and the simulation of a biological flip-
flop. Flip-flops are key devices for complex digital circuits for which signal
synchronization is required. Unlike memories that can be obtained in biology
with bistable constructs (e.g. a gene with a positive linear feedback), the state
of a flip-flop can only change under the control of a particular signal called
clock. We propose here a design made of three operons that achieve the same
behavior as an electronic flip-flop. The construct is modeled and analyzed in
silico through simulations. Results establish the proof of concept but also point
out some constraints on model parameters which lead to specification about the
strength of regulatory proteins and promoters that would be used in the actual
system.

1 Introduction

Over the past fifteen years, synthetic biology, a new scientific field at the inter-
face between biotechnologies and engineering sciences has developed rapidly.
The goal of synthetic biology is to create new biological functions by assem-
bling artificial or natural biological parts [1]. In this work, focus is put on
a particular branch of synthetic biology: the design of new artificial genetic
networks. The common philosophy adopted by the scientific community in
this domain consists in designing these networks based on the principle of
a construction game where complex biological function can be performed

*corresponding author: morgan.madecQunistra. fr
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by assembling elementary building blocks, sometimes called BioBricks [2].
This way of thinking is similar to the one known in systems engineering; its
potential is fully exploited in several domains such as digital electronics. On
the other hand, it has been showed that at high level of abstraction the behavior
of BioBricks can be described by Boolean equations [3]. From there was born
the idea to build in the near future bio-computers with a computation core
made of biological material, able to perform complex biological functions [4].

In microelectronics, digital circuits are favored in comparison to the analog
ones because of several advantages [5]: digital circuits are more robust, less
sensitive to noise, perturbations and performance alteration due to manufac-
turing process. Moreover, the design of such systems is simpler insofar as
it is based on Boolean algebra and powerful computer-aided design (CAD)
tools [6]. In synthetic biology, many BioBricks also exhibit a Boolean be-
havior and could benefit from it in the same way as digital electronic circuits.
Thus, design of artificial genetic networks based on those BioBricks would be
facilitated by the development of equivalent CAD tools adapted for synthetic
biology, either from scratch [7], or on the basis of existing microelectronics
tools [8]. The price to pay for the robustness and the relative design sim-
plicity is an increase in the number of resources (building blocks and nets in
electronics, genes and proteins in synthetic biology). For instance, an analog
adder can be realized with a few tens of transistors while its digital equivalent
requires over a hundred. In microelectronics, it is possible to integrate billions
of transistors within a single chip. Genetic networks, even in the medium term,
will probably never reach this degree of integration. Therefore, optimization
of the number of resource is a critical issue.

Up to now, most of logic gates and basic combinatorial Boolean gates
have already been realized with genetic networks [4]. However, these gates
do not cover all the digital functions. For instance, sequential systems require
memories, whose design is a trickier challenge. The first artificial constructs
exhibiting a non-combinatorial behavior are the oscillators which switch be-
tween two steady states within a defined time interval [9]. In 2002, the toggle
switches introduced by Gardner et al. [10] laid the foundation for the first
genetic memory designed by Becskei et al. one year later [11]. This biodevice
is based on a positive linear feedback. Alternatives to Becskei’s biomemory
have also been published in the early 2010’s [12]. But this kind of memory is
asynchronous whereas the computational design of complex sequential sys-
tems such as a finite state machine requires synchronous memories, called
D-flip-flop (DFF) in electronics. In 2012, Hoteit et al. [13] developed the
BioD, a biological DFF involving 7 operons and 10 proteins. BioD has been
designed upon the standard structure used in microelectronics, i.e. two D-
latches cascaded in a master-slave structure [5]. For this DFF, light acts as
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the clock signal by modulation of the effectiveness of a transcription factor.
Note that equivalent behavior has also been reached using non-genetic systems
(enzymatic reactions) [14]. In what follows, a new genetic network involving
only 3 regulated operons is proposed. After a description of the concept,
simulation results are shown. They are used to validate the concept and to
challenge the robustness and the performance of the construct.

2 Description of the biological flip-flop

DFF is sensitive to two signals, namely Data (D) and Clock (Clk). By op-
position with standard memories, the output of the DFF (Q)), which should be
bistable, may only change after rising (or falling) edges of the clock signal
and according to the value of D: if D is high during the falling edge, () turns
(or stays) high whereas if D is low @ turns (or stays) low. We can transpose
this behavior in the biological field, considering that “low” corresponds to a
low concentration of a protein, that “high” corresponds to a concentration near
the saturation concentration and that a falling edge is a sharp decrease of the
concentration of a protein (by enhanced degradation or by inhibition). The
structure of the biological DFF (BioDFF) we developed for the bacteria Es-
cherichia coli is composed of 3 operons and involves 8 proteins and molecules.
In addition, the system possesses two input signals and one reporter (GFP in
this case). In this example, the D input can be 3-oxo-C12- homoserine lactone
(30C12HSL, thereafter termed AHL), which activates the LasR protein, which
can in turn bind the /uxI promoter and activate expression of operon #1. The
oscillating C'lk signal can be realized with pre-queuosinel (PreQ1) and the
adequate riboswitch [15]. The corresponding cartoon is given in Figure 1.

The operon #1 uses the /uxI promoter (Py,41). Three proteins are syn-
thesized when this operon is expressed: a repressor (CII), an enzyme (Lasl)
and an activator (CI). The enzyme Lasl produces AHL (30OC12HSL). Upon
binding with AHL, the protein LasR (expressed constitutively on a separate
operon) activates the transcription of the luxI promoter on operon #1 [16].
LaslI therefore plays the role of a self-activator. Direct addition of AHL, here
Data signal, achieves the same effect. CII is a cross-repressor for operon
#2 [13]. The phage A regulator protein CI activates the transcription of operon
#3 by binding to the O domains of its Pgry; promoter [17]. The transcript
of operon #1 contains a so-called riboswitch, a short RNA sequence located
on the mRNA and sensitive to the presence of a specific ligand (PreQ1 in our
system). Upon addition of the ligand, formation of a premature terminator
structure on the mRNA arrests the transcription process [18]: the ligand act as
a repressor of the genes located downstream of the riboswitch. The promoter
of operon #1 also contains a Lacl binding site.
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Figure 1: Cartoon of the biological D-flipflop involving 3 operons.
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Hence, its expression is turned down in the presence of the repressor Lacl.
The expression of the operon #1 is controlled by the concentration of AHL,
from the direct input or from the enzyme Lasl, the molecule PreQ1 and Lacl
synthesized by the operon #2. The operon #2 synthesizes Lacl, a repressor
inhibiting the expression of operons #1 and #3. It has the same riboswitch
sequence as operon #1 and is therefore also inhibited by PreQ1. Furthermore,
operon #2 is sensitive to the repressor CII synthesized by operon #1. The
operon #3 has a positive linear feedback construct [10], that is to say that it
synthesizes a self-activator CI. Expression of the operon #3 is controlled by
two regulating proteins: an activator synthesized by operon #1 and a repressor
synthesized by operon #2.

The most obvious case is when PreQ1 is present. Operons #1 and #2 are
repressed by PreQ1. As a consequence, the operon #3 is “insulated” from
the rest of the circuit and acts as a bistable memory: if active, this activity is
maintained by the synthesis of CI. If not active, there is no activator, thus it
remains inactive. Now, let us consider the case where PreQ1 drops from high
to low. At this point we have to distinguish between two cases. If AHL is
high, the activity of both operons #1 and #2 increases: of operon #1 because
of AHL and of operon #2 because of its constitutive promoter which is no
more repressed. But at the same time, they start to synthesize cross-repressors
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Lacl and CII. Therefore, a race occurs between the two genes (lacl and clI).
In order to reach the expected behavior, production of CII should be “boosted”
in comparison with Lacl. This could be achieved, for instance, by inserting
two coding sequences for CII protein in the operon #1. This boost leads to
the inhibition of the operon #2 and the activation of the operon #3 by CI. As
a consequence, the output can rise to high. On the other hand, if AHL is low
when PreQ1 drops from high to low, the scenario is more obvious because
the operon #1, which does not have a constitutive promoter, remains inactive.
steady state in which the operon #2 is active and represses operons #1 and #3
is quickly reached. As a consequence, the output activity drops to low. When
PreQ1 is low, activity of the operon #2 depends only on activity of operon #1.
If the operon #1 is inhibited, CII is not synthesized, thus the operon #2 is active
and the output is low. If the operon #1 is active, the operon #2 is repressed and
the output is high. Nevertheless, AHL may change at any time and especially
may fall to low while PreQ1 is on. If the output is already inactive, it does
not matter. However, to prevent a change of output state while it is active, the
activity of the operon #1 has to be maintained by the self-activation of Lasl.
Finally, when PreQ1 rises from low to high, activity of operons #1 and #2
decreases without any modification of the output gene activity.

3 Modeling and simulation results

The BioDFF was modeled in SystemC-AMS [19] using a dedicated automated
generator model [20], which produces a simulation-ready model from a gene
netlist. Conventional equations for modelling the mechanisms of transcription
of DNA into messenger RNA (mRNA) and the translation of mRNA into
protein were used [21]:

dmRNAn] _ krrn —d, N an - [MRNAn
dt . Kan ) 1 Zp[Reppb . | |
S ) ) (=5
d[Xn]

dt = kTLn . [mRNAn] - an . [XTL}

where n is the operon number, k7 g is the transcription rate (default value is
0.1), k7, is the translation rate (0.1 by default), K 4 and K 4 are the affinity of
activators and repressors on the promoter (resp. 0.2 and 0.01 by default), o and
(3 are the Hill’s coefficient for the activator and for the repressor respectively
(2 by default) and d, and d,,gpny4 are the degradation rate of proteins and
mRNA (0.1 by default). Concentration are normalized by the concentration at
saturation of the proteins in the cell (i.e. concentration vary between 0 and 1).
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For the three operons, all the 20 parameters are set to the default value except
KR, which is equal to the half of the default value (0.005) and models the
fact that CII is boosted in comparison to Lacl. Parameter values are chosen
accordingly to [22].

A transient simulation (i.e. time course) was performed with a testbench
for C'lk and D that covers all the possible scenarii. The simulation results are
given in Figure 2. The expression of the three operons as well as the concen-
tration of reporter corresponded to the expected signals. In particular, it was
observed that output changes occur only on falling edges of the clock signal
and in accordance with the presence or absence of D at the edge. Glitches
were observed on falling edge of C'lk when D and () are high. They can be
explained by a loss of gene expression during the race between operon #1 and
#2 described previously.
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Figure 2: Simulation results of the biological D-flipflop with default parameters.
Simulations results for the reporter are provided both by a deterministic simulator
(third line) and a stochastic simulator (fourth line).

Deterministic simulation gives a proof of concept of our construct. Neverthe-
less, further analyses have to be carried out in order to check its robustness.
Thereafter, two of them are described. The first one aims at estimating the
noise immunity of the system. The second one deals with the sensitivity of the
response with the variations of model’s parameters.

First, noise immunity is discussed. The cornerstone of the system’s op-
eration is the race between CII and Lacl at the falling clock edge. What
would happen if these two proteins existed only in very small quantities? To
answer this question, stochastic simulations were carried out with an algorithm
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derivated from Gillespie’s one [23]. Results are also given in Figure 2. It can
be pointed out that the expected response of the system was reached even if
the number of molecules is low.

A - Score | Score m
n=1.5 n=1.7 n=2
0.00 100 % 100 % 100 % 100 %
0.05 76.0% 96.0% 96.5% 99.0%
0.10 31.0% 67.0% 73.0% 80.5%

0.15 175% 345% 545% 62.0%
0.25 100% 185% 27.0% 39.0%

18 Good

11 Bad

01 02 03 04 0ns na n7 08 09

KR,Z/KR,J.

Figure 3: Results of the robustness test. (A) shows the score (i.e. the percentage
of output waveforms that looks like the expected one from a digital point of view
only over the 1,000 parameters set) as a function of the parameters spread and Hill’s
number. (B) gives the range of the K > over Kp ; ratio for which the systems works
as a function of Hill’s number.

The robustness of the system was analyzed through Monte-Carlo simulations.
First, the parameters were altered one by one in order to identify the most
critical of them. As expected, parameters related to the repression of operon
#1 by Lacl and operon #2 by CII were the most critical. Then, the influence of
the repressor-promoter binding cooperation factor (n; and ny) was addressed.
For this simulation process, parameters Krg, K715, K4, and Kg,, are
allowed to vary around their default value. Let A be the vector containing these
parameters. A test consists of 1,000 random draw (A1, ..., Ajggg) in which each
set is computed as following: A = Ag - 10'+°Y, where V¥ is a vector with
10 random values drawn with a standard normal distribution and o is also a
vector containing the standard-deviation of the spread for each parameters.
Results for different Hill’s numbers and different values of o are compiled in
Figure 3A. The score corresponds to the percentage of output waveforms that
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looks like the expected one (from a digital point of view only) over the 1,000
parameters set. We can point out that Hill’s number has a high influence on the
robustness of the system.

This result is confirmed by Figure 3B giving for each Hill’s number the
possible range of variation of the K 2 versus Krp 1 ratio. Again, the higher
the Hill’s number, the wider the range and the bigger the robustness.

4 Conclusion

To conclude, a new genetic D flip-flop has been designed. It is an alternative of
a structure previously introduced by Hoteit et al. in 2012. Its main advantage
consists in being more compact (only three operons against seven for Hoteit).
The other side of the coin is that our system relies on a competitive reaction
between two repressors and a corresponding associated promoter, which ren-
ders the system less robust than Hoteit’s. Indeed, the simulations carried out in
SystemC-AMS showed that system parameters should be controled precisely
enough to ensure proper functioning of the system, which can be easily done in
simulations but could be a tricky challenge when realized with actual genetic
material.
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Abstract

The social amoebae of Dictyostelium discoideum (Dd) are unicellular organ-
isms that, under prolongated starvation, aggregate through a reaction-diffusion
signalling system and later differentiate to form a pluricellular organism. In
this work, the Kessler-Levine simple discrete model for Dd early-stage aggre-
gation is extended to include the Dildo-Hauser directional sensing effect. The
resulting model describes all the known patterns of Dd aggregation, which
include the spontaneous formation of cAMP self-sustained target and spiral
waves and streaming effects. One alteration on this model leads to the emer-
gence of self-organising complex regular patterns. The bifurcation analysis of
the main processes has been performed.

1 Introduction

The social amoebae Dictyostelium discoideum usually live as simple individual
organisms in the soil leaf litter, feeding on bacteria and dividing by mitosis.
Under starvation, however, they aggregate to form a pluricelular life form, [4].
A colony of aggregating Dd cells constitutes an interesting system for the study
of pattern formation, which is the purpose of this work.

Starvation induces cells to produce the chemical compound cAMP (cyclic
adenosine monophosphate) and also a phosphodiesterase enzyme PDE that
degrades it. cAMP is relayed in the medium in an oscillatory manner and
propagates as a reaction-diffusion wave, very often a spiral. The amoebae
move chemotactically in the direction of the gradient of cAMP concentra-
tion, forming a very particular pattern called streaming — a ramified network
that converges into the cAMP wave diffusive center, where they eventually
aggregate. From this aggregate they start to climb vertically, passing by sev-
eral stages of morphogenesis and undergo cellular differentiation between two
types of cells (stalk cells and spore cells), culminating in a mature pluricelular
organism — the fruiting body [5].
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Dictyostelium aggregation has been extensively modeled throughout the
years and there are a variety of models to describe cAMP production and
relaying dynamics, [6], [7] and [8], spiral wave break-up, [9], [10] and [11],
amoebae movement and stream formation, [12], [13] and [14], etc. The model
developed in this work is constructed from the merging of two models, the
Kessler-Levine model for cAMP production, [1], and the Dildo-Hauser model
of directional sensing, [2], and is thoroughly explored for several values of the
parameters.

2 Models and Methods

To account for the amoebae’s sensing and the production of cAMP, the model
proposed by Kessler and Levine was used, [1]. This is a simple, discrete, model
that doesn’t incorporate the majority of biochemical features and machinery of
amoeba cells, but is, nevertheless, successful in reproducing streaming pat-
terns. In this model, amoebae are interpreted as “bions”: “simple elements
that mimic the cell’s behaviour by a set of simple, easily computable rules”,
[1]. Each amoeba has an internal state that represents the availability of cAMP
receptor sites, accordingly:

1) State 0: amoebae are excitable. They are not emitting cAMP, but they
detect its local concentration ¢ and if it is above the treshold ¢ they
become excited, changing to state 1.

ii) State 1: amoebae are excited. They emit a fixed amount Ac of cAMP
over 7 time units. After 7 they progress to state 2.

iii) State 2: amoebae are quiescent. They neither emit cAMP nor can be
further excited during ¢ time units. After £ they revert to state 0.

These dynamic rules are successful in reproducing the auto-excitable behaviour
of the system, and a propagating target wave results from the amoebae ampli-
fication of the signal emitted by a localized temporal “pacemaker”, oscillating
periodically around cr, [1].

The model of Kessler-Levine just exposed is an early-stage aggregation
model of Dictyostelium as it successfully reproduces the streaming pattern but
has no aggregation in the diffusive center. In this work, we will use the same
cAMP production dynamics, with the three defined amoebae internal states.
As in the Kessler-Levine model, the propagation of cAMP in the medium is
given by the reaction-diffusion equation:

gg = DAc —Tc+ (sources), (1)
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where c is the cAMP concentration, D is the diffusion coefficient and I" is the
decay rate representing the degradation of cAMP due to phosphodiesterase ac-
tivity or natural degradation. The source term represents the local contributions
of cAMP by the amoebae.

Another important feature of this work is the directional sensing operator
derived by Dildao-Hauser, [2]. They have proposed that the amoebae are sensi-
tive to the direction of propagation of the cAMP wave. This is justified by the
fact that amoebae sense and follow an oscillatory gradient, but their movement
is not oscillatory — chemotactic wave paradox. These authors suggested that
the amoebae only move when the cAMP gradient is in the opposite direction
of the wave propagation, which they then derive to be equivalent to the verifi-

cation of the condition:
Oc
ignal | — | > 0. 2
signa < 6t> 2)

They have tested this directional sensing condition using an external Ginzburg-
Landau reaction-diffusion field model.

In this work, the two models described above were merged. The goal
is to reproduce the phenomena of pattern formation and aggregation in Dic-
tyostelium dicoideum colonies and to understand the basic mechanisms under-
lying the observed phenomena.

The integration of the reaction-diffusion equation was done using a method
proposed by Dilao-Sainhas, [3]. They noted that space and time scales (Ax
and At) are not independent in diffusion and reaction-diffusion systems and
have found that the relation between space and time scales that minimizes
integration errors is

DAt 1

(Az)? 6

Furthermore, they have proposed a new class of explicit difference methods for
the integration of reaction-diffusion equations in 1, 2 and 3 dimensions, where
the dependence of time and space scales occurs naturally. Denoting by vﬁ ; the
concentration of cAMP at given lattice cell with coordinates (i, 7), at a given
instant of discretized time k, the 2D Dildo-Sainhas difference method used in
this work is

3)

kil ok, Lok k k k k
Vi =Vt §(Uz>1,j + v+ U1+ U — i)

1
k k K k k
+ %(Uz’—l,j—l + U151+ UG T vl — 4vig)

+ Atf(v;), 4)

where, by (1), f(z) = —T'z.
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In our simulations, we randomly distribute the amoebae in a 2D circle
inside a 200 x 200 square lattice of cell side length Az. Each amoebae is
represented by their center of mass and occupies no area. The cAMP produc-
tion follows the dynamics proposed by Kessler-Levine and the movement of
the amoebae obeys the directional sensing condition derived by Dildo-Hauser.
Eq. (1) describes the propagation of the cAMP relayed in the medium and
is integrated in the circle using the Dildo-Sainhas method (4), with no flux
boundary conditions.

3 Results and Discussion

3.1 Propagation of cCAMP with a pacemaker source; calibration

The parameters of the model have the following reference values: Ac =
150 nmol.mm™2, ¢p = 0.5 nmol.mm™2, tp = 20 s, 7 = 0.2 s and
I' = 0.5 s~!. These were found experimentally to garantee the entrance in
oscillatory regime, it is kept a relation of CA—TC = 300 as proposed in Kessler-
Levine [1]. The diffusion coefficient is hidden into the scaling condition (3),
but will be estimated from the experimental data (see below). The integration
time step used in the integration method (4) is At = 0.1 s.

In the middle of the circular domain, we place a pacemaker (imposed
source of cAMP) oscillating around ¢, with amplitude A = 0.4 nmol.mm 2
and period T = 30 s (¢ = ¢ + Acos(27t/T)). The pacemaker acts as a
diffusion center and the production of cAMP by the amoebae together with
its degradation according to (1) leads to the propagation of cAMP in the 2D
media as a reaction-diffusion target wave.

It was found that a minimum amoebae density of 27 % guarantees wave
propagation and that the parameter cr influences the velocity of waves, with
waves travelling faster for smaller cp. For cr = 0.5 nmol.mm™2, the wave-
front takes around 30 s to propagate one radius of the circular domain, or
half the size of the lattice length 100 Az. The system can now be calibrated,
from the known velocities of propagation of diffusion waves in aggregating Dd
colonies of 300 ,um.minfl, [1]. So, from this value, we obtain Ax = 1.5 um,
which represents the spatial scale of the system. Now using eq. (3), we may
obtain the diffusion coefficient of D = 3.75 um?.s~!, that characterizes this
system.

3.2 Propagating cAMP and amoeba motion with directional sensing

We now set the amoebae in motion, allowing them to move only when they
are on state “1”, as it is done in Kessler-Levine [1]. A parameter v defines the
value of the velocity of each individual amoeba in the 7’ and 7% directions.
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The amoeba moves in the direction of the gradient of cAMP if condition (2)
is verified. In the simulations, we have observed the emergence of transient
streaming currents culminating with the aggregation of all the amoebae in the
diffusive center, i.e., where the pacemaker is located. In the supplementary
video 1 available at http://sd.tecnico.ulisboa.pt/NonLinear_Dynamics_Group is

possible to see what happens to 16000 amoebae moving with v = 20 nm.s~ .

The model reproduces successfully the streaming and aggregation of Dic-
tyostelium colonies. The parameters that determine the dynamics of the amoe-
bae are the velocity v, the degradation rate I' and the relaxation time ¢z (which
corresponds approximately to the period of wave emission). A diagram for
tr and v, representing the transient states of the amoebae colonies, is shown
in fig. 1. To provide a general overview of the system, the diagram covers
a large domain of parameters in a logarithmic scale. Blue corresponds to
low concentration of cAMP and red to high concentration. Amoebae are
represented in green. These diagrams have been calculated with a colony of
8 000 amoeba.
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Figure 1: Diagram for the transient states of amoeba colonies, as a function of
v and tr. The amoebae velocity axis is a logarithmic scale of base 2 and the
tr axis a logarithmic scale of base 4. Parameters are I' = 0.5 s~!, 7 = 0.2 s,
Ac = 150 nmol.mm~2 and cp = 0.5 nmol.mm 2. The images in the figure
were obtained for the parameter values v = 10, 20, 40, 80, 160 nm.s~! and
tr = 2.5,10,40 s.
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For high oscillatory frequencies, low ¢y, there is no streaming or aggrega-
tion near the cAMP source and the amoebae form small aggregates along the
way. For higher g, there is a streaming zone, where an increase in the value
of v provokes the decreasing of the number of streams, which in turn become
thicker and less defined, until streaming is no longer observed and the system
enters a zone where there is aggregation without streaming. A relatively high
value of {p seems to be required to obtain aggregation in the pacemaker. More-
over, increasing the number of amoebae N also interferes with the dynamics,
resulting, generally, in an increase of the number of streams.

Now, fixing tp = 20 s and keeping amoebae velocity v in the streaming
zone, the effects of I' together with v are shown in the diagram of fig. 2.
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Figure 2: Diagram for the transient states of amoeba colonies, as a function
of v and I' — streaming zone. Parameters are tgp = 20 s, 7 = 0.2 5, Ac =
150 nmol.mm =2 and c¢p = 0.5 nmol.mm 2. The images in the figure were
obtained for the parameter values v = 16, 24, 32, 40, 48, 56,64 nm.s~! and
I'=0.2,0.3,0.4,0.5 s 1.

In the simulations in fig. 2, the effects of the variation of v on the system
are the ones already discussed concerning the number and the thickness of
the streams. On the other hand, lowering I" also results in the formation of
more and thinner streams, although this effect is not so pronounced. For I' >
0.6 s~1, wave propagation doesn’t occur anymore.
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It is important to note that the patterns obtained in figures 1 and 2 resemble
some results obtained from experimental studies, [15] and [16]. For instance,
Kriebel et al., [15], observed a streamless aggregation in Dd deletion mutants
for the production of the protein adenyl cyclase (ACA) and the formation of
several small aggregates, similar to what may be observed in certain images
of fig. 1, for Dd mutants with a different ACA distribution than the wild type.
Moreover, Hilgardt et al., (2008), [16], also obtain several smaller aggregation
territories of Dd with the introduction of IPA in the medium. They, in fact,
report a wider range of cAMP wave frequencies observed in their experiment
[16].

The parameters that here were found here that have influence on the sys-
tem, are very often overlooked in experimental research. Amoebae velocity
in particular is hardly ever addressed. However, here we have found that the
frequency of cAMP emission and the amoebae velocity together with degrada-
tion rate are at the core of the change in dynamics in aggregating Dd colonies.
This simple model reproduces streaming and aggregation, allowing a straight-
forward understanding of the essential aspects of pattern formation.

3.3 The emergence of spiral dynamics

Moreover, it is also possible to obtain spontaneously formed spirals without
an imposed pacemaker. This is another extension to the model that better
approximates to what happens in nature.

With no imposed cAMP pacemaker source, an initial condition of constant
cAMP concentration ¢y was given to each amoeba. As the amoebae only start
emitting if the local concentration of cAMP is above the treshold cr, we set
co < cr, so that only the spatial regions with high enough number of amoebae
will have a cAMP concentration above threshold. These places act as diffusion
centers for a first travelling wave and, afterwards, one or more spontaneously
formed diffusive centers may emerge, forming self-sustained spirals, one of the
most common type of wave obtained. The position of second centers differs
from the position of the initial ones. This process might be seen in fig. 3, for
8000 fixed amoebae. Supplementary video 2 shows the same simulation with
more detail (http://sd.tecnico.ulisboa.pt/NonLinear_Dynamics_Group/Videos).

The bifurcation parameters for the emergence and positioning of the diffu-
sive centers are ¢ and amoebae distribution.

Furthermore, in fig. 4, simulations are made for five different initial amoe-
bae distributions. Here it can be seen that the bifurcating parameters cy and
amoebae positioning influence the emergence, the number, the type (target,
spiral or interference formations) and the position of the self-sustained diffu-
sion centers. These parameters reflect directly on the intial spatial distribution
of cAMP, that here is seen as the essential feature behind the emergence (or
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t=10s t=20s

t=30s t=35s t=40s

Figure 3: Spontaneous spiral wave generation in the course of time. An initial
cAMP concentration ¢y = 0.2 nmol.mm~2 was given per amoeba. As time
progresses, two self-sustained rotating spiral waves emerge. The parameters of
the simulation are 7 = 0.4 s,¢t, = 10 s, = 0.5 s, ep = 0.5 nmol.mm =2
and Ac = 300 nmol.mm =2,

A).....

Figure 4: Spiral waves for five different initial amoebae distributions. The
number, the type and the position of the self-sustained diffusion centers
change: A) ¢y = 0.15 nmol.mm™2; B) ¢g = 0.2 nmol.mm~2. The other
simulation parameters are 7 = 0.4 s, t, = 10 s (¢, = 7 s for the fifth case),
I'=0.5s""1, ¢r = 0.5 nmol.mm =2 and Ac = 300 nmol.mm™2.
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not) of self-sustained diffusive centers.

Now the amoebae are set in motion, after the establishment of the spirals,
and we can assemble all the phenomena and obtain a more complete result
with spontaneous spiral emergence, streaming and aggregation. This is shown
in fig. 5. Here the amoebae distribution and ¢y are the same as in fig. 3.
Now, it was possible to remove the condition of a movement constrained to the
amoebae being on state 1, as well as using a constant acceleration a in the 7’
and 3/ for the movement of the amoebae. Supplementary video 3 allows to
observe the same simulation with more detail.

t=60s t=70s t=80s t=90s

t=100s t=120 s t=140s t=400s

Figure 5: Observations of streaming and aggregation together with self-
sustained spiral waves, amoebae move freely with a = 2 nm.s~2. The other
simulation parameters are cg = 0.2 nmol.mm ™2, 7 = 04 s, t, = 10 s,

I'=0.5s""1, ¢r = 0.5 nmol.mm =2 and Ac = 300 nmol.mm 2.

3.4 Directional sensing effect

We now proceed to analyze the effect of directional sensing in the model. We
test this effect for high and low frequencies, with the constraint of amoebae
only moving when they are on state 1, as in section 3.2, and for free motion
in the conditions of the two established spirals of section 3.3. Fig. 6 allows
to observe that the directional sensing effect is in fact a feature required to
complete the aggregation in this model. Here it can be seen that for low fre-
quencies its effect is more pronounced (whether in free or constrained motion,
responding to a pacemaker or to spontaneously formed spirals), whilst for
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higher frequencies it doesn’t have an effect and the pattern formed with and
without directional sensing is the same.

High frequency Low frequency
Constrained motion Constrained motion

a)
With
directional
sensing

b)
Without
directional
sensing

Figure 6: The system configuration for the time instant ¢ = 50 s. A) with
directional sensing. B) without directional sensing.

Free motion

3.5 Self-Organising complex regular patterns

We will now characterize the free-motion adaption made on the model, by
removing the condition of amoebae only moving when on state 1, i.e., when
emitting cAMP. We put again the pacemaker in the middle of the circular
domain and allow the amoebae to move with constant velocity in direction
of the gradient, with directional sensing.

Bifurcating parameters were found to be degradation rate I' and amoebae
velocity v. For a given set of parameters, a surprising outcome was found: the
emergence of symmetric self-organised regular steady state patterns. Fig. 7
shows three of these symmetries.

The emergent symmetries here obtained consist either of a 90° symme-
try or a mirror symmetry. Supplementary video 4 allows to see the forma-
tion of another one of these patterns for parameters I' = 0.3 s~ and v =
480 nm.s~ 1.

Symmetries and patterns are often present in nature, being the snowflakes
and hexagonal beehives some of the most emblematic cases. These symmetries
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Figure 7: Emergent regular amoebae steady state patterns. After a 90°
rotation, the pattern remains invariant. a) v = 320 nm.s~ 1, T = 0.3 s71.
b)v =320nm.s, T =055 ¢)v =480 nm.s~, T = 0.25 s~1. All

withtp = 20 5, 7 = 0.2 s, Ac = 150 nmol.mm ™2, ¢y = 0.5 nmol.mm 2.

consist on an interesting result of our model, for they are of considerable
complexity and emerge naturally for a given parameter zone. It is verified
that, fixing the bifurcating parameters, any initial amoebae distribution will
give rise to the same symmetry pattern.

4 Conclusions

We conclude a thorough analysis of a simple discrete model constructed based
on features of two previous models and adapted iteratively to better reproduce
the reality of Dictyostelium aggregation.

The model is successful in reproducing spiral wave formation, streaming,
aggregation in the diffusive center and highlights the direct influence of pa-
rameters such as amoebae velocity, phosphodiesterase activity and period wave
emission on the dynamics of the system. Its simplicity in not including any bio-
chemical derived term or equation allowed us to interpret the main phenomena
of the system as emerging from the non-linear dynamics of reaction-diffusion
systems in excitable media.

In this study, it was possible to exhibit the essential features of Dictyoste-
lium aggregation and thus better understand the nature of pattern formation
in these starving colonies. Despite the high number of parameters in this
model and the assumption of motion of the amoebae with constant velocity,
the calibration of this type of models will enable the determination of some
of the physical parameters of the system. On the other hand, the new type of
regular pattern found here presents a challenge in laboratory observations.
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In virtuo modelling for biologists: How to design graphical
interface for the RéISCOP simulation platform?

Guillaume Longelin Péron', Gireg Desmeulles’

1Lab-STICC, UMR 6285 CNRS, UEB/ENIB/CERYV, France

Abstract

This article presents a future component of the REISCOP simulation platform.
REISCOP provides an interaction-based meta-model to build models for sim-
ulations. Currently, model construction needs to be done by a programmer.
This is a problem for the biologist who cannot construct models by himself.
We propose to include a graphical interactive interface to allow biologists to
build models in REISCOP with help of in virtuo experiments.

1 Introduction

In 2013, the Royal Swedish Academy of Sciences decided to award the Nobel
Prize in Chemistry to Martin Karplus, Michael Levitt and Arieh Warshel for
the development of multiscale models for complex chemical systems. These
works stress the point that mathematical modelling and computer simulation
of complex phenomena are more and more central to the field of fundamental
research applied to living systems.

In this context, Virtual Reality (VR) may become essential to study complex
systems such as biological systems. VR places the user at the heart of a virtual
laboratory, so that he can use tools which share similarities with experimental
science methods: the user (i.e. the biologist) can therefore investigate the
virtual biological world using various methods such as 3D visualisation and
interactions, numerical methods, etc. We usually call this kind of investiga-
tions “in virtuo experiments” for its similarities with the expressions in vivo
and in vitro [1]. In virtuo experiment is a subset of computer simulations
studies called in silico. It replaces user on experiment context by immerse
him in simulation environment, for example a biology laboratory (Figure 1).
He can use VR elements to interact with environment. This places in virtuo
experiments at the intersection of biology and VR. Humans are then directly
involved in the in virtuo experimentations of the numerical models within the
virtual environment. REISCOP is both, a framework and a meta model that
have been designed to enable the in virtuo experiments. Recently, it has been
rewritten into a version 2.0 that includes meta-model, interactive simulation
engine and reaction/diffusion and bacteria models. The GUI (Graphical User
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Interface) that is necessary to enable the in virtuo experiments has not been
developed yet. This position paper addresses our work on the design and im-
plementation of an efficient graphical user interface. First, we present REISCOP
2.0. Then we review the various multi-agent platforms by focusing on the
proposed interfaces; Finally we conclude about the scientific challenges that
we must overcome to imagine an relevant graphical user interface for in virtuo
experience.

.
~

-
w
-
~
-
~

~

Figure 1: Virtual biology laboratory on REICOP simulation. Bacteria development
simulation take place on this environment. We can see it by zooming in on microscope
(Figure 6)

2 RéISCOP 2.0

REISCOP is a meta-model and a C# written simulation platform using Unity3D
as basement for graphical user interface. Its name is an acronym of follow-
ing sentence that gets main concepts of meta-model together — Reification of
Interactions, Systems, Constituents, Organizations and Phenomenons. We can
refer to [2] for a description of the former 1.0 version to understand all meta-
model notions. The 2.0 version has not been published yet but we can present
some points!.

"Documentation can be found at: http://www.cerv.fr/ReISCOP/doxygene/index.html
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2.1 Meta-model

The RESCOP meta-model provides a means to create an interaction-based
simulation that can be seen as a dual method for individual based model (IBM)
simulation (Figure 2).

M I S Agent 1
Interaction 2’ ﬁnteraction 3
o “ L o Agent 3‘ & Agent 2

Interaction 1 MAS

Figure 2: In multi-agent systems (MAS), individuals are explicit and interactions implicit
whereas in multi-interaction systems (MIS), interactions are reified and individuals become
implicit.

The meta-model can be used to implement models or simply to discuss
and to design on paper. We briefly describe here the main concepts of the
modelling formalism:

Constituent: Constituents are variables, parameters or quantities involved in
the models. At each moment, they represent the current state of the model.
Constituent may model a concentration, a 3D shape, a position or a diffusion
coefficient. In our graphical notation, constituent is represented by ”+”.

Interaction: Interactions are the processes that modify the states of the con-
stituents over time. An interaction points towards a constant set of constituents
with read or write access, at every step of simulation. Interaction may model a
chemical reaction, a mechanical collision, a chemical diffusion. Interaction are
represented by a multi-head arrow. Each arrow head points out a constituant.

Phenomenon: Phenomena are in charge of producing interactions during the
simulation. A phenomenon focuses on the states of constituents (only those
which are known by its organization). If it detects that the required conditions
are satisfied, then it produces a new interaction. In this way, depending on its
type, each interaction belongs to a phenomenon. Link between a phenomenon
and its interactions is represented by a dotted line.

Organization: An organization represents the dynamics of a system part. It
is composed of phenomena which themselves are composed of interactions.
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In addition, the organization handles a set of constituents which represent the
static part of the system. The organization role is to maintain the consistency
of that set of constituents over time. Finally, an organization can be composed
of sub-organizations corresponding to sub-systems.

System: Constituents, interactions, phenomena and organizations are used to
model and populate our virtual worlds with autonomous systems (Figure 3).

7 7 T
t 6 &* L -
c2 J c2
X
. [ X ¢1+ =1+
@] @]
O ez
" T r
| 1
k4 - Autonomous [T o
L 1 .|.‘ * System 2 t'=, £| Autonomous
N2z S]] e TN 5 e 35| sSystem1
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i i 2
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Figure 3: RéISCOP dynamics. 1: Organizations 1 and 2 have phenomena and know
constituents. 2: If conditions are satisfied, phenomena instanciate interactions; a new
constituent (c3) is created. 3: Organizations adapt their boundaries according to their internal
rules; phenomena detect new conditions for creating interactions; new interactions are created.
4: We have here two autonomous systems coupled by a part of their structure. A concrete model
can be seen on figure 5

Constituents represent the static part of systems. We call structure the
whole set of constituents. Interactions, phenomenon and organizations define
the dynamics. By doing so, we focus on the dynamics rather than on the
statics. We organise the dynamics instead of structuring the system state,
assuming that the method is less reductionist and more suited to the study
of complex systems. Furthermore, multi-interaction systems are connected by
structural coupling [3] (Figure 4). This differs from the usual component based
approach which uses input/output connections between components. Here,
systems perceive one another through perturbations on their own structure. The
autonomous nature of systems is thus consolidated.
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Figure 4: Classical input/output interface between two systems (left) and structural coupling
between two systems (right)

2.2 Platform

REISCOP software implements the meta model and can build and simulate
models (Figure 5) described with XML files and C# delegate functions. Cur-
rently, simulation engine work properly (Figure 6). We use it to simulate
bacterium colonies development in the context food security project however
it is not an “in virtuo” experimentation. Indeed, Models have to be built by
writing XML description file. Model editor is missing from 3D REISCOP
simulator. RE1ISCOP 1.0 had two distinct interfaces: a 3D simulator and a 2D
editor. The solution will be to include model building on simulator. For this,
we need to study graphical user interface of actual multi-agent platforms.

3 Agent-based simulation platform

We have reviewed actual multi-agent simulation platforms to study their graph-
ical user interfaces for models construction. We have reviewed this platforms
because their models paradigms (multi-agent system) are close to REISCOP
meta-model paradigm (multi-interaction system). We focus on three factors:
Simplicity: How easy is it to build model? Can a biologist build model alone?
Expressiveness: Is it possible to build complex model?

Interactivity: Do model and simulation are easy to manipulate?

This review shows us different examples of agent-based simulation building.
We have examined three platforms that are frequently used for simulation mod-
elling with multi-agent systems: Repast, NetLogo and GAMA; and finally,
two platforms that use graphical elements to construct model for simulation:
AgentSheet, SeSam.

Repast: Repast is a Java framework for agent-based simulation[5]. It allows
the creation of an agent-base simulation using the Java and it includes a library
of object to create, run, display and collect data from agent-based simulation.
Repast models may only be build with Java programming language. This is
an obstacle for those who want to build their models alone but who are unable
to program (as is the case for many biologists). Although Repast framework
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Figure 5: This figure shows a Ré1SCOP model containing 3 sub-systems : (red) a Listeria
that is coupled with (green) a part of discretized chemical substrate and (bleu) a mechanical
organization handling the possible interactions between the different cell shapes. For example,
Listeria Org 1 is an organization that is responsible for the cell is coupled with correct
constituent Glu and cell position correspond with its shape location. If it is necessary, Collision
phenomenon instantiate collision interactions between shapes. Glu constituent is a real number
that represents glucose concentration in a mesh of discretized substrate. Every simulation step,
growthl interaction decreases ATP value and increases shape size.

allow to write varied and complex model with the help of Java programming
language and framework tools.

Netlogo: NetLogo is a multi-agent programming language and modelling
environment [6]. This platform is designed for research and education for a
large range of disciplines. The NetLogo language is a logo language variation.
With this language, turtles represent agents during the simulation. They are
located agents that move on spacial agents: patches. It hopes teach multi-
agent simulation programming. Build a model on NetLogo is more simple
than on Repast but models are more limited. The platform uses a programming
language that may be a problem to model building for non-programmer. The
platform offers parametric simulation interface to edit simulation parameters.

GAMA: GAMA is a modelling and simulation environment for building spa-
tially agent-based simulation [7]. It is originally used for simulate geographic
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Figure 6: Réiscop simulation interface. We see two bacteria colonies: green bacteria in
foreground are listeria and red bacteria in background are carnobacterium. Bacterial colonies
live on an agar-based growth medium on Petri dish.)

information system but must be extend to other domains. GAMA makes
available an agent-oriented language GAML (GAma modelling Language).
It is more simple to build a model with this language than Java because it is
structured with multi-agent system elements like agents, agent actions, agent
reflex, etc. GAMA supplies a graphical editor to simply build simulation
with minimum code writing. But this interface is only used during first part
of a project to structure simulation elements (agents, theirs actions, theirs
reflexes) after this, it must be exported to GAML and user writes agent actions
code. GAMA is easier to use than Repast because it has its own, specifically
developed, simulation language. But platform has important coding part just
as Repast and NetLogo.

AgentSheets: AgentSheets is a platform that provides graphical tools to con-
struct simulation model [8]. Non-programmer can simply use AgentSheets to
build model. AgentSheets consists of two main interfaces, a interface to build
models and an other to launch simulations. In modelling interface, user can add
new agents and specify their behaviours. Behaviours are formed by condition-
action statements (Figure 7a). In simulation interface, user can instantiate
agent in environment called agentsheets (Figure 7b). An AgentSheets function
allows user to select an agent in simulation interface and see verified conditions
and realised actions in modelling interface. This functionality can help user to
understand relationship between an agent in modelling interface and agents
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. . . [w]E [
(a) Modelisation interface, user creates
agents and specifies theirs behaviors with (b) Simulation interface, agents can be
condition/action components. add in environment.

Figure 7: AgentSheets interfaces

with the same behaviour in simulation interface. This platform is limited
for complex system building. Simulations look like cellular automaton. This
simulation platform can not be used in biologic simulation because of limited
possibilities.

SeSam: SeSam is a platform for modelling and experiment with agent-based
simulation [9]. SeSam allows to build agent behaviour with UML-like activity
diagrams. Next, user can use a menu to select actions that will be realised
during states and conditions between states. User have functions list that can
be used for an action. He can specify function parameters with other functions
and so on. Edition menus are not user friendly and it is difficult with first look
to understand action building. An other difficulty is to edit existing models.

On one hand, there are three first platforms frequently use to build multi-
agent simulations that are expressive enough to be used for biological simula-
tion. But building models with this platforms is not easy for non-programmers.
On the other hand, two other platforms allow user to construct model with
graphical tools. First, SeSAm simplifies organization agent behaviours but
edit menu makes action specifications harder. Next, AgentSheets makes suc-
cessfully easier model building with graphical elements. Any platform has a
clear and interactive model representation and allows to create complex model
(Figure 8).
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Repast | NetLogo | GAMA | AgentSheets | SeSam
Simplicity --- -- - T+ -
Expressiveness ++ + ++ - +
Interactivity - - - - + +

Figure 8: Summary of platforms studied factors.

4 Graphical user interface to design dynamical system

We have not found an existing method to manipulate complex meta-model
with graphical interface. There is only AgentSheets that includes a helpful but
limited graphical user interface to build model. At present, usage of REISCOP
meta-model graphical representation is only theoretical. We already use it to
describe model with XML files, but we would like to employ it through in
virtuo experiments. REISCOP meta model implements concepts like object and
class although a biologist does not know oriented object concepts. We would
like to clarify concept of instantiation for non-programmer. For example, a
phenomenon can apply a physical collision with instantiation of interaction
between two constituents. Currently, static model handle dynamic system
design. We want to give the possibility to construct model dynamically. We
would like to provide non-programmers with Unity3d modelling interface that
will be included in REISCOP simulation platform.

5 Conclusion

Our objective is to include a graphical interface for model building in REISCOP
simulator. User must easily interact with it. Concepts of abstraction need to be
clearly understood by model builder. Reviewed platforms do not give us tools
to manipulate models dynamically. That’s why we want add to REISCOP an
interactive models building interface. We need to create interaction metaphors
to build models. This metaphors could be clear for non-programmers. But we
have to keep a balance between simplicity to build models and complexity of
made models. Model and simulation representations are not in same graphical
and concept spaces. The main challenge will be that simulations and construc-
tions spaces work together. In order to do this, a method will be to display
graphical connections between elements on simulation interface and items on
modelling interface.

In the in virtuo experiment context, we plan to interface REISCOP platform
with virtual reality equipment to increase user immersion. It might help to
design models.
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Abstract

Synthetic biology is a way to create new biological functions that do not exist
in nature to meet specific needs (e.g. targeted drugs, diagnostic microsys-
tems for healthcare applications, bio-fuels in the field of the environment ...).
Nowadays, artificial bio-functions become more and more complex. They
use different biochemical mechanisms to achieve the targeted function. One
of the most common consists in designing new gene regulatory networks.
Nevertheless, one of the main bottlenecks is the integration of a large number
of artificial genes in the host cell. A promising way to get around consists in
dispatching the function in multiple host cells and makes them work together in
a kind of micro-ecosystem. In silico design of such systems requires predictive
models of intercellular transport of molecules. This issue has been tackled
through two projects carried out by master students from different background
(biotechnologies for some of them, microelectronics and computer science for
the others). An overview of intercellular transport modeling is given in the
first part of this paper. Then, models are illustrated in two examples developed
during student projects.

1 Emergence of multi-cellular systems in synthetic biology

Synthetic biology can be defined as the application of engineering principles to
the fundamental components of biology. In particular, the design of artificial
gene regulatory networks is one of the most investigated way to design new
biological functions. Although very promising, this technology suffers from
two main drawbacks that may limit the complexity of the artificial function.
First, the number of artificial genes that can be added to given microorganism
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is generally quite small (some units). Second, artificial genes designed for the
application should be independent with each other and with the genome of the
host cell, i.e. any potential interaction (cross regulation) between the artificial
and the rest of the genome should be avoided. A way to overcome these
drawbacks is to split the main function and to implement each sub-function
into different host cells [1]. This way, some components (regulating proteins,
promoters ...) may be used several times inside different host cells. However,
sub-functions are not completely independent; the signal transfer mechanisms
between cells must also be designed [2].

Examples of systems made with several reprogrammed bacteria achiev-
ing a complex function have already been developed (digital gates [3], prey-
predators ecosystems [4] and programmable pattern generator [5]). For such
systems, the proof of concept is carried out through in silico simulations but
most of the time, models are simplified and the intercellular transport of molec-
ular species is roughly described. Assumptions used are valid for small sys-
tems but may lead to inaccuracy for complex ones. This paper deals with the
design-oriented modeling of such mechanisms. The first section is an overview
of the intercellular transport mechanisms and the associated models. Then, two
examples are given.

2 State-of-the-art in intercellular transport modeling

Exchange of chemical species between cells involves many steps and these
steps are localized in space: the molecule have to move inside the sender or-
ganism to the plasma membrane, cross this membrane, diffuse through the in-
tercellular medium, cross again the plasma membrane of the receptor and move
inside the receptor cell to the place where it may have an activity. All these
movements could be modeled thanks to four different mechanisms: a simple
random diffusion, a passive transport, an active transport and exo/endocytosis.
Let us first have an overview of these mechanisms and the associated models.

The random diffusion corresponds to the motion of chemical species
inside cells or through the extracellular medium. Except for very specific
application, the intracellular motion is ignored (the concentration of the species
near the membrane is equal to the mean concentration inside the cell). Con-
versely, extracellular motion needs to be taken into account. There are several
ways to model 2-D or 3-D particle motion [6]. To save simulation time, a
compartmental model is often implemented, at least during the early stages of
the design process. The equation which describes the diffusion of molecules
from a point A to a point B in an unbounded plane is:

d[X 5]
i = d (Xe] = [Xa]) = D [Xy]
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where [X 4] and [X p] are the concentration of X respectively at the point A
and B, dap is the distance between A and B, -y is the diffusion constant (in
uM -s~1Y and D is a decay constant modeling the probability that the species
is degraded before reaching B.

The passive transport could be compared to simple diffusion through the
plasma membrane. As for other diffusion problems in physics, the transport
rate is directly proportional to the gradient of the concentration between both
sides of the membrane. It does not consume energy. The differential equation
that governs this passive transport is:

d| X d| X;
[d:ut] _ [dtl ] —a-S- ([Xout] _ [Xz ])
where [X,,¢] and [X;,] are the concentration inside and outside the cell, « is
the surface permeability coefficient (in s~!- um~2) which depends on physic-
chemical parameters of the membrane and S is the membrane surface.

The active transport of molecules through the membrane requires two el-
ements: energy (ATP in biology) and a specific transporter integrated in the
plasma membrane. This transporter binds ATP, which creates a species flow
that occurs in the direction forward or inverse their concentration gradient.
Every time an ATP binds a transporter, it is hydrolyzed and the transporter
is recycled. Thus, to simplify the model, the transporter is never consumed
by the transport mechanism. Sometimes, the transport occurs only when the
concentration of the species to transport is above a given threshold Xth. The
model is the following (ATP is in excess so its concentration is not involved in
the equations of the model):

dt dt

d[Xout] o _d[X’L ] 07 Zf[in] < Xth
|7 [(Xin] Xth

ar o]k~ Xihthp otherwise.

where V4. is the maximum transport rate (in s—1), [Y] is the concentration
of the transporter and kp is a dissociation constant. In order to avoid discon-
tinuities, this equation may be replaced by a standard smoothing function as
following:

d[Xout] _ 1

Yol _ L (411X + v+ POIVERGD)

with
(Xin] Xth

[Xin] +kp  Xth+kp

and e corresponds to the transport rate for X = Xth. It should be noticed that
active transport may occur in both direction (toward or from the cell) but each

f([Y]v [Xi ]) = Vinaz - [Y] ’
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direction requires a specific transporter. The model is the same and the sign of
the constant V4, corresponds to the transport direction.

The exocytosis is the third kind of molecules transport. This way of motion
requires energy and the formation of vesicle that will fuse to the membrane.
Exocytosis is very important in the brain for the motion of the neurotransmitter
through the synapse. The modeling of the exocytosis is very tricky because of
the large number of factors involved [7] and will not be discussed in this paper.

AHL producing . PM1, Extra—cellular space ' PM2, Target bacterium
1 1

bacterium

dl
O— . =N .
rl AHL1 * f1 AHL?2

Figure 1: The Virtual Cell cartoon which corresponds to the Example #1. AHLs
are produced inside the first bacteria and freely diffuse through its membrane and the
extracellular medium to the second bacteria. Two transports are in competition at this
point: a passive transport through which AHLs may go inside the receiver and an
active transport (efflux pump) that send back AHLs in the extracellular medium. The
active transport is controlled by the concentration of pump which is itself synthesized
by a gene activated by the AHL. AHL1, AHL2, AHL22 and AHL3 are respectively
the concentration of AHLs inside the sender, in the extracellular medium near to the
sender, in the extracellular medium near to the receiver and inside the receiver. rl,
r2 and r3 are three reaction rates which correspond respectively to the synthesis of
AHL in the sender, a model of the diffusion of AHL in the inter-cellular area and
the synthesis of the pump controlled by AHL rate. f1, f2 and f3 are respectively the
flux of AHL through the membrane of the sender and through the membrane of the
receiver (one flux corresponding to the passive transport and one to the reverse active
transport). Finally d1, d2 and d3 models the decay of AHL in the three compartments.
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3 Example #1: Modeling of a transport mechanism with a
competition between passive and active transport

In order to illustrate our purpose, we model a simple system which consists
in a source of N-Acyl Homoserine Lactone (AHL), a hormone widely used in
synthetic biology because of its natural quorum sensing and communication
roles in bacteria [8], and a receiver cell. The system is designed to be imple-
mented in E. coli bacteria. It has been first described and simulated with The
Virtual Cell (Fig. 1).

In more details, the model consists in 7 equations rate: (i) the constitutive
synthesis of AHL in the production bacteria, (ii) the passive transport through
the membrane of the production bacteria, (iii) the random diffusion of AHL
between the two bacteria (including decays), (iv) the passive diffusion through
the sender membrane, (v) the decay of AHL inside the sender, (vi) the synthesis
of the pump which is activated by AHL and (vii) the active transport through
the sender membrane which is controlled by the concentration of pumps. The
equations used correspond to the ones described in previous section.

The simulation parameters are the following: AHL production rate is set
to 0.05 nM -min~! and its decay rate to 1.8 - 10~3min~!. The surface
permeability coefficient of the sender membrane is 0.5 min~' - um=2 and
the surface of the E.coli is estimated to about 4.83 ym?2. The diffusion in
the extracellular medium is set to 5 um - min~' and the distance between
the sender and the receiver to 10 mm. For the active transport, the maximal
transport rate is 4000n.M -min~! and the dissociation constant is 0.25min .
The complete Virtual Cell model can be found in the public BioModels library

(talide: assb_blanck_talide).

Simulation results are given in Fig. 2. The concentration of AHL in the
sender, the receiver and the intercellular medium is monitored. As expected,
a small decay is observed between AHL1 and AHL2 due to the degradation
and the dilution that occurs in both intra and extra-cellular compartment. The
shape of the AHL22 concentration curve suggests a delay between the time
when AHLs exit the cell and the time they are near the target bacteria. The dif-
ference of steady state between AHL2 and AHL22 corresponds to the random
diffusion in extracellular medium. Finally, the level of AHL3 in the target cell
depends on the efficiency of the efflux pump (V,,4,) as well as the threshold
concentration (X, ) beyond which the pump is not active.
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Figure 2: Simulation results: (a) transient evolution of AHL concentration as a
function of the position (circles, triangles and squares corresponds respectively to the
concentration of AHL in the sender, in the inter-cellular area but close to the sender
and in the inter-cellular area close to the receiver) and concentration of AHL at the
steady state in the receiver as a function of the maximum efflux pump rate and the
threshold value.

4 Example #2: Improvement of the model of a prey-predator
ecosystem with intercellular transport considerations

The second example concerns the prey-predator ecosystem described in [4]. It
is composed of two reprogrammed E.coli strains. The prey system consists in
constitutive expression of a suicide gene which can be repressed by an antidote
activated by the AHL (306HSL) synthesized by the predator. The predator
has a non-constitutive suicide gene that requires another AHL (30C12HSL),
synthesized by the prey, to be expressed. This double feedback loop leads to
equilibrium between the number of predators and preys that strongly depends
on the death and grow rate of both bacteria. Three states may be reached:
domination of prey, domination of predators or oscillation. In [4], a rough
model of the system is established in order to predict these states through
static and transient simulations. The aim of this work is to improve this model
in order to take into consideration a passive transport of AHL between both
cells. The complete mode which consists in 21 differential equations and 58
parameters is implemented in VHDL-AMS, a hardware description language
mostly used in microelectronics domain for the description and the simulation
of complex heterogeneous systems. The possibility to efficiently describe
biological systems through this language has recently been demonstrated [9].
Simulation results, given in Fig. 3, show that the behavior of the system is in
accordance with experimental results and simulations obtained with the rough
model and described in [4]. Nevertheless, quantitative results are not exactly
the same.
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Figure 3: Simulation results: on the left, transient evolution of the number of prey
(red dots) and predators (blue squares) as a function of the growth rate ratio vs death
rate of predators. The ratio is equal to 0.7 for the top curve, 4 for the second and 7
for the third. On the right, representation of the border between the three states as a
function of the couple (growth rate of predators, death rate of predators).

5 Conclusions and perspectives

This works presented in this paper give an overview of the way intercellular
transport of chemical species can be modeled. Although the discussed models
are very basic, they are sufficient to take into account the main effect that may
occur. The main difficulty encountered in model development is the choice
of consistent values for the parameters involved in the transport equations.
Indeed, most of them are empirical and do not necessarily correspond to mea-
surable biological signals. They were therefore estimated from values from
the literature and / or extracted from experimental results and / or set to an
arbitrary value.

The VHDL-AMS implementation performed on the second model is very
interesting. Up to now, we demonstrated that the gene regulatory network
inside a cell can be modeled by equivalent electronics circuits and, as a con-
sequence, widely analyzed with electronics simulators [9]. According to the
equations, transport mechanisms between cells might also been represented by
electronic equivalents circuits. As a consequence, this work paves the way to
the extension of our modeling formalism to multi-cellular systems.
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Abstract

Evolutionally conserved pathways regulate several essential biological pro-
cesses, such as the cell cycle, DNA replication and protein synthesis. We
hypothesize that there exists a conserved regulatory mechanism that controls
cell size as well. To test this proposition we developed a bioinformatics tool
that collects evolutionarily conserved proteins, which have been described as
cell size regulators in genome-wide studies previously. Hence we collected
existing large-scale data from five evolutionally distant organisms (S. cere-
visiae, S. pombe, H. sapiens, A. thaliana and D. melanogaster) and looked for
conserved orthologous proteins with conserved cell size regulatory functions.
This allowed us to identify a core conserved cell size regulatory network and
create a list of predicted novel cell size regulators in two of these organisms.
Initial analysis found that the key regulator of cell size is the Ribosome Biogen-
esis pathway, while orthologous proteins of TOR pathway kinases and protein
kinase C have affect to the cell size in all five investigated organisms.

1 Introduction

Going through the phylogenetic tree we are experiencing that each organism
has its own specific set of genes that lead to specific phenotypes. One can see
that a particular gene deletion or duplication among organisms did not fix in the
population by accident, rather this has specific evolutional reason [1, 2]. While
some of the genes could be highly conserved throughout the phylogenetic tree,
others are highly transient or specific to particular species [1]. One of the
pressures to select and maintain a particular gene in an organism arises because
the gene fulfils a specific function that could be under selection.
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These high similarity functional proteins can be divided into two types. Or-
thologs are genes in different species that evolved from a common ancestral
gene by speciation; orthologs retain the same function in the course of evolu-
tion [1]. Paralogs are genes related by duplication within a genome and usually
evolve new functions [3].

Several published orthological databases exist, which are specialized into
two different aspects: the first type clusters pairs of genes with the same
biological functions [4, 5, 6], while a second type uses phylogenetic trees to
identify functional divergence events [7, 8]. In our research we used databases
from the first category.

1.1 Cell size regulation

The size of organisms on this planet is highly variable, as well as the dimen-
sions of cells within an organism. Still, specific cell types maintain their size
in a relatively constrained regime. There appear to be genuine size controls
such as complex coordination of cell cycle, cellular growth and proliferation
in all eukaryotic organisms [9]. These mechanisms, which control cell size
and maintain cell size in a particular range have been investigated for several
decades [10, 11].

In unicellular organisms the cell size equals the size of the organism; while
in multicellular species the combination of the number and the size of its
cells determines the size of the organism. Although in advanced multicellular
organisms cells form organs and the number of cells first determines the size
of the organs, the size of the cells has direct control also on size of organs and
tissues [12]. Master hormonal regulators affects general control of tissue and
organ sizes, but also affect individual cell sizes [12]. Perturbations of cell size
can alter organ size suggesting a relationship between the various level size
controls [13, 14].

Maintaining a particular cell size in actively dividing cells needs gen-
uine regulation. The size of organisms generally reflects the balance between
growth (blastogenesis) and division [13, 14, 15], while cell division and cell
growth maintain the size of individual cells in a particular range [13, 16, 17].

There is a large body of literature focusing on individual cell size regula-
tory proteins. Quite a few studies dealt with system wide screens on cell size
in the most studied organisms [18-24]. These studies used mainly system-wide
gene deletion or gene silencing analysis to reveal which genes are important
to maintain normal cell size. We use these studies to reach a systems level
understanding of the core conserved regulatory network of cell size regulation
after investigating the conserved function of orthologous cell size regulator
proteins.
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Our aim is to determine appropriate functional orthologs of a given protein
of a specific function in all five organisms (A. thaliana, D. melanogaster; S.
pombe, S. cerevisiae and H. sapiens). Although currently we are focusing on
cell size regulation as a specific function the method can be extended to any
other biological function, where genome-wide data is available.

2 Methods and Materials

First we collected the gene deletant or silenced mutants that have cell size re-
lated phenotypes (e.g.: smaller, larger) in five species [18-24]. We focused on
organisms, which were investigated mainly through system-wide gene knock-
out or knock-down studies. We collated the data on genes which if perturbed
cause a cell size defect in these organisms and built an easily usable and
searchable database containing these results.

All gene names were mapped from different organisms specific identifiers
to SwissProt UniProt IDs [25]. We used the UniProt.org Mapper tool (http:
//www.uniprot.org/uploadlists [25] May, 2014 version), along with
Ensembl Gene database, [26] and BioMart tool (http://www.ensembl.
org/biomart/martview), hence each of the final entries had only one unique
UniProt identifier. Next we created the protein-protein interaction (PPI) net-
work of these cell size regulators and their first neighbours by retrieving the
latest version PPIs from the BioGRID database [27] (version 3.2.115) and
the IntAct database [28] (version 4.1.4). We added the first neighbours of
cell size regulator proteins using Cytoscape network analyser program [29] to
extend our analysis to proteins that might not be directly involved in cell size
regulation, but closely associated with it.

In the next step we paired each of the proteins along with their selected
first neighbours via their UniProt protein identifiers to their orthologs in the
other four species by using six orthology databases. These databases were
HomoloGene [30], orthoMCL [6], inParanoid [4], eggNOG [5], COG [31] and
a manually curated ortholog list by the PomBase curators [32]. Later biological
pathway information was added to the protein tables using the KEGG database
[33]. For the whole structure of the tool see figure 1.

Finally we combined the databases of the five organisms into an inte-
grated front-end website tool (http://www.orthologfindertool.com).
You can see on figure 2 and figure 3 in Results Section.

3 Results

We made a bioinformatics tool, focusing on a specific biological process.
The tool can be used to query for orthologous proteins involved in cell size
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Figure 1: Structure of the presented bioinformatics tool. First the database
selects the organism file with information on the regular name, UniProt ID, and
network measuring values. Second the database matches the relevant orthologous
proteins from 6 different sources via UniProt IDs. In addition each protein has
biological pathway information. Subsequently a JSON file of the current query is
created by the PHP engine. Finally the database front-end can be seen on the website
in a single table format using jQuery plugins.

regulation. This tool handles functional proteins along with their PPI net-
work’s first neighbours. We integrated in this tool five annotated and fully
sequenced organisms with extensive data on cell size regulation (S. cerevisiae,
S. pombe, H. sapiens, A. thaliana and D. melanogaster) (see figure 3 for our
tool structure).
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The tool is able to display all orthologs of a given source gene from a given
organism. One can also visualize whether this gene is a part of the specific cell
size functional list in any of the other investigated organisms. Such a query
can identify the proteins, which are appearing in all organisms as cell size
regulators; therefore we can find the most conserved protein groups from these
evolutionary distant organisms.

Currently there are 479 documented cell size regulator genes in budding
yeast, 294 in fission yeast, 76 in human, 328 in Drosophila and 5 in Arabidop-
sis with an ortholog in all the other four species from which at least one is
also a cell size control protein or first neighbour of such a protein in the PPI
network.

Figure 2: Interface of the database’s Query page. Users can select the query type
and the organism which is used as a starting point in this page.

One can query for conserved group of proteins to identify the overlapping pro-
teins among these 5 species. We found that there are 7 proteins that have a cell
size regulator ortholog in all investigated organisms (see figure 4). These are
Arabidopsis: HSL1, BAM2, T5P19_20; Drosophila: Aktl, Pkc53E; Budding
yeast: SCH9, PKC1 (Human orthologs of LRRTM2 and PRKCB). These 7
proteins were found from 3 different starting points as there is no one-to-one
orthology match between two organisms, rather the result depends on which
gene in which specific organism was the starting point of our query. These
proteins are sharing the common function of regulating morphogenesis and
triggering cellular growth and remodelling pathways.

These seven genes from six orthologous sources identify the most con-
served core genes in the regulation of cell size. However after careful observa-
tion one can see that starting from seven different proteins we always end up
with the two common core genes. These are related to Protein Kinase C and the
TOR pathway AGC family kinase, highlighting the existence of a conserved
core of cell size regulation related to ribosome biogenesis through the TOR
pathway [34, 35]. Target of Rapamycin (TOR) proteins are serine/threonine
kinases that are controlled by environmental conditions and phosphorylate
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Figure 3: Interface of the database’s Query Results page. This is an exam-
ple query for S. cerevisiae orthologs in other four organisms (A. thaliana, D.
melanogaster, S. pombe and H. sapiens). There is a UniProt identifier next to each
protein name if available. There are separate columns for biological pathway anno-
tations from KEGG. Yellow textboxes indicate the orthologous protein appearance in
other size control lists. UniProt IDs are linked to the UniProt database to find details
on each gene.

several proteins. Studies in yeasts have identified that these proteins form com-
plexes (TORC) and fill crucial position in the connection between metabolism
and cell size regulation [36, 37].

Mammalian target of rapamycin complex 1 (mTORC1) affect the rate of
transcription and ribosome biogenesis, through the regulation of RNA poly-
merases [38, 39, 40]. Ribosome biogenesis pathway is crucial in the mainte-
nance of the rate of ribosome production and in general to control cell growth
[40]. The ribosome content of a cell is important to a cell and has affect to the
upper limit on the rate of protein synthesis. The mMTORCI1 complex of protein
kinases is regulated by nutrients, anabolic hormones and oncogenic signalling
pathways [39].

With our method we can point out evolutionally conserved pathways, which
are crucial in cell size regulation. Furthermore we can determine some ‘empty
holes’ where the cell size regulation function is conserved among 3 or 4 species
but it has not been yet identified in the other 1 or 2 species. These holes could
be investigated and the existing orthologs experimentally tested for their role
in cell size regulation.
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D. melanogasie
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Figure 4: Overlap in the cell size associated orthologs of five organisms. The
Venn-diagram illustrates the overlapping orthologs of conserved size-control proteins.
The indicated numbers show how many orthologs of a specific gene from an intitial
organism has been found in other cell size databases. The 7 proteins in the centre
depict 2 proteins initially found from budding yeast, 2 proteins from fission yeast and
3 proteins from Arabidopsis

4 Discussion

In our integral approach we used 6 different orthological sources to find the
conserved functional orthologous proteins of a given cell size regulator protein.
These sources are differently collected functional orthological databases [1],
nevertheless all of them aims the same goal to determine the closest functional
orthologs of proteins. Users can find through a query all orthologs of an
investigated protein together with the possible involvement of the orthologs
in cell size regulation (see figure 2, yellow text boxes).

Our initial analysis found that the major key regulator pathway of cell size
is the Ribosome Biogenesis pathway, which finding is in line with the current
literature [13]. Moreover our analysis showed that there is a TOR pathway
kinase, protein kinase C and their orthologs are cell size regulators in all five
investigated organisms (including human).

We assume that with our comprehensive bioinformatics tool one can query
appropriate functional orthologs among these organisms. Moreover users can
display the biological functions investigated genes are associated with and
visualize whick biological pathways (from KEGG) are associated with these
genes. These allow users to identify key pathways and biological functions
that might play crucial and conserved role in cell size regulation.
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Our future plan is to add other biological functions and expand the number
of organisms in our database. Our overarching aim is to create a unique
tool to query functional conservancy across the phylogenetic tree in numerous
biological functions. Current plan is to integrate some of the key Gene Ontol-
ogy terms as a new function and check, which are the functionally conserved
proteins that overlap among the investigated organisms.
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Abstract

In synthetic biology, automated synthesis of artificial gene regulatory networks
achieving a biological fonction defined a priori is a hot research topic. Several
approaches have already been demonstrated, mainly based on Boolean proper-
ties of such systems. However, Boolean descriptions are sometimes too rough
and it becomes necessary to compile further information about the biological
material involved in the construction (“strength” of the promoters, threshold
of regulating proteins ...). In this case, the designer faces a trickier problem
that has not (or only partially) been solved in engineering sciences, namely the
adjustment of a large set of parameters in a predictive model with non-digital
behavior with respect to a specified system’s response. In this context, fuzzy
logic is an intermediate level of description that tackles this design issue with
a very interesting tradeoff between computation time and accuracy.

1 Gene regulatory network design automation

Synthetic biology, which aims at creating new biological functions by assem-
bling artificial or natural biological parts, has been fast-growing over the past
fifteen years [1]. This emerging science consists in several branches. In
this tutorial, focus is put on the design of new artificial genetic regulatory
networks. As it has been the case for microelectronics, the development of
new technologies must be accompanied by the development of computer-aided
design (CAD) tools that help the engineer during the whole design process.
Since the beginning of the 2000s, several CAD tools for synthetic biology
have been demonstrated. Most of them result from collaborative works be-
tween computer scientists and biologists [2-5]. One way to develop such
tools consists in adapting existing tools, which have proven themselves their

*corresponding author: morgan.madecQunistra. fr
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efficiency in microelectronics domain, for the biological context [5]. In digital
microelectronics, several tool suites cover the whole design process, starting
from the high-level specification and leading to the transistor-level schematic

[6].

Unfortunately, in biology, the link between the abstracted Boolean descrip-
tion and the actual behavior of a gene regulatory network is not straightfor-
ward. Multi-valued logic approaches have already been investigated to bridge
this gap [7-9]. In this tutorial, focus is put on an approach based on fuzzy logic
[10]. The interest of this approach for the modeling of biological mechanisms
as well as for system design automation has recently been demonstrated [11].

The purpose of this tutorial is to familiarize with this approach on several
exercises. After a short introduction on the main concepts of fuzzy logic, the
first exercise is a simple hand calculation that aims at understanding the way a
fuzzy model is described and computed. Then, ad hoc Python scripts are used
to perform more complex computations and to demonstrate that it is possible
to describe a biological gate (AND gate described by Anderson et al. [12])
quite effectively with this approach. Finally, fuzzy logic is used for a gene
regulatory network design purpose. The example used for this part is a band
detector developed by Basu et al. [13].

2 Overview of fuzzy logic

Boolean logic consists in describing a system with only two possible states:
TRUE or FLASE. Fuzzy logic, introduced by Zadeh in 1965 [10], is an exam-
ple of multi-valued logic (system can be described by more than two states)
for which the continuous space is divided into intervals. By opposition to
standard multi-valued logic methods, in fuzzy logic, a given input value does
not correspond to a given interval but has a given degree of belonging (DoB)
to all the intervals. In the following, those intervals are called membership
functions (MFs). Most of the time, a linguistic variable is given to each MF
(e.g. very low, medium, high, very high). Basically, the algorithm that com-
putes fuzzy models can be divided into three main stages called fuzzyfication,
rules evaluation and defuzzification. Fuzzification is a continuous-to-discrete
domain conversion. The input data is converted into a vector which elements
are the DoB of this data to all the MFs. Rules evaluation occurs in the discrete
domain. It consists in computing the DoB of the output to each MFs as the
function of input vectors according to logical rules (e.g. if A is medium and
B is very-low then the output is very high). Finally, the defuzzification (or
discrete-to-continuous domain conversion) consists in computing a continuous
domain value from an output function obtained itself from the shape of output
MFs and DoB of the output to these MFs. Details on these stages are illustrated
on an example in the next part.
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3 A simple hand calculation

Exercise: Let us consider a system with two inputs (x and y) and one output
(z). Each of them are normalized between 0 and 1 and the [0 ; 1] interval is
divided in three regular triangle MFs (Fig. 1), namely low, medium and high.
The rules of this system are also given as array in Fig. 1. Calculate the value
of zwhenx =0.8andy = 0.1.

Fuzzification— The continuous domain inputs are discretized and converted
into vectors containing the DoB to each MF. To simplify computations, inputs
and outputs of the system are always normalized between 0 and 1. MFs
are usually implemented as triangle function but other alternatives exist [10].
In our case, as the concentration of chemical species may vary over several
decades, a logarithmic normalization is used [11]. Fuzzyfication consists in
computing the DoB of each input to each MF. These values are recorded in
an input vector. For example, if the normalized input is x = 0.8, according to
Fig. 1, x belongs at 40% to MF “medium” and at 60% to MF “high”. Thus, the
input vector X = (0 ; 0.4 ; 0.6). By the same way, if y = 0.1, y belongs at 80%
to the MF “low” and at 20% to the MF “medium”. As a consequence,

Y =(0.8;0.2;0).

60%

40%
20%

0 01 0.5 08 1

Figure 1: (A) Matrix of rules for the example described in section 3 (operon with
one activator x and one repressor y). (B) Representation of the three membership
functions.

Rules evaluation— Rules evaluation consists in evaluating the output vector as
a function of the input vector according to logical properties or rules. They
can be expressed either as a set of literal proposal or as a table called matrix
of rules. In this case, each element of the matrix indicates the state of the
output as a function of the state of the inputs (e.g. for the matrix given in
Fig. 1, the highlighted element states that if x is medium and y is low, the
output will be low). The representation of the rules in a matrix is an exhaustive
description giving the output for every combination of inputs. It is a kind of
truth table or a Karnaugh map used for Boolean algebra. In this case, a rule
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is a set of statements linked with the “and” word. Rules evaluation can be
divided into two steps. First, the degree of realization (DoR) of each rule is
computed according to the input vector. Most of the time, the DoR for each
rule is defined as the minimum DoB of each statements of the rule. Let us
consider the highlighted element in the matrix of rules (Fig. 1). The DoB of
z to “medium” is 40 % and the DoB of y to “low” is 80 %. Thus, the DoR
of this rules is 40 %. The results on every rules of the example are given on
the Fig. 2. Now, the second step consists in computing the output vector (DoB
of the output to each output’s MF). In the matrix of rules, several rules may
lead to the same output state. For a given output state, the DoB corresponds
to the maximum of the DoR over all the rules that lead to the given MF. In
our example, a “medium” output can be obtained both with a “medium” x and
a “low” y or with a “high” x and a “medium” y. The DoRs of this rules are
respectively 40 % and 20 %. The DoB of the output to “medium” is thus 40
%. By this way, the output vector can be computed: Z = (0.2 ; 0.4 ; 0.6). It
should be noticed that for this two steps, the min/max may be replaced by more
sophisticated function [10].

B
(A) p— (B)
T L 100%|. ,,
B 0.0 0.6 N ;

60%

\\/// \\\
Yl oo o2 wosi b €25 o A
oA
20 - 5 -
00 00 00 ‘%

0 0.5 1

Figure 2: (A) Degree of realization of each rule of the example. (B) Output function
of the modeled system.

Defuzzification— Deffuzification consists in converting the output vector Z
into a value z which corresponds to the centroid of the output function f(a).
The output function is defined as following:

f(a) = max[min(M Fy(a), Z(k))]

where M Fj,(a)is the k-th output MF and Z(k) is the k-th element of the output
vector. The centroid is computed as following:

L fola-f(a)'da
Jo f(a)-da

The bisector method is an approximation of the centroid method [10]. Bisector
consists in computing to the z value which separates the area below the output
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function into two equal parts. Its main asset over centroid method is that it
can be computed with geometrical considerations and avoid numerical inte-
grations. In our example, the output function is given in Fig. 2. Coordinates of
the points A to F are respectively (0 ; 0.2), (0.1 ; 0.2), (0.2 ; 0.4), (0.7 ; 0.4),
(0.8 ; 0.6) and (1 ; 0.6). Thus, the area under the AB, BC, CD, DE and EF
segments are respectively 0.02, 0.03, 0.20, 0.05 and 0.12. The total area being
0.42, the bisector is on the CD segment and the area below the CD segment
and on the left of the bisector must be 0.16. As a consequence, one can point
out that z = 0.6.

Under the condition and with the methods exposed in this part (fixed trian-
gle MFs, min/max rule evaluation, bisector defuzzification), the computation
of a fuzzy model can be integrally performed with simple geometrical con-
sideration and its implementation on a computer becomes faster. We recently
demonstrated a C-implementation of the fuzzy algorithm for which computa-
tion time is about 500 ns per point for 5 MFs and has a linear increase with the
number of MFs [11].

4 Fuzzy logic for gene regulatory network modeling

Fuzzy logic can be used for modeling purpose. In this case, inputs sweep the
[0 ; 1] interval and the output is computed for each input combination. The
Python script Anderson.py computes the response of any fuzzy model of a 2-
input 1-output gene regulatory network modeled by a 5x5 matrix of rules (5
MF per input/output) and compares the simulation result to actual data (in this
case, the response of a biological AND gate designed by Anderson ef al. [12]).
The likelihood criterion is the mean square error.

Exercise: Let us consider the biological AND gate designed by Anderson et
al. (Fig. 3). Use the Anderson.py graphical user interface in order to find the
matrix of rules that best fits normalized Anderson’s gate response. The answer
of given on Fig. 4.

We developed an algorithm that automatically performs this investigation
and measures the mean square error between simulation results of the opti-
mized model and actual data for several numbers of MFs. Results are given in
Fig. 5. Two main conclusions can be drawn from this analysis: i) Fuzzy logic
remains inaccurate even if the number of MFs increases and ii) 5 or 7 MFs
seems to be a good tradeoff between model accuracy and simulation time.

5 Fuzzy logic for gene regulatory network automated design

Fuzzy logic can also be used for design automation. In this case, for each
device of the system, an algorithm search which matrix of rules should be
used in order to get as close as possible to the response of the system defined
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Reference dose-response curve
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Figure 3: (A) Anderson’s AND gate. Arabinose and salicylate activates respectively
the synthesis of supD and T7ptag which bind each other to obtain T7, an activator for
the promoter carrying the gene coding for the GFP. (B) Measured response of the
system.
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Figure 4: (A) Matrix of rules that best fits the measured data obtain with automated
research algorithm. (B) Simulation of the fuzzy model with the matrix of rules given
in (A).

a priori. By this way, several useful clues can be obtained to guide the system
design (strength of the promoters, threshold concentration of regulating pro-
teins, slope of the dose-response curve ...). In practice, a library (FuzzyLib)
which contains a set of possible matrices of rules is build. Each matrix of rules
corresponds to one Boolean behavior. Only five of them are considered: i) a
inducible promoter with an activator (Buffer); ii) a inducible promoter with
two activators (OR gate); iii) a constitutive promoter with one repressor (NOT
gate); iv) a constitutive promoter with two repressors (NOR gate) and v) a
inducible promoter with one activator and one repressor (INH gate). Finally,
in the FuzzyLib, there are 6 declinations of Buffer and NOT gate and 36 decli-
nation for the others 2-input gates. To illustrate the purpose, the 6 declinations
of the NOT gate are given in Fig. 6.
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Figure 5: RMS error of between fuzzy model and actual data for Anderson’s AND
gate as a function of the number of membership functions used in the fuzzy model.

1 - : T

< Q o
A (0] o
T T T

Output (normalized

o
N
T

1 1 L I L
OO 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Input (log normalized)

Figure 6: Six declinations of the biological NOT gate (constitutive promoter with a
repressor). Each curve corresponds to a given threshold concentration and slope.

In the following, the design automation process is illustrated on a band detector
designed by Basu et al. [13]. This gene regulatory network synthesize GFP as
soon as the concentration of AHL (acyl homoserine lactone) is comprised in a
given range. The construct is depicted in Fig. 7. It is composed with 4 genes
(2 buffers sharing the same operon, 1 NOT gate and 1 NOR gate). The Python
script Basu.py gives the possibility to browse into the FuzzyLib for the three
involved devices and plots the dose-response corresponding to each device as
well as the response of the complete system.

Exercise: Use the Basu.py graphical user interface in order to browse the
FuzzyLib library and find which matrices of rules are the most suitable to



9/9/2015- page #176

176 ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY

get as close as possible to the targeted system response. Deduce from this
investigation properties of the promoter that should be used in the actual gene

regulatory network.

AHLl(Input)

Buffer

N\

1 . T <Y

== Target
=—Synthesized system

Normalized concentration of GFP

Lacly,

N
o —

1]
1
1
1
!
]
i
I
]
]
1
)
i
]
i
]
1)
)
]
1
]
1
1
1
1

P

0 02 ] 0.4 06 0.8
Normalized concentration of AHL

a

GFP (Output)

Figure 7: (A) Basu’s band detector composed with three Boolean functions (a buffer
with two outputs, an inverter and a NOR gate). (B) Targeted response and fuzzy
simulation result with the best set of matrices of rules suggested by an exhaustive

research algorithm.

For this example, there is only 1,300 possible combinations of matrices of
rules. For more complex systems, an efficient algorithm that automatically
finds the best combination is still under construction. Up to now, the only al-
gorithm that has been implemented is an exhaustive research algorithm which
tests all the combinations and returns the one that exhibit the least mean square
error in comparison with the targeted response. In the case of Basu’s band de-
tector, the algorithm suggests using a inducible promoter with a high threshold
for the Buffer (a large quantity of activator is required to activate the transcrip-
tion), a constitutive promoter with a strong repressor (a low concentration of
repressor is sufficient to repress the promoter) and an asymmetric NOR gate
(both activators do not have the same strength).

Exhaustive research algorithm has strong limitations. The most important
is the computation time: on a more complex example (XOR gate designed by
Terzer et al. [14]), up to 3 million of combinations have to be tested and the
calculation time exceeds 20 minutes. An improved algorithm, which consist
in testing only the combinations that seem to be relevant a priori, reduces the
computation time by a factor of 10. Some other improvements are still under
investigation. They are based on standard optimization algorithms (simulated
annealing, particle swarm, genetic programming. . . ).
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Once the best combination has been identified, our software returns a text file
with the chosen matrices of rules as well as a SBML [15] description of the
system that can be imported in Copasi [16] to perform further analysis. For
this conversion, each device is modeled with standard dynamic models (based
on differential equations) which parameters are adjusted to different default
values depending on the selected matrices of rules. The Python script used for
this tutorial also integrates this feature.

Exercise: Use Basu.py to export the SBML model corresponding to your best
combination of matrices of rules and simulated the system with Copasi.

6 Conclusion

This tutorial was to introduce the concept of fuzzy logic applied to synthetic
biology. All the tools presented are now available in two versions, one devel-
oped in Python for educational purpose and the other developed and optimized
in C-language. Among the tools we discussed, the automated gene regulatory
networks synthesizer has undoubtedly the most potential. It takes as input an
assembly of Boolean biological gates (gate-level schematic) and the targeted
system’s response. However, it can also be coupled with an upstream digital
synthesizer [5] that provides the gate-level schematic from a description at a
higher level of abstraction. To make it fully operational, two aspects need
further investigations. First, the algorithm for selecting the optimal set of
matrices of rules must be improved to reduce the computation time. Second,
the FuzzyLib must be completed and linked to actual biological material. By
this way, we would have a list of the operons that can be used for each matrix
of rules in order to construct directly the genetic regulatory network from the
result of the optimization process. The tool would also move from a computer-
aided design tool that guides the choices of the bio-designer into a true genetic
design automation tool.
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The mitochondrion metabolic model iIAS253 revisited.
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Abstract

Mitochondria are important organelles of a eukaryotic cell, a source of cellular
energy, involved in the generation of ATP. Mitochondria are implicated in
several human diseases, and understanding mitochondrial metabolism may
help finding therapeutic actions.

Using the metabolic model iAS253 by Robinson and Smith, we apply
the constraint-based analysis (FBA) techniques to study possible metabolic
benefits in the case of fumarase deficiency.

1 Introduction

Mitochondria are involved in many essential metabolic processes, thus their
defects can cause a wide range of human pathologies [1].

Metabolic modelling is a tool to understand the underlying metabolism
changes and to propose possible therapeutic actions. Several models describ-
ing human metabolism were created, including large-scale ones [2, 3, 4] and
those with a particular focus on the mitochondrion metabolism [5, 6, 7, 8, 9].
In this work we have chosen to use the model iAS253 [9] as it focuses on
mitochondrion and is the most complete among the existing models of mito-
chondrial metabolism. As in [9], we approach fumarase deficiency and study
metabolic ways to overcome this defect in different type of tissues character-
ized by different inputs in mitochondrial metabolism.

The model iAS253 describes mitochondrial metabolism in human’s heart.
It contains three compartments (extracellular, cytosol and mitochondrion), 253
reactions, 245 metabolites and 89 transport steps across the mitochondrial
membrane. The identifiers of reactions and metabolites correspond to the
entries in the KEGG reaction and the KEGG compound databases [10]. The
model does not contain any global parameters; the local parameters defined in
the model describe the reaction fluxes and flux constraints, needed for cons-
traint-based analysis. A schematic representation of the model is shown in
Figure 1.

1.1 Constraint-based analysis

Metabolic phenotypes can be defined in terms of flux distributions through a
metabolic network. Dynamic analysis of metabolic flux distributions require
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Figure 1: Model iAS253. Model iAS253 focusses on the processes operating in the
mitochondrion of a human heart. The main pathways are shown in different colours:
TCA cycle (green), fatty acid metabolism (orange), valine, leucine and isoleucine
degradation (blue), synthesis and degradation of ketone bodies (violet).

kinetics and concentration information about enzymes and various cofactors.
For metabolic networks that lack this information the constraint-based mod-
elling procedure [11, 12] is well-adapted. It does not strive to find a single
solution but rather finds a collection of all allowable solutions to the governing
equations that can be defined (a solution space). The solutions that violate
any of the imposed constraints are excluded from the solution space. The
constraints include stoichiometry, reversibility of reactions, and enzymatic ca-
pacity [13].

The flux balance analysis (FBA) [14] is an example of a constrain-balance
analysis. FBA defines an objective function relevant to the studied problem
(e.g. ATP production in mitochondria) and finds a flux distribution that opti-
mises (e.g. maximises) the objective function at steady state. FBA finds only
one of the possible solutions. To circumvent this problem, one can use the
Sflux variability analysis (FVA) [15, 16, 17], which estimates the maximum and
minimum values of all the fluxes that will satisfy the constraints while reaching
the same optimal value of the objective function.
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There are several software tools that perform FBA and FVA, examples of
which include the constraint-based reconstruction and analysis (COBRA) tool-
box [18] for MATLAB; FAME, the web-based flux analysis and modeling
environment [19]; and COBRApy [20], a COBRA toolbox for Python. In
our study we use COBRApy.

2 Modifications to the model

To evaluate the model iAS253 we run FBA under different conditions. The
model iAS253 defines 6 pseudo reactions intended to be used as objective
functions for flux analysis: amino acids for protein synthesis, nucleotides for
DNA and for RNA synthesis, lipids for lipid synthesis, and the production of
ATP and of haem. In our study we use only the ATP production as the objective
function.

2.1 Futile cycles

FBA under normal conditions finds a solution with an average flux absolute
value of 29 pmol/min/gDW, while for five reactions shown in Figure 2
the flux value is much larger and reaches the extreme value allowed by their
constraints (+1000): ATP:GDP phosphotransferase (RO0330MM); ATP:AMP
phosphotransferase (RO0127TMM); UTP:pyruvate 2-O-phosphotransferase
(RO0659MM); UTP:AMP phosphotransferase (RO0157MM); GTP:pyruvate
2-O-phosphotransferase (R00430MM)'. FVA shows that in the solution space
corresponding to the maximal ATP production, the fluxes through these reac-
tions are not constrained, i.e. can have any value between —1000 and 1000. It
suggests a presence of a futile cycle. Moreover, GTP:pyruvate 2-O-phospho-
transferase is irreversible with AGy = —30.1 kJ [21]. We updated the bounds
of this reaction, which made it irreversible and eliminated the futile cycle.

2.2 Pathway annotations

The reactions of the model iAS253 use the identifiers of the entries in the
KEGG reaction database. KEGG provides a REST API that permits automatic
extraction of information from KEGG databases. To annotate the model with
pathways we extracted a list of human pathways from the KEGG pathway
database and a list of reactions that correspond to each pathway from the
KEGG reaction database. For each pathway we calculated the ratio of its
reactions that are present in the model to the total number of reactions listed for
this pathway in KEGG. For the ratios larger than 0.5 (more than a half of the

!"The reaction names are taken from the KEGG reaction database [10].



9/9/2015- page #182

182 ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY
AMP

ATP 2

ADP uTP

UDP
DP
PEP

GTP

Pyruvate

Figure 2: Futile cycle of NTP <« NDP interconversion. The cycle consists
of five reactions (yellow squares) that are reversible in the original iAS253 model.
We updated the bounds of the GTP:pyruvate 2-O-phosphotransferase reaction (red),
which made it irreversible and eliminated the futile cycle.

pathway was found in the model), we assumed that the corresponding pathway
is present in the model. This procedure allowed us to annotate the model with
4 pathways and 3 sub-pathways (see Figure 1):

1. citrate cycle (TCA cycle) (KEGG identifier: hsa00020);
2. fatty acid metabolism (hsa01212) and 3 sub-pathways:

(a) fatty acid biosynthesis (hsa00061);
(b) fatty acid elongation (hsa00062);
(¢c) fatty acid degradation (hsa00071);

3. valine, leucine and isoleucine degradation (hsa00280);
4. synthesis and degradation of ketone bodies (hsa00072).

In our study we omit the more generic fatty acid metabolism pathways and
instead consider the 3 more specific sub-pathways. The fatty acid elongation
and farty acid degradation pathways have a large intersection (18 (reversible)
reactions out of 28 and 33 respectively) with the opposite directions of the
fluxes through these reactions.
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3 Simulation of fumarase deficiency

3.1 Normal conditions

Under normal conditions (inputs: 0.9 umol /min/gDW of glucose, 0.575 pmol
/min/gDW of lactate and 0.412 pmol/min/gDW of fatty acids) to ob-
tain the optimal ATP production (of 139.42 pmol/min/gDW) a flux of 6.97
pmol /min/gDW through the fumarase reaction (RO1082MM, highlighted
yellow in Figure 1) is required. Non-null fluxes are found through the fol-
lowing pathways: citrate cycle (TCA cycle); valine, leucine and isoleucine
degradation; synthesis and degradation of ketone bodies; fatty acid degrada-
tion. The fatty acid biosynthesis and fatty acid elongation pathways are not
active.

3.2 Varying fumarase flux constraints

To study the fumarase deficiency we first run a simulation similar to the one
described by Smith and Robinson.

140
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Figure 3: Effect of varying fumarase flux on maximal ATP production. 6.97
pmol/min/gDW is the value of the fumarase flux necessary for the maximal ATP
production (139.42 pmol/min/gDW), and after reaching this value the fumarase
reaction stabilises.
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Figure 4: Effect of input reactions on maximal ATP production when fumarase
is impaired. Effect of changing the constraints of input reactions on maximal ATP
production (all the curves are independent) when the fumarase reaction is 0, under
different conditions: (a) all input reactions are allowed (general case as in Figure 3)
(b) the fatty acids and lactate input reactions are impaired, the input flux of the
glucose reaction is fixed at 0.9 pmol/min/gDW; (c) the glucose and lactate input
reactions are impaired, the flux of the fatty acids input reaction is fixed to 0.412
umol /min/gDW:; (d) the farty acids and glucose input reactions are impaired, the
flux of the lactate input reaction is fixed to 0.575 pmol /min/gDW .
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We changed step by step the constraints for the flux through the fumarase
reaction: —1 < Uy, < 4, from O (i.e. ¢ = 0, fumarase knocked-out) to 8
pumol /min/gDW (to allow the optimal flux value) and run FBA to optimise
the ATP production. The resulting curves are shown in Figure 3. Smith
and Robinson describe a similar simulation (Figure 1 in [9]), but instead of
changing the flux constraints, they impose the value of the flux. For the
flux not greater than 6.97 umol/min/gDW both simulations give the same
result, as for maximal ATP production, the maximal allowed flux though fu-
marase is necessary. However, for the imposed flux values that are greater
than the optimal value 6.97, the rest of the system cannot produce enough fu-
marate/succinate without lowering the ATP production, thus the ATP Biomass
curve in Smith’s and Robinson’s study (Figure 1 in [9]) goes down, while the
one in Figure 3 stabilises together with the flux through fumarase.

3.3 Impaired fumarase reaction

To study the effect of each metabolite input from the environment on maximal
ATP production under conditions when the fumarase reaction was knocked
out, we run a simulation with all the inputs allowed and three independent
simulations with each input at its flux value used in the general study (Figure 4)
with the other inputs equal to zero. In all cases the citrate cycle (TCA cycle),
and valine, leucine and isoleucine degradation pathways were active.

When all the three inputs are allowed, the knock out of the fumarase reaction
reduces the maximal ATP production from 139.42 to 6.26 umol /min/gDW .
Under these conditions synthesis of ketone bodies and fatty acid elongation
pathways are active. However, the change of the boundary constraints for
several metabolite import reactions (aspartate, glutamate, malate and glucose)
can increase maximal ATP production flux value (see Figure 4 (a)).

When only glucose input was allowed, the maximal ATP production flux
was 6.20 umol /min/gDW and there were a synthesis of ketone bodies and a
fatty acid elongation (as when all input fluxes were present). When only the
input of lactate was allowed the maximal ATP production flux dropped to 4.25
pmol /min/gDW , none of the fatty acid metabolism pathways were active,
and instead of synthesis, the degradation of ketone bodies took place.

In the case when only the fatty acids input was active, the maximal ATP
production flux went to 2.96 umol /min/gDW , the degradations of fatty acids
and of ketone bodies occurred.

In all cases an increase in aspartate and/or glutamate inputs through the
malate-aspartate shuttle have a significant effect on ATP synthesis, contrary
to an increase in glucose input which only leads to a very low augmentation in
ATP synthesis.
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4 Conclusion

We have used the slightly modified model iAS253 by Robinson and Smith
to simulate fumarase deficiency under various conditions. In the future work
it would be interesting to investigate other mitochondrial disorders such as
(partial) ATP syntase deficiency.

The model could be further improved by refining the reaction boundary
constraints, for example, based on reaction Gibbs energies [23].
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