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“But technology will ultimately and usefully be better served by following
the spirit of Eddington, by attempting to provide enough time and intellectual

space for those who want to invest themselves in exploration of levels
beyond the genome independently of any quick promises for still quicker

solutions to extremely complex problems.”

Strohman RC (1977) Nature Biotech 15:199

FOREWORD
What are the salient features of the new scientific context within which biological

modelling and simulation will evolve from now on? The global project of high-throughput
biology may be summarized as follows. After genome sequencing comes the annotation
by ’classical’ bioinformatics means. It then becomes important to interpret the annota-
tions, to understand the interactions between biological functions, to predict the outcome
of perturbations, while incorporating the results from post genomics studies (of course,
sequencing and annotation do not stop when simulation comes into the picture). At that
stage, a tight interplay between model, simulation and bench experimentation is crucial.
Taking on this challenge therefore requires specialists from across the sciences to learn
each other’s language so as to collaborate effectively on defined projects.

Just such a multi-disciplinary group of scientists has been meeting regularly at Genopole,
a leading centre for genomics in France. This, the Epigenomics project, is divided into
five subgroups. The GolgiTop subgroup focuses on membrane deformations involved in
the functionning of the Golgi. The Hyperstructures subgroup focuses on cell division,
on the dynamics of the cytoskeleton, and on the dynamics of hyperstructures (which are
extended multi-molecule assemblies that serve a particular function). The Observability
subgroup addresses the question of which models are coherent and how can they best
be tested by applying a formal system, originally used for testing computer programs, to
an epigenetic model for mucus production by Pseudomonas aeruginosa, the bacterium
involved in cystic fibrosis. The Bioputing group works on new approaches proposed
to understand biological computing using computing machine made of biomolecules or
bacterial colonies. The SMABio subgroup focuses on how multi-agents systems (MAS)
can be used to model biological systems.

The works of subgroups underpinned the conferences organised in Autrans in 2002, in
Dieppe in 2003, in Evry in 2004, in Montpelliers in 2005, in Bordeaux in 2006, back to
Evry in 2007, in Lille in 2008, in Nice in 2009 and in Evry in 2010. The conferences
in Sophia-Antipolis in 2011 which as reported here, brought together over a hundred
participants, biologists, physical chemists, physicists, statisticians, mathematicians and
computer scientists and gave leading specialists the opportunity to address an audience
of doctoral and post-doctoral students as well as colleagues from other disciplines.

This book gathers overviews of the talks, original articles contributed by speakers and
subgroups, tutorial material, and poster abstracts. We thank the sponsors of this confer-
ence for making it possible for all the participants to share their enthusiasm and ideas in
such a constructive way.

Patrick Amar, Gilles Bernot, Marie Beurton-Aimar, Eric Goles, Janine Guespin, Jürgen Jost,
Marcelline Kaufman, François Képès, Pascale Le Gall, Reinhard Lipowsky, Jean-Pierre Mazat,
Victor Norris, William Saurin, El Houssine Snoussi.
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3D Genome Organisation and Gene Expression: Unified
Matrix Hypothesis and Genon Concept

Klaus Scherrer1

1 Institut Jacques Monod, CNRS and University Paris Diderot, Paris, France.

Abstract

The Unified Matrix Hypothesis (UMH) proposed that genomes may be or-
ganised in space, and genomic domains be transcribed in specific sectors of
the nucleus [1]. The UMH generalised for normal types of interphase cells,
the pattern of Ectopic Pairing observed in drosophila salivary gland cells.
The recent publication of the 3D structure of the yeast genome [2] is clear
confirmation in lower eukaryotes of the UMH concept. Genomic domains
of higher eukaryots are visible in polytene chromosomes of sciaridae and
drosophila (C-value up to 10 000) as bands, representing units of transcription
and meiotic recombination, which are held in 3D positions by ectopic cables
linking distant interbands, within and in between chromosomes, as well as
the nucleolus; in this type of cell, this pattern is genetically determined [1].
DNA in normal cells is flexible and able to link directly distant sites within
and between chromosomes as obvious in yeast [2]. Of conceptual importance
within the UMH concept is that DNA length per se represents genetic informa-
tion, independent of sequence, as a basis of nuclear architecture and cellular
morphogenesis.

Specific types of cells have changing patterns of hetero- and euchromatin;
the phenomenon of “quantal mitosis” [1] shows that differentiation can be
stopped by agents blocking chromatin remodelling. 3D DNA organisation
determines chromosome territories, which are relatively stable including hete-
rochromatin. Euchromatin, however, may participate in additional more flexi-
ble DNA interactions, which are conditional for individual gene expression, as
shown in case of association of the distant TH2 cytokine and IFN-γ loci [3];
such “3D gene regulation” recalls the pattern observed in yeast [2].

Within the Genon concept of regulation [4, 5], 3D genome organisation
may represent the highest-level program of gene expression encoded in the
entire genome. Downstream, the expression of genomic domains and individ-
ual genes is implemented by transcription, differential splicing of pre-mRNA,
mRNA transport as well as repression or activation, which are controlled in cis
by the sequential expression of genetic programs termed protogenon for the do-
mains, pre-genon for pre-mRNA, and genon for mRNA. This cis information

MODELLING COMPLEX BIOLOGICAL SYSTEMS 13



is controlled in trans by factors representing the corresponding transgenons
in nucleus and cytoplasm. Cis and transgenon control, furthermore, mRNA
sorting basic to protein biosynthesis in specific cell sectors.

The UMH proposed, furthermore, a logical link between cellular and supra-
cellular morphogenesis. The latter is based on programs of spindle orientation
defining the direction of subsequent cell divisions, prior to cell-cell interaction
and selective apoptosis. Spindle re-orientation happens at critical steps of dif-
ferentiation and morphogenesis and is, hence, based on the internal topological
organisation of the mitotic cell.

Finally, 3D organisation of genome, transcripts and gene expression may
explain most of the apparent excess of DNA observed in eukaryots and, in
particular, the C-value paradox [1]. It may allow, furthermore, to link DNA
polymorphism and supra-cellular morphogenesis in individuals as a paradigm
of, e.g., genesis of facial patterns.

References

[1] Scherrer (1989) Biosci Rep 9: 157-188; doi: 10.1007/BF01115994

[2] Duan et al. (2010) Nature 465: 363-367; doi:10.1038/nature0897;

[3] Spilianakis et al. (2005) Nature 435: 637-645; doi:10.1038/nature03574

[4] Scherrer and Jost (2007) Molecular Systems Biology 3; 87
doi:10.1038/msb4100123

[5] Scherrer and Jost (2007) Theory Biosci. 126: 65-113;
doi: 10.1007/s12064-007-0012-x
(see also discussion in doi: 10.1007/s12064-009-0027-1, etc.)
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Active RNA polymerases are immobile molecular machines

Peter R. Cook1

1 The Sir William Dunn School of Pathology, University of Oxford

Abstract

A parsimonious model for all genomes involving one major architectural motif
will be presented: DNA/chromatin loops are tethered to transcription facto-
ries through active RNA polymerases and/or transcription factors. The poly-
merases are immobile and produce their transcripts by reeling in the DNA; this
contrasts with the conventional view where polymerases track like locomotives
down the template.

At least two theoretical mechanisms probably drive the required protein
clustering and DNA looping - the dimerization of bound transcription fac-
tors and an (entropic) depletion attraction acting between engaged polymer-
izing complexes. We have also tested experimentally whether active poly-
merases are immobile using chromosome conformation capture and human
genes switched on rapidly (i.e., within 10 min) and synchronously by tumor
necrosis factor α. This potent cytokine signals through NFkB to stimulate
and repress many genes. Two of the first to respond are SAMD4A (a 221-kbp
gene that a polymerase takes> 1h to transcribe), and TNFAIP2 (a 10-kbp gene
that is used as a reference and which is transcribed repeatedly). Ten minutes
after stimulation, the reference gene develops new contacts with the SAMD4A
promoter. Subsequently, these contacts are lost as new ones appear further
downstream in SAMD4A; contacts are invariably between sequences being
transcribed at that particular moment. Super-resolution microscopy confirms
that nascent transcripts (detected by RNA fluorescence in situ hybridization)
co-localize at relevant times. These results are consistent with active poly-
merases being immobilized. Moreover, many genes responding to TNFa often
come together to be transcribed in specialized “NFkB” factories. In additional
experiments, we have isolated complexes of > 8 MDa that represent factory
cores, and determined their proteomes by mass spectrometry.
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Lightoptical Analysis of Nuclear Nanostructure Analysis
and Modelling

Christoph Cremer1,2,3

1 Applied Optics and Information Processing, University Heidelberg
2 Interdisciplinary Center for Scientific Computing (IWR), University Heidelberg

Im Neuenheimer Feld, D-69120 Heidelberg, Germany
3 Institute for Molecular Biophysics, The Jackson Laboratory,

Bar Harbor, ME 04609, USA

Abstract

The spatial organisation of the genome in the cell nucleus has emerged as
a key element to understand gene expression. A wealth of molecular and
microscopic information has been accumulated, resulting in a variety of -
sometimes contradictory - models of nuclear architecture on the nanoscale.
A major source of such unambiguities is due to the limits of conventional light
microscopy (optical resolution about 200 nm laterally, 600 nm axially) which
makes quantitative tests of model calculations on the nanoscale very difficult.
To overcome this bottleneck, we have established a variety of superresolution
microscopy (“nanoscopy”) methods. Our present spectrum for nanoscopy of
nuclear architecture comprises confocal laser scanning 4Pi-microscopy, Spa-
tially Modulated Illumination (SMI), and Spectrally Assigned Localization
Microscopy (SALM). Using a recently developed SALM technique, Spectral
Precision Distance/Position Determination Microscopy (SPDM) with Phys-
ically Modifiable Fluorophores (SPDMPhymod), nuclear nanostructures can
now be studied on a large scale in 3D intact nuclei of mammalian cells down
to a lateral optical resolution of individual molecules in the 20 nm range,
using a variety of standard fluorescence proteins/fluorochromes. Examples
are provided for the spatial distribution of individually resolved nuclear pore
complex proteins, of histones, RNA Polymerase II and FISH labelled DNA se-
quences. First applications of such nanoscopy methods to modeling of nuclear
nanostructure regard the use of statistical methods to infer structural features
and density fluctuations an the nanoscale. The observed fluctuations were
consistent with a recently proposed numerical chromatin model.

References

[1] M. Gunkel et al. (2009) Dual color localization microscopy of cellular
nanostructures. Biotechnology J. 4: 927 938.
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[2] M. Bohn et al. (2010) Localization microscopy reveals expression
dependent parameters of chromatin nanostructure. Biophys. J. 99: 1358
1367.

[3] J. Rouquette et al. (2010) Functional nuclear architecture studied by
microscopy. International Review of Cell and Molecular Biolog 282:
1 90.

[4] C. Cremer et al. (2010) Far field fluorescence microscopy of cellular
structures @ molecular resolution. In: Nanoscopy and Multidimensional
Optical Fluorescence Microscopy (A. Diaspro, Edit.) pp. 3/1 3/35. Taylor
& Francis.

[5] D. Hübschmann et al. Quantitative Approaches to Nuclear Architecture
Analysis and Modelling. in press

[6] Y. Markaki et al. Chromatin Domains, Perichromatin Region and
Interchromatin Compartment: A functional Marriage a Trois. Cold Spring
Harbor Symposia 75, in press
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Unraveling Genome Architecture

Anthony BLAU1

1 Department of Genome Sciences, University of Washington,
Seattle WA, USA

Abstract

The genome of a cell is organized non-randomly within the nucleus, with this
three-dimensional organization serving to modulate various genomic func-
tions, such as gene expression, DNA replication and maintenance. In mam-
malian cells, the spatial organization of genomes plays important roles in cel-
lular and developmental events. Defects in genome architecture are linked to
human diseases, including cancer. However, due to technological obstacles,
little is known about how genomes are organized in vivo and what the princi-
ples are that guide chromatin folding and assembly.

Genome spatial organization was traditionally studied by microscopy-based
DNA imaging technologies such as fluorescence in situ hybridization (FISH),
which are limited in resolution and throughput. Chromosome conformation
capture (3C) and its derivatives (4C, 5C, 6C, ChIA- PET, and e4C) have proved
to be powerful molecular tools for characterizing locus-specific or protein
complex-mediated structural properties of the genome. By combining 4C
with next generation sequencing technology, we recently developed an ultra-
high-throughput method that resulted in a high-resolution (kilobase) three-
dimensional model of the haploid yeast genome. The map recapitulates known
features of genome organization, thereby validating the method, and identifies
new features. Extensive regional and higher order folding of individual chro-
mosomes is observed. Chromosome XII exhibits a striking conformation that
implicates the nucleolus as a formidable barrier to interaction between DNA
sequences at either end. Inter- chromosomal contacts are anchored by cen-
tromeres and include interactions among transfer RNA genes, among origins
of early DNA replication and among sites where chromosomal breakpoints
occur. Our findings provide a glimpse of the interface between the form and
function of a eukaryotic genome.
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Modelling the spatio-temporal organization of intracellular
Ca2+ signals : From mechanisms to physiology

Geneviève Dupont1

1 Université Libre de Bruxelles. Unité de Chronobiologie Théorique.
Faculté des Sciences, CP231.

Abstract

Signal-induced Ca2+ oscillations have been observed in many cell types and
play a primary role in cell physiology. They mediate vital physiological pro-
cesses such as secretion, gene expression or fertilization. Specificity in the
physiological responses is ensured by the high level of spatio-temporal orga-
nization of Ca2+ dynamics in the form of stochastic sub-cellular increases,
regular oscillations and intra- or intercellular Ca2+ waves.

In the talk, I will first present the main features of the hierarchical or-
ganization of Ca2+ signalling and illustrate on some specific examples how
the interplay between experiments and modelling allows for a detailed under-
standing of the regulatory feedbacks responsible for these phenomena. In the
second part, mechanisms for the frequency encoding of Ca2+ oscillations will
be discussed, with more emphasis on the process of glucagon secretion and on
a Ca2+-related pathology occurring at human fertilization.
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From the glycolytic oscillations to the control of the cell
cycle: a minimal biological oscillator

Rui Dilão1

1 Nonlinear Dynamics Group, Instituto Superior Técnico, Lisboa, Portugal

Abstract

We introduce the basic modeling approach in order to describe chains of en-
zymatic reactions. We analyze the effects of activation feedback loops in
these chains of reactions, and we derive the conditions for the existence of
oscillations.

We show that enzymatic chain reactions with two sequential chains and
one feedback activation loop describe the basic features of the cell cycle con-
trol in eukaryotes. This same enzymatic chain reaction also describes the
glycolytic oscillations in yeast. From this modeling approach, it results that
the S/G2 checkpoint of the cell cycle is under the control of the concentration
of the Cdk protein Cdc25. The concentration of this protein tune several
bifurcation parameters of the model equations and its variation can induce the
crossing of a Hopf bifurcation, leading to stable oscillation in the concentra-
tions of the Maturation Promoting Factor (MPF=cyclin B+Cdc2) and of its
phosphorylated state. This model is consistent with the recent finding that the
oscillation of a single Cdk module is sufficient to trigger the major cell cycle
events (Coudreuse and Nurse, Nature, 468 (2010) 1074-1079).
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Automating Biology using Robot Scientists

Ross D. King1

1 Department of Computer Science, Aberystwyth University, UK

Abstract

A Robot Scientist is a physically implemented robotic system that applies
techniques from artificial intelligence to execute cycles of automated scientific
experimentation. A Robot Scientist can automatically execute cycles of: hy-
pothesis formation, selection of efficient experiments to discriminate between
hypotheses, execution of experiments using laboratory automation equipment,
and analysis of results. We have developed the Robot Scientist “Adam” to
investigate yeast (Saccharomyces cerevisiae) functional genomics. Adam has
autonomously identified genes encoding locally “orphan” enzymes in yeast.
This is the first time a machine has discovered novel scientific knowledge.
To describe Adam’s research we have developed an ontology and logical lan-
guage. Use of these produced a formal argument involving over 10,000 dif-
ferent research units that relates Adam’s 6.6 million biomass measurements to
its conclusions. We are now developing the Robot Scientist “Eve” to automate
drug screening and QSAR development.
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Combining Metabolic Pathway Analysis with Evolutionary
Game Theory

Stefan Schuster1

1 Department of Bioinformatics, Friedrich Schiller University,
Ernst-Abbe-Platz 2, 07743 Jena, Germany

Abstract

Elementary modes in metabolic reaction networks are defined as miminal sets
of enzymes that can operate at steady state with all irreversible reactions used
in the correct direction. Elementary-modes analysis is a powerful method for
detecting all potential pathways in a metabolic network and computing the
associated molar yields; it has been applied successfully for a plethora of
bacterial, fungal, plant and animal metabolic networks. Metabolic pathways
(identified, for example, by elementary modes analysis) can be interpreted
as different strategies of organisms. Thus, methods from evolutionary game
theory can be employed. Pure and mixed evolutionarily stable strategies corre-
spond to pure pathways and superimposed pathways (which are relevant for
robustness), respectively. In Flux Balance Analysis, it is usually assumed
that molar yields of relevant products (such as biomass or ATP) have been
maximized during evolution. This has been questioned on game theoretical
grounds. In particular, in situations that can be characterized as a Prisoner’s
Dilemma, maximization of flux is not in line with maximization of yield. Un-
der other conditions (that is, for other parameter values of maximal velocities),
a harmony game can result. Here, we analyse the optimal situations under
varying conditions.
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Intestinal-bacteria-immune cell interactions in health and
disease

Andrew Gewirtz1

1 Pathology & Laboratory Medicine, Emory U. School of Medicine,
Atlanta, GA, USA

Abstract

The intestinal mucosal immune system is charged with defending this key
vast interface with the outside world from the enormous and diverse group of
microbes that colonizes these surfaces. A key means by which the mucosal im-
mune system protects the host from such diverse microbes is using germ-line-
encoded molecules such as toll-like receptors (TLR) that target structurally
conserved motifs that mediate important bacterial functions. The traditional
view of TLR is that they are typically quiescent in the presence of commensal
bacteria and are activated only upon detection of pathogens whereupon they
initiate an inflammatory response that protects against the perturbing pathogen.
This paradigm does indeed characterize the intestinal response to a number of
acute pathogens but it is also now appreciated that the intestinal microbiota
does not consist of mere pathogens or commensal bacteria but, rather is a con-
tinuum of microbes and that it is the job of the mucosal immune system to keep
such microbes in check and maintain bacterial populations that benefit the host.
TLRs play a key role in such policing of the gut microbiota. A particularly
important TLR in defending the intestine is TLR5, which recognizes bacterial
flagellin, the primary structural component of flagella, which afford bacteria
the ability of directed locomotion. This presentation will discuss the roles
of intestinal TLRs in host-bacterial interaction with a particular focus on the
role, and mechanism, of TLR5 in host defense, chronic inflammatory disease,
including inflammatory bowel disease and metabolic disorders. It will also
discuss potential approaches to pharmacologically manipulate these pathways
to benefit the host.
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Speaking the Language of Molecules

Luca Cardelli1

1 Microsoft Research, Cambridge, United Kingdom

Abstract

Computing has progressed through its history by relying on ever smaller pro-
grammable structures, inevitably leading us to devices assembled from indi-
vidual molecules. Molecular systems, however, are not easily constructed,
organized, or programmed, simply because they are the smallest possible. We
shall look at some very effective ’natural languages’ for molecular systems,
found naturally in biochemistry, as well as artificial modeling languages used
in systems biology. But none of those gives us the ability to flexibly execute
molecular programs. Thanks to biotechnology, nucleic acids (DNA/RNA)
are currently the only truly “user-programmable” entities at the molecular
scale. They can be directed to assemble nano-scale structures, to produce
physical forces, to act as sensors and actuators, and to do general computation
in between. Eventually we will be able to interface them with biological ma-
chinery to detect and cure diseases at the cellular level under program control.
Meanwhile, we need to engineer the molecular devices themselves and our
ability to program them.
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Can we Computerize an Elephant?

David Harel1

1 Dept. Of Computer Science and Applied Mathematics,
Weizmann It., Rehovot, Israel

Abstract

This overview/concept/dream talk will discuss the idea of comprehensive and
realistic modeling of biological systems, where we try to understand and ana-
lyze an entire system in detail, utilizing in the modeling effort all that is known
about it. I will address the motivation for such modeling and the philosophy
underlying the techniques for carrying it out, as well as the crucial question of
when such models are to be deemed valid, or complete. The examples will be
from among the biological modeling efforts our group has been involved in:
T cell development, lymph node behavior, organogenesis of the pancreas, and
fate determination in the C. elegans nematode. The ultimate grand challenge
is to produce an interactive, dynamic, computerized model of an entire multi-
cellular organism, such as C. elegans, which is complex, but well-defined in
terms of anatomy and genetics.
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Computational investigations of feedback and feed-forward
controls of cell cycle transitions

Attila Csikasz-Nagy1

1 Microsoft Research, Center for Computational Systems Biology,
University of Trento, Italy

Abstract

DNA replication, mitosis and mitotic exit are critical transitions of the cell cy-
cle which should occur only once per cycle. The importance of various positive
feedback and feed-forward loops in the irreversibility of these transitions has
been investigated recently. By computational modeling we investigate how
these loops ensure proper timing and order of cell cycle events. We will
show the dynamical features of such regulatory loops and discuss their role
in the robustness of the transitions. We will present how various modeling
approaches (differential equations, Petri-nets, Model-checking) can highlight
different features of the regulatory network.

References

[1] Novak, B., Tyson, J. J., Gyorffy, B., and Csikasz-Nagy, A. Irreversible
cell-cycle transitions are due to systems-level feedback, Nat Cell Biol 9
(7), 724-8 (2007)

[2] Mura I, Csikasz-Nagy A. Stochastic Petri Net extension of a yeast cell
cycle model. J Theor Biol. 254 (4), 850-60 (2008)

[3] Ballarini, P. et al. Studying Irreversible Transitions in a Model of Cell
Cycle Regulation. ENTCS 232, 39-53 (2009)

[4] Csikasz-Nagy A. Computational systems biology of the cell cycle. Brief
Bioinform 10 (4), 424-34 (2009)

[5] Csikasz-Nagy, A. et al., Cell cycle regulation by feed-forward loops
coupling transcription and phosphorylation, Mol Syst Biol 5, 236 (2009)

[6] Romanel, A., Cardelli, L., Jensen, L. J., and Csikasz-Nagy, A. Universality
of transcriptional and post-translational regulation of cell cycle transitions,
under review (2011).
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Genetic clocks from engineered oscillators

Jeff Hasty1

1 Departments of Molecular Biology and Bioengineering BioCircuits Institute
University of California, San Diego, US

Abstract

One defining goal of synthetic biology is the development of engineering-
based approaches that enable the construction of gene-regulatory networks
according to design specs generated from computational modeling. This has
resulted in the construction of several fundamental gene circuits, such as toggle
switches and oscillators, which have been applied in novel contexts such as
triggered biolm development and cellular population control. In this talk, I will
first describe an engineered genetic oscillator in Escherichia coli that is fast,
robust, and persistent, with tunable oscillatory periods as fast as 13 minutes.
This oscillator was designed using a previously modeled network architecture
comprising linked positive and negative feedback loops. Experiments show
remarkable robustness and persistence of oscillations in the designed circuit;
almost every cell exhibited large-amplitude fluorescence oscillations through-
out observation runs. The period of oscillation can be tuned by altering in-
ducer levels. Computational modeling reveals that the key design principle for
constructing a robust oscillator is a small time delay in the negative feedback
loop, which can mechanistically arise from the cascade of cellular processes
involved in forming a functional transcription factor. I will then describe an
engineered network with global intercellular coupling that is capable of gener-
ating synchronized oscillations in a growing population of cells. The network
is based on the interaction of two quorum sensing genes; luxI, which produces
an intercellular transcriptional activator (AHL, acylhomoserine lactone), and
aiiA, which degrades AHL intracellularly. Microfluidic devices tailored for
cellular populations at differing length scales are used to demonstrate col-
lective synchronization properties along with spatiotemporal waves occurring
on millimeter scales. The period of the bulk oscillations ranges from 55-90
minutes, depending on the effective degradation rate of the AHL coupling
molecule. In large monolayer colonies of cells, the time scale for the diffusive
coupling of AHL is characterized by wavefront velocities that range from 8-30
microns/min.
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Abstract

The aim of the project is to propagate artificial nucleic acids in a microbial
cell, for which an uptake system and a processing apparatus for exogenous
activated precursors need to be developed. The key accomplishment would
be the expression of an artificial aptazyme in the cell, catalyzing an essential
metabolic reaction. Such reprogrammed microorganism could become a new
instrument for avoiding genetic pollution when performing experiments in
synthetic biology. The seminar will primarily deal with discussing the tools
that need to be developed to reach this ambitious goal.
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Abstract

Numerous studies have revealed that biological networks exhibit salient struc-
tural features. These include fat tailed degree distributions and the small world
property. We provide a closer look at these issues in the context of genome-
scale metabolic networks, showing that the situation is more subtle than it
seems from the most touted papers. Furthermore, recent work suggests that
these architectural features may be by-products of biochemical and biological
constraints which any live metabolism must comply with.

1 Introduction

Biological research in the last century became progressively dominated by a
reductionist approach resulting in detailed understanding of molecular com-
ponents. However, most system level properties of living systems arise as
a result of complex interactions among their numerous constituents that are
only beginning to be tackled at the intra-cellular level. The interactions among
different cellular constituents lead to several kinds of molecular networks:
transcriptional regulatory networks, metabolic networks, protein-protein inter-
action network, signalling networks, etc. All of these have cross interactions
but nevertheless can be thought of as functional modules, associated with one
or more functions carried out by the cell. Perturbations of these networks
can have major consequences, in particular for the overall organism, leading
to defense, disease, or death. An important goal for biology in this century
is to understand the structure and dynamics of complex biological networks
that contribute to the function and resilience of living cells and organisms
[1, 2, 3, 4, 5, 6, 7].

Central to the core activities of the cell is its ability to run house-keeping
tasks: it must replace molecular constituents upon natural degradation, or if it
is to grow and divide, it must transform external “nutrients” into internal com-
pounds that will then allow for cell division. Both tasks require biochemical
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transformations, and so in essence, a cell’s metabolism is a central part of its
life. In this article, we focus on metabolic networks; an organism’s metabolic
network is its set of biochemical reactions, available for converting nutrients
into key molecular species required for the growth and maintenance of the cell.
Advances in the development of high-throughput data collection techniques
coupled with the systematic analysis of fully sequenced genomes have led to
reconstruction of a number of organism-specific metabolic networks [8, 9, 10].
We will cover some research of the past decade that focuses on salient architec-
tural features of metabolic networks. Also highlighted are more recent insights
into the role of biochemical and functional constraints that may be essential
driving forces shaping the structural characteristics of these networks.

2 Salient global structural properties of metabolic networks

2.1 Degree distribution

The degree k of a node in a graph is defined as the number of edges containing
that node. The degree distribution, P (k), gives the probability that a randomly
selected node has exactly k edges – hereafter referred to as links – in the graph.
Jeong et al. [11] and Wagner and Fell [12] have studied the degree distribution
of metabolic networks using two different graphical representations. Jeong
et al. [11] represented the metabolic network as a directed bipartite graph
with two types of nodes: metabolites and reactions. In a directed bipartite
graph representation of the metabolic network (cf. Fig.1(a)), each metabolite
node can be associated with an in-degree and an out-degree. The in-degree
(out-degree) of a metabolite node in such a bipartite graph is the number of
reactions in the network that produce (consume) the metabolite. Jeong et al.
found both the in-degree and out-degree distribution of metabolites to follow
approximately a power law P (k) ∼ k−γ for the metabolic networks of 43
organisms. Further, the degree exponent γ, for both the in-degree and out-
degree distributions, was found to be universal and close to 2.2 for the 43
organisms. Independently, Wagner and Fell [12] studied the degree distribution
of the E. coli metabolic network using the unipartite graph representation,
and also found the metabolite connectivity distribution to follow a power law.
Thus, both Jeong et al. and Wagner and Fell have shown that the degree
distribution of metabolic networks follows a power law like many other real-
world networks [1], a behavior that is very different from that arising in random
graphs [13].

A power law degree distribution implies that although most metabolites
participate in only a few reactions, a few instead participate in many reactions.
The metabolites that have high degree and participate in a large number of reac-
tions are called hubs of the network. Examples of hubs include ATP which pro-
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Figure 1: Different graph-theoretic representations of a metabolic net-
work. (a) Bipartite graph representation for the three reactions, HEX1, PGI
and PFK, in the glycolytic pathway. In the figure, reactions are depicted as
rectangles and metabolites as ovals. Reversible reactions are shown in grey and
irreversible reactions in white. The primary or other metabolites (white ovals)
are distinguished from ubiquitous currency metabolites (grey ovals) in each
reaction. If a reaction is reversible, then the links connecting the reaction to its
reactant and product metabolites have arrows in both directions. (b) Unipartite
metabolite graph representation for the three reactions in the glycolytic
pathway obtained by omitting links associated with currency metabolites.
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vides the transfer of a phosphate group, NADH which provides the transfer of
electrons, etc. A closer look at high degree metabolites revealed that they were
either carriers of small biochemical groups, or precursors linking catabolism
to anabolism [14, 15]. Tanaka and Doyle have classified the metabolites in the
metabolic networks of H. pylori and E. coli into three separate biochemical
categories: carriers, precursors, and “others”. They have analyzed the degree
distribution of metabolites in the three categories separately, and found the
distribution in each category to be close to exponential rather than power like
[14, 15]. Recently, Samal and Martin [16] have studied the degree distribution
of carriers, precursors and other metabolites separately for all reactions in
the much larger KEGG database, and have also found the distributions to be
different in the three categories.

The degree of a reaction in the bipartite metabolic graph is given by the
number of metabolites that participate in it. Although the metabolite degree
distribution follows a power law, the reaction degree distribution is found to
be much different [14, 15, 16]. In contrast to metabolites, reactions do not
have very high degree in the network, and most reactions involve exactly
4 metabolites. Of the 4 metabolites in a typical reaction, two metabolites
belong to the category other (these have low degree) and the remaining two
metabolites are carriers (with high degree) in most cases (cf. Fig.1(a)). Tanaka
and Doyle have argued that this simple structure of a typical reaction involving
4 metabolites (two primary metabolites of type other along with two carrier
metabolites transferring a small biochemical group) can explain the emergence
of a broad degree distribution when considering all metabolites in the network
[14, 15]. Samal and Martin [16] have shown that similar conclusions also hold
when considering all reactions in the larger KEGG database.

2.2 Path length and clustering coefficient

The shortest path and thus distance between nodes i and j in a graph is defined
via the minimum number of links that have to be traversed to reach node j
from node i. The average path length of a graph is defined as the average of
this length when considering all pairs of nodes in the graph. The diameter
of a graph is defined as the supremum of the shortest paths between all pairs
of nodes in the graph. Finally, the clustering coefficient of a node in a graph
quantifies the extent to which its neighbours are connected to one another, and
is given by the number of links between these nodes divided by the number of
links that could possibly exist between them [17].

Both Jeong et al [11] and Wagner and Fell [12] found the average path
length between metabolites in metabolic networks of different organisms to
be between 3 and 4, which is close to value expected in a random graph with
similar average connectivity. However, the average clustering coefficient of
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metabolites in metabolic networks of different organisms was found to be
much higher than expected, i.e., higher than would occur in a random graph
with the same average connectivity [11, 12, 18]. These studies concluded that
metabolic networks of organisms exhibited the small-world [17] property due
to high clustering and small average path length between metabolites in the
network.

Arita [19] constructed a modified directed metabolite graph from the E.
coli metabolic network by connecting two metabolites if at least one carbon
atom is transferred between them. This modification better accounts for the
actual function of the biochemical reactions arising in the metabolic network.
Using this more meaningful graph representation of metabolic network, Arita
measured the average path length between metabolites to be 8.4. In a similar
vein, Ma and Zeng [20] constructed a directed metabolite graph of the meta-
bolic network by removing the connections through the ubiquitous currency
metabolites and accounting for the preferred directionality of reactions in the
network (cf. Fig.1(b)). Using this biochemically-motivated unipartite graph,
Ma and Zeng also found the average path length between metabolites to be
close to 8. These two studies show that when one accounts for the transfer
of biochemical groups, directionality of reactions and activity of reactions in
a more biochemically meaningful way, structural properties of the metabolic
graph are changed. In particular, in this case the average path length is much
larger than the one obtained by Jeong et al and Wagner and Fell. For the
biochemically meaningful unipartite graph, Samal and Martin [16] also find
the clustering coefficient between metabolites to be much smaller than that
obtained by Wagner and Fell [12] and Ravasz et al. [18].

2.3 Topological versus functional robustness

Metabolic networks have been shown to follow a power law degree distribu-
tion, or at least to have heavy tailed distributions, much like what happens
in many natural or man made networks. It has been suggested that one of the
important consequences of power law degree distribution is the vulnerability of
the network to selective attack on hubs while being robust to random deletion
of nodes. Note that most nodes are of low degree and their deletion does not
affect much the average path length between the remaining nodes in the net-
work [21]. For example, in the case of the internet, the removal of high degree
nodes corresponding to routers with many connections can turn out to be fatal
for the communication system [21]. Similarly, for the S. cerevisiae protein-
protein interaction network, the essentiality of a protein was also found to be
correlated positively with the degree of the protein in the network [22]. Finally,
Jeong et al. showed that the sequential removal of high degree metabolites
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from the metabolic network results in a sharp rise of the network diameter
due to disintegration of the network into small isolated clusters while the
removal of any randomly chosen set of metabolites from the network generally
leaves the average path length between the remaining metabolites unaffected
[11]. This observation led Jeong et al. to conclude that the hubs of the
metabolic network are crucial for maintaining overall structure and function
of the network. Although the role of high degree metabolites or hubs in
maintaining the overall topological structure of the metabolic network was
well emphasized in the study by Jeong et al., the functionality of the different
nodes in metabolic networks remained unexplored. Perhaps surprisingly, low
degree metabolites can play an essential role in maintaining metabolic function
[26]; we now explain this point.

In case of metabolic networks, metabolites participate in reactions where
they are produced or consumed, and the reaction process can be controlled
through the catalyzing enzyme which is a gene product. It is unclear how a
biological process can lead to removal of metabolites from the network. A
removal of high degree metabolite from the metabolic network would require
the knockout of all genes whose products catalyze various reactions in which
the metabolite participates. Instead, genetic mutations give rise to enzyme or
reaction knockouts in the network. Thus, in case of metabolic networks, one
is interested in determining the effect of removing a reaction rather than the
effect of removing a metabolite. The computational technique of flux balance
analysis (FBA) [23, 24] can be exploited to study fluxes through reactions
and thus can be used to determine essential reactions for growth in metabolic
networks. Using FBA, Mahadevan and Palsson [25] measured the lethality
fraction for each metabolite in the metabolic network. The lethality fraction of
a metabolite in the metabolic network is given by the fraction of the reactions
in which the metabolite is involved as a substrate or a product that are essential
for growth. The lethality fraction for different metabolites was shown to be
uncorrelated with the degree of the metabolite, and low degree metabolites are
just as likely to be critical to the overall network as the high degree metabolites
[25]. However, Samal et al. [26] showed that almost all essential reactions
are explained by their association with low degree metabolites; the essential
reactions may involve other metabolites of higher degree, but their essentiality
is due to their special production or consumption of an intermediate low degree
metabolite that is needed for the eventual production of biomass. Thus, from
a consideration of functional robustness or fragility of metabolic networks to
naturally occurring perturbations, Samal et al. showed that it is the role of
low degree metabolites that needs to be considered rather than high degree
metabolites. This picture is opposite to what arises in protein interaction net-
works mentioned previously where high degree proteins are generally essential
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[22]. These findings also suggest that the fundamental properties of a flow
based network (such as metabolic network) can be significantly different from
an “influence” based network (such as a protein-protein interaction network)
[25, 26].

2.4 Bow-tie architecture

Given a directed graph, a strongly connected component is a maximal set of
nodes such that for any pair of nodes i and j in that set there is a directed path
from i to j and one from j to i [27]. In general, a directed graph may have
one or many strong components. The strong components of a graph consist
of disjoint sets of nodes. The strong component with the largest number of
nodes is designated as the largest strong component or “giant component”.
Given the giant component, one can define its “in-component” as the set of
other nodes from which there exists some directed path to the giant component.
Similarly one defines the “out-component” as the set of other nodes that can
be reached from the giant component by following directed paths. The set of
nodes that have no path to or from the nodes in the giant strong component
forms the “isolated” subset. Broder et al. decomposed the nodes in the graph
corresponding to the World Wide Web (WWW) into the four components:
giant strong component, in-component, out-component and isolated subsets.
They obtained a ‘bow-tie’ macroscopic structure for the WWW with the giant
component accounting for more than 25% of the nodes in the graph [28].

Following the approach of Broder et al., Ma and Zeng [20] have explored
the global connectivity structure of the metabolic network by constructing
a directed unipartite metabolite graph (cf. Fig.1(b)) and decomposing the
metabolite nodes into the above mentioned four components. This study re-
vealed a “bow-tie” macroscopic structure of the metabolic network with the
giant component accounting for approximately 30% of the metabolites in the
network [20], similar to that observed by Broder et al. for the World Wide
Web [28]. Csete and Doyle have argued that such a bow-tie architecture of
the metabolic network with a conserved core and plug-and-play modularity
around the core can contribute toward robustness and evolvability of the system
[29, 15].

3 In what sense are metabolic networks remarkable?
3.1 Meaningful randomization benchmarks

In the past decade, research on the large-scale structure of metabolic networks
have revealed remarkable features such as power-law degree distribution, high
clustering, small average path length and bow-tie architecture. To quantify the
significance of such salient properties, it is appropriate to test the hypothesis
that the observed value in the real network is not statistically different from
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that expected in a null model. The observed structural properties of metabolic
networks clearly distinguish them from those arising in random graphs. How-
ever, random graphs are inappropriate null models to quantify the significance
of observed properties in metabolic networks because they ignore all potential
relevant underlying factors that constrain these networks.

The most commonly used null model to test the significance of observed
properties in real biological networks uses randomization procedures based on
edge exchange to generate randomized networks starting from the original net-
work for comparison [30, 31]. This edge exchange randomization procedure
preserves the degree of each node as given in the original network. But, in the
case of metabolic networks, edge exchange randomization generates “random”
fictitious reactions violating balance of mass, charge and atomic elements, and
such reactions are biochemically meaningless. Hence, randomized metabolic
networks generated by edge exchange randomization are inappropriate for
comparison with real networks. To overcome this problem, Samal and Martin
[16] have recently developed a new method to generate randomized ensembles
of metabolic networks which properly takes into account biochemical and
functional constraints arising in metabolic networks. These can then provide
sensible benchmarks when asking which features of metabolic networks are
“remarkable”.

3.2 Role of biochemical and functional constraints in shaping metabo-
lic network architecture

To test the significance of any property of real metabolic networks, Samal and
Martin [16] have generated randomized ensembles of networks by successively
imposing the following macroscopic constraints:

(a) The randomized networks contain only valid biochemical reactions which
satisfy atom, mass and charge balance. This is achieved by restricting
the set of allowed reactions to those in a validated database such as
KEGG, i.e., reactions that are known to occur in real organisms.

(b) The number of reactions and metabolites in each network in the random-
ized ensemble is fixed to that in the metabolic network of the reference
organism to be benchmarked.

(c) Each network in the randomized ensemble satisfies the functional con-
straint of allowing growth under defined chemical environments. The
computational technique of flux balance analysis (FBA) [23, 24] is used
to determine the ability of each randomized metabolic network to pro-
duce all biomass components under each defined chemical environment.
This constraint incorporates into the modeling and the benchmark en-
semble the ability of living organisms to grow and reproduce.
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Samal and Martin exploited a previously developed Markov Chain Monte Carlo
(MCMC) based method [32] to sample spaces of metabolic networks. They
found [16] that MCMC could be used to generate at will metabolic networks
incorporating the above-mentioned biochemical and functional constraints.
They then studied in this randomized ensemble global structural properties
such as degree distribution, clustering coefficient, average path length and
size of largest strong component. By comparing the structural properties of
networks in the randomized ensemble with that of the E. coli metabolic net-
work, they found the structural properties of the randomized ensemble to be
close to that of the real organism. Thus, this study [16] indicates that the
observed global structural properties of real metabolic networks are likely to
be consequences of the simplest biochemical and functional constraints. Such
a possibility was conjectured earlier in Refs. [33, 34] but direct evidence is
now available, albeit from computations in an in silico framework.

Discussion and conclusions

On first glance, metabolic networks share common structural properties found
in other “complex” networks. A striking such property is the fat tail in the
distribution of degrees. Indeed, studies on different organisms have exhibited
power law distributions for the metabolites in those organisms’ metabolic net-
works [11, 12]. This feature can be traced to “currency” metabolites, thus
called because reactions use them to transfer small groups; they reflect the
way biochemistry functions. The fat tail in the metabolite degree distribution
can then be considered to come from a “universal” use of these currency
metabolites; nature seems to prefer to use these metabolites over and over
again for transfers on different molecules rather than having different cur-
rency metabolites for different substrates. This justification is quite specific
to metabolic networks and does not connect directly with a mechanism that
could apply to general complex networks. Another feature that sets metabolic
networks apart from other commonly studied networks is the dual nature of
the network nodes: these correspond to either reactions or to metabolites,
with very different characteristics. In particular, the degree distribution of the
reaction nodes has no fat tail at all.

Further structural features like clustering or the small world property, as
found in different natural and artificial networks, are also seen in metabolic net-
works [13, 1]. However the fact that metabolites fall into different biochemical
categories (currency metabolites being one of these) means that many different
treatments of the network are possible to reach a graph-based representation.
Depending on the treatment, the conclusions for the structural properties can
be different. In particular, in the simplest treatment which ignores metabolite
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categories [12], one has high clustering and the small world property, but both
of these features go away with the more sophisticated treatment that handles
currency metabolites separately [19, 20]. Thus again metabolic network struc-
tural properties are not those of the standard complex network picture, in spite
of many early claims.

Clearly metabolism is complex, sufficiently to include numerous subtleties
that set it apart from other network based systems. Nevertheless, one is left
with the problem of explaining the salient features of these networks. At
present, the power law distribution of the metabolite degrees remains unjus-
tified, at least at a quantitative level. The situation seems better for the other
structural properties: as argued by studying in silico genome-scale metabo-
lic models [16], there is a good chance that the biochemical and functional
constraints underlying cellular metabolism constrain the architecture of any
metabolic network to have the characteristics found experimentally. As a
cautionary note, this conclusion does not exclude the possibility that other
forces such as robustness, evolutionary innovation etc. also shape to some
extent structural properties of metabolic networks.
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Abstract

The discoveries of periodic motions of yeast cells of around a kHz and of sonic
communication between bacteria open up a new and exciting field. It is now
apparent that prokaryotic, like eukaryotic, cells are highly structured and very
crowded. In general, transcription and translation are coupled in bacteria and
the density of ribosomes is high. When synthesizing proteins, these ribosomes
go through the same limited cycle of movements. Here, we propose that these
movements become synchronised to create periodic oscillations of the entire
cell and speculate that this synchrony plays a role in determining the phenotype
and in communication.

1 Introduction

Two pendulum clocks of identical frequency mounted on a common wall tend
to synchronise such that they swing in opposite directions. Such coupled
oscillations were first described by Huygens in 1665 and are still the subject of
study [1, 2]. Cells are full of macromolecules going through limited cycles of
conformational changes and these macromolecules are often either in contact
with one another or very close in a crowded cytoplasm and membrane. The
question therefore arises as to whether the periodic movements of these macro-
molecules become coupled. Evidence has been obtained for nanomechanical
movements in eukaryotes [3] and for sonic communication in bacteria [4]. Do
these phenomena result from coupled oscillations and, if so, of what?

The transcriptional and translational machinery and, in particular, ribo-
somes, make up the bulk of the mass of bacteria such as Escherichia coli during
growth in rich media [5, 6]. Much of this machinery is organised into hyper-
structures, extended macromolecular assemblies, that include hyperstructures
in which transcription and translation are physically linked [7, 8]. We propose
here that the coupled oscillations of ribosomes are important in the physiology
of bacterial cells and we suggest how our proposal might be investigated.
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2 The model

The movements of ribosomes become synchronised within the bacterial cell
when ribosomes are translating the mRNAs within a transcription-translation
hyperstructure. This occurs because these movements are coupled via the
mRNA that connects them and via the changes in water structure that result
from their movements. Consequently, the hyperstructure itself pulsates. Such
hyperstructure pulsations themselves become synchronised and the result is
a bacterium that oscillates. These oscillations may constitute the basis for
physical communication between bacteria and between bacteria and eukaryotic
cells.

3 The evidence

3.1 Ribosomes go through a limited cycle of movements

Each ribosome has three sites: the A site, the P site, and the E site. The A site is
where the aminoacyl tRNA enters (except for the first aminoacyl tRNA, fMet-
tRNAfMet, which enters at the P site). The P site is where the peptidyl tRNA is
formed. The E site is where the now uncharged tRNA leaves after it has given
its amino acid to the growing peptide chain. Elongation of the polypeptide
chain starts when the fmet-tRNA enters the P site, causing a conformational
change that opens the A site to allow the new aminoacyl-tRNA to bind. This
binding is facilitated by elongation factor-Tu (EF-Tu), a small GTPase. At this
stage, the P site contains the start of the peptide chain whilst the A site has
the next amino acid to be added to this chain. Then the growing polypeptide
connected to the tRNA in the P site is detached from the tRNA in the P site
and a peptide bond is formed between the last amino acid of the peptide chain
and the amino acid still attached to the tRNA in the A site. At this stage,
the A site has the newly formed peptide, while the P site has an uncharged
tRNA. In the final stage of elongation, translocation, the ribosome moves 3
nucleotides towards the 3’ end of mRNA. Since tRNAs are linked to mRNA
by codon-anticodon base-pairing, tRNAs move relative to the ribosome taking
the nascent polypeptide from the A site to the P site and moving the uncharged
tRNA to the E exit site.

3.2 Ribosomes are close to one another

The pioneering microscopy of Miller and coworkers showed that translation
is completely coupled to transcription in E. coli [9, 10]. Calculations showed
that when the E. coli lac operon is induced in an exponentially growing culture,
where it is present at more than one copy, the numbers of transcripts of lacZ
per cell are 32 full length, 32 decaying and 38 nascent [11]; lacZ is 3063 nu-
cleotides long and under these conditions the RNA polymerases and ribosomes

58 MODELLING COMPLEX BIOLOGICAL SYSTEMS



are 135 and 110 nucleotides apart respectively. This works out to around 300
ribosomes [12]. Ribosomes can be as little as 35 nucleotides apart along the
mRNA but the question is, how close are they in 3-D? Recently, cryoelectron
tomography and a template-matching approach have been used to localise
ribosomes in vitrified bacterial translation extracts and in lysates of active
E. coli spheroplasts [13]; neighbouring ribosomes in polysomes were densely
packed and had a pseudo-helical organization along the mRNA. Nuclear mag-
netic resonance spectroscopy has shown that the NusG protein (which binds
RNA polymerase) binds to a protein identical to the ribosomal protein S10
to link, it is proposed, transcription and translation in E. coli [14]. Also
recently, fluorescence microscopy of E. coli and Caulobacter crescentus has
shown that mRNA is colocalised with the gene that encodes it, consistent with
the widespread existence of transcription-translation hyperstructures in which
translating ribosomes are cheek-by-jowl [15].

3.3 Coupling between ribosomes

How might ribosomes be coupled so as to move in synchrony à la Huygens?
Firstly, ribosomes are connected by a common mRNA. The average numbers
of ribosomes within E. coli polysomes were estimated as 4, 8, and 11 depend-
ing on the length of the mRNA [13]. Naively, one would expect the displace-
ment of the mRNA through one ribosome to influence the displacement of
that same mRNA through the neighbouring ribosome. Secondly, there may
be direct physical connections between ribosomes: “An additional density,
presumably involving the L1 stalk region, appears to bridge the gap between
two ribosomal neighbors in polysomes. This contact may induce a prefer-
ential orientation of polysomal neighbors” [13]. Thirdly, elongation factor
EF-Tu, which is essential for protein synthesis, has long been suspected to
be a bacterial actin [16]. Ground-breaking work has shown that EF-Tu forms
cytoskeletal filaments with which the ribosomes are associated [17, 18], more-
over, these filaments are dynamic and are associated with another cytoskeletal
protein, the actin-like MreB [19]. Hence, an EF-Tu cytoskeleton (or, more
exactly, an enzoskeleton [20]) could couple both the movements of actively
translating ribosomes within the same hyperstructure and the movements of
different hyperstructures. Fourthly, the insertion of nascent proteins into the
cytoplasmic membrane during transertion increases its microviscosity [21].
The changes in the state of the phospholipids as proteins are inserted could
couple the way they are inserted. Fifthly, there is water (see below).

3.4 Water structures change during translation

Water is believed by some specialists to form more than one structure within
cells [22, 23, 24]. In the two-state model, water is considered as a temperature-
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dependent, fluctuating equilibrium between two types of local structures: low
density water (LDW) and high density water (HDW); this equilibrium is driven
by incompatible requirements for minimizing enthalpy via strong near-tetra-
hedral hydrogen-bonds to give LDW and for maximizing entropy via non-
directional H-bonds to give HDW. LDW with its strong, straight H-bonds has
a density of 0.91 g/ml whilst HDW with its bent, weak H-bonds has a density of
1.2 g/ml and, since their hydrogen bond strengths are different, microdomains
of LDW and HDW differ in all physical and chemical properties [24]. It has
been proposed that the folding and functioning of enzymes results from these
properties and that catalysis by enzymes entails the redistribution of LDW
and HDW [25]: “There is a crucial functional connection between the force
that drives folding of an enzyme and reactions that it catalyses. When water
can move to abolish osmotic pressure gradients created by selective uptake
of solutes into HDW or LDW, it does so with some decrease in the partition
coefficients of the reactants. When water is prevented from moving, partition
coefficients are unchanged, increased or transiently inverted.” Assuming that
this holds for translating ribosomes, water structures should be moving as ATP
and GTP are hydrolysed and as the peptide bond is made. Such movements
in water structures might couple the movements of ribosomes to one another.
Indeed, the synchronisation of ribosome movements and related changes in
water structure might be expected to have co-evolved so as to minimise the
energy needed for protein synthesis.

3.5 Eukaryotic cells exhibit coherent vibrations

In vivo, Saccharomyces cerevisiae (baker’s yeast) has periodic motions in the
range of 0.8 to 1.6 kHz with amplitudes of approximately 3 nm as measured
using an atomic force microscope [3]. The magnitude of the forces observed
(10 nN) led the authors to suggest that “concerted nanomechanical activity
is operative in the cell” whilst the calculated activation energy of 58 kJ/mol
was interpreted as implicating molecular motors such as kinesin, dynein, and
myosin in the motions. Another, perhaps complementary, interpretation is that
ribosomes were responsible.

3.6 Bacteria communicate sonically

In a bold and original series of experiments, it was found that a variety of
bacteria can emit a physical signal that helps Bacillus carbophilus grow on
agar containing erythromycin or streptomycin or high concentrations of salt
[4, 26]. This signal was taken to be sonic since it could be transmitted through
sealed Petri dishes and through an iron barrier [27] (although there are other
possibilities [28]). Moreover, continuous single sine sound waves produced
by a speaker at frequencies of 6-10, 18-22, and 28-38 kHz promoted colony
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formation by B. carboniphilus despite the stress of high KCl concentration and
high temperature. Sound waves emitted from Bacillus subtilis at frequencies
between 8 and 43 kHz with broad peaks at approximately 8.5, 19, 29, and 37
kHz could also be detected directly leading to the proposal that these sound
waves function as a growth-regulatory signal between cells [29].

4 Predictions

1. Atomic Force Microscopy should confirm that individual bacteria also
oscillate on the nm scale at sonic frequencies.

2. Sonic oscillations should be detectable in vitro during transcription and
translation in extracts of bacteria [30].

3. The frequency of oscillations should be altered in vivo when drugs are
added to inhibit translation, when ribosomes are altered by mutations to
the translational machinery (rRNA, rproteins, tRNA, tRNA synthetases,
EF-Tu etc.), and following a major change to the codon composition of
the bacterium (for example, so as to slow translation). The T7 system
might be used in the last case since this allows a gene (of chosen codon
composition) to be expressed whilst the native genes are silenced [31].

4. Bacteria are in different states in different parts of a colony and these
bacteria should have different periods of oscillation.

5. The generation of synchronised movements by ribosomes (and its possi-
ble consequences on cellular organisation) should be observed in silico
in stochastic automata such as HSIM [32].

5 Discussion

The existence of periodic motions in the sonic range in bacteria raises interest-
ing questions [28]. What generates such motions? Is it generated by contractile
proteins such as myosin [3] (which has yet to be found in bacteria despite a
search for it [33]), or by ribosomes (as proposed here), or by an ensemble of
different enzymes in the cell (DNA gyrase, helicases, polymerases etc.)? What,
if any, is the function of such motions? Is it in communication between cells?
Does it allow communication between the same species of bacteria in a colony
or even between different species (including between bacteria and yeast) in a
mixed biofilm? Is it important in the determination of the phenotype and, in
particular, the regulation of the cell cycle - for example, by contributing to a
dialogue between hyperstructures [7]? If it has a function, how might periodic
motions be altered so as to alter, for example, pathogenesis? Answering these
questions will require bold, interdisciplinary collaborations.
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Abstract

The aim of the project is to propagate artificial nucleic acids in a microbial
cell, for which an uptake system and a processing apparatus for exogenous
activated precursors need to be developed. The key accomplishment would
be the expression of an artificial aptazyme in the cell, catalyzing an essential
metabolic reaction. Such reprogrammed microorganism could become a new
instrument for avoiding genetic pollution when performing experiments in
synthetic biology. The seminar will primarily deal with discussing the tools
that need to be developed to reach this ambitious goal.

1 Introduction

The first gene was synthesized in 1971 by the group of H.G. Khorana [1]. In
contrast to progress in gene-analysis, progress in the synthesis of genes and
genomes has been very slow. 40 Years have elapsed between the synthesis of
the first gene and the synthesis of the DNA of a Mycoplasma. The chemo-
enzymatic method used for this synthesis is based on technologies that have
been developed in the previous century. All technologies for genome synthesis
are available, which means that more and more examples will show up of lab-
oratories that will synthesize the DNA of always more complex organisms. In
line with this, genetic reprogramming of organism and directing their evolution
is also within reach of most microbiological laboratories because it is based on
established technologies such as the use of synthetic oligonucleotides, directed
mutagenesis and amplification techniques. The observation that the genome of
microorganism can be synthesized and manipulated is considered by some or-
ganizations as a threat to the natural ecosystem and it asks for the development
of radically new approaches to avoid genetic pollution when designing and
using newly engineered microorganism. As the use of such microorganisms
for the production of food, drugs, energy and chemicals has become inevitable,
our choices are limited.
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2 Discussion

Synthetic biology has been defined as a new science that is focused on the
re- engineering of natural biology, based on circuit design, bioinformatics and
systems biology. We propose that we could preserve the natural ecosystem
in a better way than proposed before, by developing new biologicals, based
on synthetic (bio)chemicals and evolutionary enzymes that need to be imple-
mented in vivo, and that the resulting microorganism should be used as chassis
to perform ‘classical’ synthetic biology experiments. Therefore, we would
like to develop information systems that are synthetically and functionally
isolated within a cell and that are not able to communicate its information
with natural nucleic acids, which brings us to the principle of orthogonality (in
this case, orthogonality is, in first instance, defined as lack of communication
between information systems). Indeed, Nature works with only two types of
nucleic acids (DNA and RNA) and only one type of building blocks (nucleo-
side triphosphates). A third type of nucleic acid (XNA) should be selected that
could be synthesized within a cell starting from non-natural precursors. This
XNA should be replicated and propagated in an autonomous way (without
making use of cellular enzymes). It should form its own genetic enclave,
not able to infiltrate the genome of the cell and vice versa. This orthogenetic
system could form the foundation of a xenobiology.

To realize a xenobiology platform in its most rudimentary form, we have
started four different scientific projects which need to be worked out in parallel
and in a coherent way, as they need to be integrated. The first is the selection
and in vitro replication of a third type of nucleic acids (XNA) with an alter-
native backbone motif. The second is the development of an uptake system
for the precursors of XNA in reprogrammed host cells. The third project is to
evolve a polymerase that is able to propagate XNA, but not DNA and RNA.
The fourth initiative is to design an aptazyme which contains information for
one selectable function which is indispensable for the survival of the host
cell. The three cornerstones of a living system, information, metabolism and
catalysis, need to be implemented in a new biological network.

For the selection of XNA, initially we prefer to develop sugar modified
nucleic acids, as a reliable base pairing system for communication with natural
DNA is important in the first stage of the project i.e. when there is still a need
to use information from a natural cell to develop the necessary tools (poly-
merases). Chemically, the first XNA should resemble the natural polymers but
differ structurally enough from DNA and RNA so that its function and biosyn-
thesis can be uncoupled from the natural system. The first examples which will
be studied are HNA and CeNA. These are chemically and enzymatically stable
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information systems, able to communicate its information with natural nucleic
acids. dsHNA [2] and dsCeNA [3] form a helical structure which slightly
deviate from the classical type A and type B. The presence of an additional
carbon atom in the sugar ring could result in a steric advantage to evolve to
an orthogonal system. The analysis of the helical parameters of dsHNA and
dsCeNA, which forms the basis of this selection, is based on x-ray studies.
An important difference between HNA and CeNA is that the latter information
system is expected to be conformationally more flexible, would this be im-
portant to function in biology. This flexibility has been demonstrated as well
by modeling experiments, NMR and x-ray analysis. Further selection criteria
for an orthogonal information system are based on the helical parameters of
its duplex structure. We have analyzed helical parameters such as slide, shift
or twist in function of the helicalization process itself, which is a selection
criterium for orthogonality [4]. One of the interesting new examples coming
out of this study is xylo-DNA, which is as well a very flexible information
system as structurally orthogonal to the natural nucleic acids [5].

Figure 1: Structural overview and comparison to NMR solution structure of a RNA-
HNA duplex [6] h(3’GCGATGCG5’) r(5’CGCUACGC3’)

The active site of a polymerase positions the triphosphate moiety of an
incoming nucleotide in line with the attacking secondary hydroxyl group at
the end of the growing nucleic acid chain. A wide variety of sugar modified
nucleotides are accepted as substrate by several polymerases. Even pyranosyl-
type nucleotides can be incorporated in DNA in an enzymatic way, although
they are not prime candidates as orthogonal information system [8].

When using HNA as prototype, we have demonstrated that type B DNA
polymerase and terminal transferase shows DNA dependent HNA polymerase
activity and that DNA polymerase I (E.Coli) demonstrates as well HNA de-
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Figure 2: Side (top) and top (bottom) view of the molecular structure for the
CeNA:RNA hybrid [7].

pendent DNA polymerase activity as initial HNA dependent HNA polymerase
activity [9]. DNA polymerase B and HIV reverse transcriptase shows DNA
dependent CeNA polymerase and CeNA dependent DNA polymerase activ-
ity. The kinetic parameters for incorporation of one or two modified nu-
cleotides are generally very similar to the parameters found for natural nu-
cleotides. However, polymerases generally hold after the incorporation of
two to three modified nucleotides. Therefore, to facilitate development of
XNA-based replicons and episomes, it will be necessary to develop mutant
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polymerases able to synthesize new polymers of gene length and to use them
as template for the propagation of information. For that reason, a program
for the directed evolution of polymerase for the replication of XNA has been
established, based on the compartmentalized self-replication process. This
process is based on a selection system of mutant libraries where a polymerase
replicates its own encoding gene and the compartmentalization is responsible
for linking phenotype to genotype. An in vivo evaluation system is based on
the availability of prototrophic transformants of an E.coli strain lacking an
active gene for thymidylate synthase [9]. The correct copying of a message
encoded in XNA is mandatory for survival of the microorganism. Another
very helpful enzyme for diversifying nucleic acids in vivo would be an XNA
ligase i.e. a ligase that accepts XNA as substrate to produce long stretches of
XNA for making whole genes and episomes.

Figure 3: Structures of amino acid 2’-deoxynucleoside-5’-monophosphate deriva-
tives used in the HIV RT incorporation assays.

Moreover, it will be difficult to install additional nucleoside triphosphates
in a cell without interfering with DNA and RNA metabolism, cell energy
supply via respiration or substrate-level phosphorylation. Indeed, energy stor-
age and genetic functions in a cell, both rely on phosphoanhydride formation
and pyrophosphate (phosphate) release. The use of alternative leaving groups
could result in an additional level of synthetic and functional isolation, distinct
from canonical nucleic acids without having to physically separate precursors
from XNA from these of DNA and RNA. The ideal properties of a leaving
group to function for the enzymatic synthesis of XNA are: soluble in water
and chemically not too unstable, to be accommodated in the active site of
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polymerases and to react as substrate for the enzyme, to undergo productive
elongation, the chemical choice of the leaving group should be mechanism-
based, the leaving group should be actively degraded or recycled to common
metabolites so as to render the polymerization irreversible. Based on the model
structure of the accommodation of dATP in the active site of polymerases and
on the knowledge of the mechanism of the polymerization process itself, we
have predicted and evaluated new series of leaving groups for the enzymatic
synthesis of DNA using reverse transcriptase as catalyst [10]. We observed that
aspartate could function as alternative for pyrophosphate in the polymerization
of DNA. Watson-Crick rules and Michaelis-Menten kinetics are respected and
the process is stereospecific. Initial concerns about incorporation kinetics
(the Vmax is similar to that of dATP, the Km is lower) and the observed
stalling after incorporation of two to three nucleotides, could be overcome by
selecting other chemical entities as leaving group such as phosphono-alanin
and iminodiacetate. Molecular modeling demonstrates that the amino acids
located in the active site of the polymerase and involved in the binding of
these leaving groups are very conserved. An important issue is that those
leaving groups are potential metabolically accessible. Further optimization
of the kinetic properties and selectivity of the polymerases will be done by in
vivo evolution.

Figure 4: Model structures of 3-phosphono-L-Ala-dAMP in the RT dNTP pocket.
The residues Asp 110, 185 and 186 anchor the 2 Mg2+ ions. Possible stabilization
of the carboxyl function and the phosphonate function in the leaving group by Arg 72
and Lys 65 is indicated [11].
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Figure 5: Example of a pyridine-peptide delivery system as potential substrate for
oligopeptide permease.

It will be important that the nucleotide precursors can be taken up by the host
cell using an active uptake process. A delivery system for nucleotides could
make use of oligopeptide permeases, the ligand-binding site shows a broad
substrate specificity and accepts chemical groups of large diversity (di- to
pentapeptides). Those permeases are part of a larger group of transport systems
i.e. ATP-binding cassette transporters. We have obtained a first prototype for
delivery of nucleotides that could function as substrate for the transporter. This
consists of a pyroglutamyl protected tripeptide, a lateral pyridoxal moiety and
a nucleotide loaded on a serine residue. It is hypothesized that, following
transport into the bacterial cytoplasm, the pyroglutamyl group could be de-
blocked by a specific aminopeptidase liberating a free amino group that could
be involved in the catalytic process to deliver the laterally attached nucleotide.
Intracellular delivery of the nucleotide could be accomplished by a pyridoxal-
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catalyzed elimination of the nucleotide, bound to the free amino group of the
serine residue, via formation of a Schiff base [12].

Obtaining metabolic dependency via the transcription of DNA into a cat-
alytic XNA (xenozyme), making use of the above described DNA depen-
dent XNA polymerase could be realized in several ways. For example, this
xenozyme could either catalyse an essential metabolic reaction, either catalyse
the synthesis of an essential cofactor, or the catalytic activity of the xenozyme
could become dependent on the availability of a synthetic cofactor. We have
started the first efforts to generate a ribozyme that catalyzes an essential reac-
tion for the synthesis of amino acids, making use of a synthetic cofactor. The
reaction itself is an aldol condensation reaction , which is a carbon- carbon
forming reaction, which creates beta-hydroxy-carbonyl compounds. In nature
aldolases catalyses this reaction through an imine mechanism. The selected
aldol reaction involves glycinate Shiff base formation with the help of a syn-
thetic cofactor (salicylaldehyde), followed by reaction with an aldehyde in the
presence of aluminium trichloride, giving rise to threonine- like compounds.
For selecting the catalytic RNA, a highly diverse RNA library is used follow-
ing iterative cycles of in vitro selection (Systematic Evolution of Ligands by
Exponential enrichment).

Figure 6: Systematic Evolution of Ligands by Exponential enrichment
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3 Conclusion

Realization of a xenobiology in a microbial cell, for applications in energy,
medicine, environment, food, requires a close collaboration between chem-
istry, biochemistry, biotechnology, genetica, microbiology. The final aim of
this project is to have access to a safe level of informational transactions in
engineered life forms.
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Abstract

Recent results from experiments, bioinformatics and theory indicate a strong
impact of spatial genome organization on the machinery of gene regulation.
One example is the periodic positioning of certain co-regulated genes on DNA,
which is found both for prokaryotes and eukaryotes [12, 11]. We follow the
hypothesis that distance minimization in 3D space under a solenoidal epi-
organization of the chromosome leads to weight maximization of regulatory
interactions. Using Boolean Threshold dynamics, we show that inhomogeneity
in interactions (”weak” and ”strong” links) increases robustness of regulatory
dynamics. Finally, we study the evolution of periodic organization under
different mutation operators, and different types of selective constraints.

1 Introduction

The exploration of epigenetic organization in biological organisms is at the
core of the post-genomic era. In itself, it is a typical Systems Biology en-
deavor, aiming to disentangle the complex interplay of different mechanisms
at different spatial and temporal scales - beyond sequence information in DNA
and Proteins - at work to establish information processing in living beings.

One particular example is the optimization of DNA transcription into RNA,
and its regulation by transcription factors (TFs). The ensemble of TFs in
organisms build up complex gene regulatory networks (GRN). Yet, many de-
tails of the genotype-phenotype map that arises from global GRN dynamics
are unknown. To explore the possible state space of GRN from first princi-
ples, theoretical approaches based on ensembles of Random Boolean Networks
(RBN) have been proposed 4 decades ago [10] and thoroughly explored by
methods adopted from statistical mechanics and nonlinear dynamics [6, 2, 16,
21, 25]. Recently, Boolean network-based approaches have been successfully
applied to reproduce state space and robustness of real GRN [15, 5] and,
using evolutionary optimization techniques, predictions on the relationships
between the robustness against different types of perturbations have been made
[4]. Yet, these studies are limited by several shortcomings immanent to the
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RBN abstraction. In particular, in these models constraints originating from
sequence structure and spatial extension of DNA are not considered, though
they play key roles in genome organization, adding an important layer of
epigenetic information to GRN. For example, it has been shown that both in
eukaryotes [8] and in bacteria [3] gene transcription occurs in discrete foci
(”transcription factories”) where several RNA polymerases are co-localized.
Hence we expect that, in order to optimize transcriptional control, genes should
also tend to co-localize in space. This idea is indeed supported by genomic
and transcriptomic analyses [11] that have shown that genes regulated by a
given TF and the regulator gene coding for this TF tend to be periodically
located along the DNA. This periodicity is consistent with a solenoidal epi-
organization of the chromosome, which would dynamically gather the inter-
acting partners into foci [12, 9] and thereby enhance the effect of TFs by
induction of local concentration effects [19]. Recent studies support the idea
that the genome as a whole dynamically self-organizes in space to optimize
information processing [7].

The organization of this paper is twofold: In section 2, we first introduce
the notion of hybrid GRN, modeled with discrete threshold networks that
are characterized by two classes of interactions: weak (or ordinary) links,
and strong (or privileged) links. The latter represent interactions (TFs and
regulated genes) that profit from local concentration effects. Using random
network ensembles, we investigate parameter ranges (in particular, the frac-
tion of strong links) where robustness of network dynamics is optimized. In
the second part of the paper, we extend an existing artificial genome model
[22, 26] by including information about 3D-distances between genes with
respect to a solenoidal genome organization. While different artificial genome
models based on sequence-matching mechanisms have been studied by sev-
eral authors [22, 1, 14], also addressing evolutionary optimization problems
[13, 20, 26] constraints induced by the spatial genome organization are usually
neglected. Using genetic algorithms, we investigate in section 3 the evolu-
tionary optimization of GRN interaction weights with respect to a solenoidal
epi-organization. We identify combinations of mutation operators particularly
successful for evolving this epigenetic organization, and formulate constraints
we have to impose on selection (fitness functions). In section 4, a discussion
of our results and concluding remarks are provided.

2 Effect of inhomogeneous weights on robustness of regulatory
dynamics

As a first step, we will develop a discrete dynamical network model that
takes into account spatial effects on regulatory interactions, parametrized in
the strength of interaction weights. Similar approaches have been investigated
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before, e.g., by assigning ”privileged interactions” to Boolean networks and
studying the dynamical constraints that emerge from this extension of the
Boolean network paradigm [17]. We will follow similar ideas, however, apply-
ing a more intuitive approach (rooted in statistical physics) for investigation of
the resulting phase space of network dynamics.

In certain contexts, e.g. assuming bivalent binding of TFs to distal binding
sites on DNA, DNA looping can induce strongly cooperative effects and lead
to fold increases of up to 100 in the efficiency of transcription regulation [28],
furthermore, models predict that at the same time fluctuations of transcription
are drastically reduced. More generally, without assuming specific binding
mechanisms, spatial proximity of reactive groups can induce local concen-
tration effects [19], whereby molecules that are close to each other interact
more efficiently. We now aim at integrating this type of effect into a discrete
dynamical network model, using a binary state space. Evidently, one problem
arises immediately: since concentrations of gene products are reduced to an
”on-off” description, concentration effects cannot be considered at the side
of regulators. However, it is well possible to consider effects at the side
of the targets, i.e. the regulated genes. More specifically, we assume that
local concentration effects due to spatial organization of the genome strongly
increase the weights of ”correctly positioned” regulatory interactions in gene
regulatory networks. In our model, regulatory interactions are discrete with
wij = ±1 for ”ordinary” links, while interactions exploiting positional effects
take higher values wij = ±W (e.g. W = 100). Note that this distinction
into two classes of interactions (”ordinary” and ”strong” links) - mainly to
facilitate analytical treatment - represents a strong idealization of the situation
in real genomes, yet, to some degree it is justified by the fold increase in
local concentrations that can be induced by spatial effects, as explained above.
The transcriptional state σi ∈ {−1, 1} of a gene i at time t (−1 meaning
”untranscribed”, +1 ”transcribed”) depends on its regulatory inputs at time
t− 1 through the transfer function:

σi(t) = sgn

∑
j

wijσj(t) + hi(t)

 . (1)

The threshold hi(t) is typically fixed to a constant value (e.g. zero), however,
we will later also consider fluctuations of hi as a model for the impact of
extrinsic noise on regulatory dynamics.

In the following, we consider randomly constructed GRN with N genes, a
total of Ktot interactions between those genes and Kw ≤ Ktot strong interac-
tions (wij = ±W ). We fix the average connectivity K̄ = K/N and vary the
fraction ρw = Kw/Ktot of strong interactions.
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2.1 Damage propagation and canalizing inputs in hybrid GRNs

Robustness of regulatory states, i.e. insensitivity against small, random per-
turbations of dynamics, is an important determinant of the persistence of phe-
notypes in biological organisms. Different types of perturbations have been
studied in this context. In damage propagation studies, the binary state of
a small subset of ”genes” (typically one gene) is inverted temporarily, and
the divergence between perturbed and unperturbed state trajectories (damage)
is measured. If the damage typically vanishes, the network is said to be in
the ”ordered regime”, if damage typically increases and leads to a different
dynamical attractor, the network is said to be ”chaotic”. Here, initial bit flips
(state inversions) can be interpreted as transient gene knock-outs (e.g. by
blocking their transcription for a limited time). A second type of perturbation
arises from random fluctuations (noise) in state updates. For discrete networks,
it is notoriously hard to give a biological interpretation of state noise due to the
missing time scale separation between elementary updates and global network
states. Hence, we shall apply a different concept and study threshold noise,
i.e. fluctuations of hi (cf. Eqn. 1), which have a well-defined interpretation
in terms of extrinsic noise, i.e. noise in regulatory dynamics that comes from
diverse environmental and intracellular influences [27].

Figure 1: Effect of input perturbations in hybrid GRN; perturbations that can
change the state of the regulated gene are shown in red. a) If only weak
regulatory inputs are present (thin arrows), all inputs can induce state changes.
b) For mixed inputs, only those with strong interaction weights (thick arrows)
can induce state changes - they act as canalizing inputs. c) The case when only
strong inputs are present, is equivalent to a).

Depending on their number of strong regulatory inputs, genes respond
differently to damage (bit flips of inputs). If only inputs of one type (weak
or strong) are present, any perturbation can change the state σi (cf. Fig. 1, case
a) and c)). For mixed inputs (Fig. 1 case b)), in most cases only the strong
interactions can lead to damage propagation. Hence, they act as canalizing
inputs [18] that completely determine the state of the regulated gene. In the
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following, we will apply the so-called annealed approximation [6] to derive
the average damage propagation behavior over the whole network as a function
of ρw.

2.2 Damage calculation: annealed approximation

We assume that all links have equal probability ρw to have a strong weight. It
follows that the density ρ(k, kw) of nodes that have k inputs, of which kw ≤ k
are strong ones, is given by

ρ(k, kw) = ρ(k) ·
(
k

kw

)
(1− ρw)k−kw · ρkw

w , (2)

where ρ(k) is the in-degree distribution of the underlying network graph (i.e.,
in our case, a Poissonian with mean K̄). Using an annealed approximation [6,
23], it can be shown that the average damage d̄ following a one-bit perturbation
(state flip) at time t = 0 is

d̄(t+ 1) =
N∑

k=1

k ρ(k, 0) ps(k) +
k∑

kw=1

kw ρ(k, kw) ps(kw)


+

N∑
k=3

[k/2]∑
l=1

1
2

(k − 2l) · ρ(k, 2l) ps(k − 2l) (3)

Here, ps(k) is the damage propagation rate for nodes with in-degree k, which
can be calculated analytically with combinatorial methods [23, 24]; it approxi-
mately decays∼ 1/

√
k. The second term on the right hand side of Eqn. 3 takes

into account input configurations where strong weight inputs of opposite sign
exactly cancel out, and hence perturbations of weak inputs can contribute to
damage. These cases can be avoided by random assignment of strong weights
from an interval [W−∆W,W−∆W+1, ...,W, ...,W+∆W−1,W+∆W ],
where ∆W is an integer with ∆W � W . Fig. 2 shows both cases (i.e.
identical valuesW = 100 for all strong weights (1), and random assignment of
strong weights from an interval [80, 120] (2), as explained above), for random
networks with average connectivity K̄ = 2.1. In both cases a transition from
chaotic (d̄ > 1 to ordered (d̄ < 1) dynamics is found for intermediate values
of ρw, however, for case (2) it is more pronounced than for case (1).

Finally, we investigate the effect of threshold fluctuations. The threshold
hi(t) (see Eqn. 1), usually set to zero, now can take values −1 or +1 with
probability ptf/2, respectively, and 0 with probability 1 − ptf , where ptf is
chosen at the order of 1/N . This type of fluctuation could be interpreted,
e.g., as extrinsic noise [27]. Here, we find a picture that is slightly different
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Figure 2: Left panel: Damage one time step after a one-bit state perturbation,
as a function of ρw, for K̄ = 2.1 and N = 128. Data points for W = 100
(+) and W ∈ [90, 110] (X) where averaged over 100000 network realizations
each. Lined curves are the respective analytical predictions from Eqn. 3.
Right panel: Damage due to threshold noise (ptf = 0.05), 10 time steps
after dynamics was started from identical initial states, for W = 100 (+) and
W ∈ [90, 110] (X). Details are explained in the text.

from the systems behavior for state flips: while for identical W a minimum of
trajectory divergence (i.e. maximal robustness) is found at intermediate values,
for case (2) it monotonously decreases and becomes maximal at ρw = 1. To
summarize, our damage propagation studies on ensembles of random, ”hybrid”
GRN (i.e. networks with mixed weak and strong interactions) suggest that
robustness is maximized either at intermediate fractions of strong interactions
- when state flips (transient knock-outs) are considered - or for networks with
a majority of strong links, when threshold fluctuations (extrinsic noise) dom-
inate. Hence, the optimal density ρw depends on which type of fluctuations
dominates the dynamics. From statistical network ensembles, however, we
gain only limited insight into possible optima of epigenetic organization; in
particular, it cannot be decided if those can be reached in an evolutionary
process, or not. This will strongly depend e.g. on the spatial constraints in
the genome, and on the types of mutations that can occur. These questions will
be addressed in the following section.

3 An artificial genome model with solenoidal epi-organization

3.1 Development of the spatial genome model

From a pure network model only limited insight into the interplay between
regulatory dynamics and spatial, epigenetic organization of the genome can
be gained. Hence, we improve the model by including 1) a sequence-based
artificial genome model that encodes both TF-DNA binding, and the positions
of genes and non-coding regions on DNA and 2) an abstract representation of
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the 3D distances between elements of the genome, based on the assumption of
a global genome organization according to a solenoidal structure.

Let us first define the underlying, basic artificial genome model (for details,
cf. e.g. [22, 26]). Randomly string together S integers drawn uniformly
between 0 and 3 (to provide correspondence to the ATGC alphabet of DNA).
Next, define a base promoter sequence of length lp to indicate the position of
genes in the genome, e.g. ’01010’. Wherever the promoter sequence occurs,
the next lg digits are specified as a ”gene” (coding sequence). Transcription
and translation into a protein sequence are abstracted into the transformation
s 7→ {(s + 1) mod 4} for each digit of the coding sequence. Binding sites
are determined by searching the genome for the protein sequence. If a match is
found, then the protein is a transcription factor (TF) that binds to that site and
that regulates the next downstream gene. In case there are multiple binding
sites of this TF for this gene, only one of them is counted for network con-
struction (the one which is closest to the gene coding for the TF, with respect
to the 3-dimensional distance defined in the following).

Figure 3: a) Schematic description of the artificial genome model (after [22,
26]). Base promotor sequences are marked in light blue; the next lg digits
define the gene (the coding sequence). Gene 1 produces a TF that binds to a
matching binding site (BS) upstream of gene 2, and regulates transcription of
gene 2. Iteration of this construction for all genes leads to an emergent, global
GRN structure. b) On top of a), we impose a solenoidal epi-organization with
period P . g1 regulates transcription of g2, g3 and g4, however only genes
g2 and g3 are aligned at distances of P bases, and hence in phase with the
solenoidal organization, while g4 is not. Therefore, interactions between g1,
g2 and g3 are stronger (thick green arrows) than between g1 and g4 (thin green
arrow).

Fig. 3 demonstrates the transformation of the 1D sequence of the artificial
genome into a 3D solenoidal structure. Assuming DNA is folded according to
a solenoid with periodicity P and height h per turn, the 3D-distance between
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to points i and j with 1D distance d1D(i, j) (counting the number of bases
between i and j) on DNA is

d3D(i, j) =

√
P 2 − h2

2π2

{
1− cos

(
2πd1D(i, j)

P

)}
+
(
hd1D(i, j)

P

)2

(4)

As indicated in Fig. 3 b), efficiency (strength) of interactions will decay fast
with the 3D distance between the regulator (the gene coding for a TF) and its
target (binding site). Assuming that TFs find their target in a diffusive ran-
dom walk, we approximate the distance dependence of regulatory interaction
weights as

|wij |(d3D(i, j)) = (W − 1) exp [−µd2
3D(i, j)] + 1, (5)

where W is the maximum weight. Fig. 4 shows both the solenoidal dis-
tance d3D(i, j) (a) and the weight function |wij |(d3D(i, j)) (b) for h = 2
and P = 1024. Evidently, for this choice of parameters, the weight function
is sharply peaked at periodic intervals, such that only co-regulated genes (and
their respective binding sites) aligned according to the scheme shown in Fig 3
(b) will contribute large values of |wij | ≈W .

Figure 4: Left panel: Solenoidal 3D distance, as a function of the 1D distance
(number of bases) between two points i and j on DNA, calculated according
to Eqn 4 with P = 1024 and h = 2. Right panel: Interaction weights as a
function of solenoidal 3D distance, calculated according to Eqn. 5.

3.2 Evolutionary optimization of the GRN with respect to solenoidal
organization

We now ask the question how a GRN structure optimized with respect to a
solenoidal organization may arise in an evolutionary process. Selective pres-
sure will tend to increase interaction weights to optimize reliability and ef-
ficiency of gene regulation. Hence, we begin our evolutionary study with
selection for increasing interaction weights. We create a mother genome,
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construct its GRN according to the procedure explained in the previous section,
and determine |wij |(d3D(i, j)) for all network connections according to Eqn 5,
for fixed P and h. Next, we calculate the average absolute interaction weight

〈|wij |〉 =
1

Ktot

N∑
i=1

N∑
j=1

|wij |(d3D(i, j)). (6)

We apply one of the following combinations of mutation operators to the
mother genome: 1) point mutations with probability ppm per base, 2) trans-
position of one random subsequence of length 0 < lseq < lmax and 3) a com-
bination of both, i.e. with probability 1/2 either 1) or 2) is applied 1. Now the
GRN for the daughter genome is inferred from the mutated sequence and all
interaction weights are calculated. The daughter genome replaces the mother
genome if 〈|wij |〉daughter ≥ 〈|wij |〉mother, otherwise it is discarded and the
mother is kept. Figure 5 summarizes the results of evolutionary simulations
obtained for this fitness function.

We observe that optimization is most efficient for combination 3) of mu-
tation operators (point mutations and transpositions), while point mutations
alone are least efficient; however, in all three cases optimization towards in-
creasing average weights (Fig. 5, left upper panel) and ρw (Fig. 5, right upper
panel) is achieved. Additionally, we find that the average network connectivity
decreases during evolution, an effect which is most pronounced when only
point mutations are at work (Fig. 5, right lower panel). Obviously, it is very
hard to co-adapt the positions of regulators and their targets on DNA with point
mutations alone, such that mainly semi-destructive mutations (i.e. mutations
that delete weak interactions, while they keep strong ones) are exploited, as
can be concluded from the strong decrease in average connectivity. While this
observation is interesting in that it may provide a novel explanation for the
relatively sparse connectivity of real GRN, in real systems regulatory demands
will certainly limit destructive mutations. In our study, network disconnection
is mainly a consequence of the rather weak selective pressure applied by using
Eqn 6 to define the fitness function, which does not impose any constraints on
network connectivity. Hence, we now refine the fitness function and demand
that

f(ρw, 〈W 〉, K̄) = ρw · K̄ · 〈W 〉 (7)

is optimized, where ρw is the density of strong interactions, K̄ the average
network connectivity and 〈W 〉 the average weight of strong interactions. The

1Note that mutations are random, however they have to respect the constraint that the number
of genes N remains constant, i.e. that no new base promotor sequences are created and no
existing ones are deleted.
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Figure 5: Results of evolutionary optimization for increased average inter-
action weights (as defined by Eqn 6), averaged over 50 different genetic
algorithm runs. Left upper panel: Evolution of the average interaction weight
(average over all network links). Right upper panel: Evolution of the density
of strong interactions. Left lower panel: Evolution of the average weight of
strong interactions. Right lower panel: Changes of the average connectivity
during evolution.

product structure of f enforces optimization of both the fraction and the aver-
age strength of strong interactions, while at the same time, due to the depen-
dence on K̄, network disconnection is disfavored. We find that evolutionary
optimization also works for this new fitness function, as can appreciated from
the strong increase of ρw (Fig. 6, right panel) in evolutionary runs, while
network disconnection is avoided (in fact, even a slight increase in connectivity
is found, cf. Fig. 6, left panel).

Let us now have closer look on the evolved solenoidal organizations. We
find that the probability distributions for the 3D distances between regulators
(TF-coding genes) and their target binding sites, after 100000 generations of
the genetic algorithm, indeed exhibit sharp peaks at intervals that are multiples
of the imposed period P (Fig. 7, left panel), while for the distances between
the co-regulated genes no periodic pattern is found (Fig. 7, right panel). How
can we explain this seemingly counter-intuitive result? For typical parameter
choices of the artificial genome model (in our study, alphabet size λ = 4,
base promotor length lp = 5 and gene length lg = 6), genome structure is
dominated by intergenic (non-coding) sequences, which make up almost 99%
of genome content. This leaves ample space to optimize distances between
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Figure 6: Genome evolution using a product fitness function (Eqn. 7).
Changes in the average connectivity (left) and average density of strong links
(right) in the course of GA generations are shown.

regulator genes and each of their target binding sites (BS), by just moving BS
positions with respect to the regulator gene. This does not impose any direct
constraint on the relative positions of genes that are regulated by this TF (in
fact, they are often quite far away from the BS and not in phase with each
other). While this situation is quite realistic for eukaryotes, where a similarly
large fraction of non-coding DNA is found and TF binding sites can be at
distance from target genes, the situation in bacteria is very different. Here,
the distance between BS and target genes is typically short and quasi-constant.
This dependence implies that indeed both types of distances - regulator gene to
TF binding site, and relative distances between regulator gene and target gene -
are minimized simultaneously. This joint optimization can lead to very focused
transcription factories that facilitate, e.g., the coordinated binding of RNA
polymerases and hence the synchronization of transcription of co-regulated
genes, which will further enhance local concentration effects. To take into ac-
count this joint optimization problem, we now also impose a product structure
on interaction weights, and define

|wij |(d3D(i, j, k)) = (W − 1) exp [−µd2
3D(i, j)] exp [−µd2

3D(i, k)] + 1 (8)

for two genes with positions i and l on the DNA, where i is the position of the
regulator, l the position of the regulated gene, and j the position of the target
binding site. For genome evolution, we again apply a genetic algorithm with
the fitness function defined in Eqn. 7. Our results indicate that it is indeed pos-
sible to optimize both distances of co-regulated genes, and the respective target
binding sites simultaneously with respect to the distance measure imposed
by the solenoidal organization of the chromosome (Fig. 8). Interestingly,
evolution of gene positions appears in turn to impose additional constraints on
binding site evolution: we find that the corresponding distribution now decays
much faster, i.e. favor small multiples of the solenoidal period, as compared
to the relatively flat decay when fitness depends on the weight function not
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taking into account gene distances (compare Fig. 7, left panel to Fig. 8,
left panel). This indicates that, under combined selective pressure, strong
interactions in GRN are preferentially found in a very localized neighborhood
of the regulating gene, while weaker interactions (that still make up a consid-
erable part of the GRN) tend to connect to more distant genes. This suggests
that the evolved GRN exhibit the small-world property [29], however, this
needs further investigation. In principle, the predictions of our model can be
addressed by means of whole genome data on the positions of TF bindings sites
available today, and thereby provide hints on the (relative) selective pressures
and mutational mechanisms at work that have shaped the overall organization
of the (epi-) genome.

Figure 7: Probability distributions for 1D distances (leading to short 3D
distances) between regulator genes and the respective TF binding sites (left)
and between co-regulated genes (right) after 100000 generations, using the
fitness function defined by Eqn. 7 and the weight function given by Eqn. 5.

Figure 8: Probability distributions for 1D distances (leading to short 3D
distances) between regulator genes and the respective TF binding sites (left)
and between co-regulated genes (right) after 100000 generations, using the
fitness function defined by Eqn. 7 and the product weight function given by
Eqn. 8.
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4 Discussion

We extended GRN models based on discrete dynamical networks, and artificial
genome models based on a combinatorial description of TF-to-DNA binding
by inclusion of an additional layer of epigenetic information: the spatial or-
ganization of chromosome structure. First, we studied ensembles of randomly
generated GRN without an explicit representation of sequences and space, but
with two classes of weights: weak (or ”normal”) interactions which are not
optimized with respect to space, and strong (or privileged) interactions that are
assumed to be optimized with respect to spatial vicinity of interaction partners
and hence to exploit local concentration effects [19] efficiently. In particular,
we investigated robustness of these ”hybrid GRN” with respect to two types of
perturbations: random state flips of genes (damage), and threshold fluctuations
that may be considered as a model of extrinsic transcriptional noise. Our re-
sults indicate that the optimal density ρw of strong interactions depends on the
type of fluctuations considered: while damage propagation is typically mini-
mized at intermediate values of ρw (where strong interactions act as canalizing
inputs), maximal robustness with respect to threshold fluctuations is found at
values of ρw close to 1. Next, we investigated evolutionary optimization of
GRN under an explicit spatial representation, based on artificial genome model
taking into account a solenoidal epi-organization of the chromosome. We find
that optimization of GRN structure with respect to a periodic organization
works best when both point mutations and transpositions are applied in the
genetic algorithm (both types of mutations alone work, too, however, lead to
slower convergence). The evolved network topology depends on the details
of selective pressure formalized in the fitness function: selection for increased
average interaction weights alone leads to strong disconnection of networks.
A product fitness function - depending on both the absolute number and the
average weight of strong interactions - avoids disconnection, and leads to even
more pronounced periodic organizations. Furthermore, we showed that posi-
tions of co-regulated genes and TF binding sites can be optimized simultane-
ously, even when no particular constraints to the lengths of intergenic regions
are applied. Together, these results suggest that it is possible to optimize
global genome structure, including several layers of genetic and epigenetic
information, in a gradual evolutionary process under multiple (sometimes even
conflicting) constraints imposed by the different layers of organization (DNA
sequence, GRN topology and dynamics, spatial development of the GRN).
Future lines of research will lead to more elaborate multi-scale models of
genetic information processing, taking into account more realistic constraints
(e.g. selection for particular cellular phenotypes, or switching between dif-
ferent phenotypes) and additional elements of epigenetic organization, e.g.
chromatin structure, and more detailed models of DNA looping.

MODELLING COMPLEX BIOLOGICAL SYSTEMS 87



Acknowledgments

T. R. gratefully acknowledges support from the CNRS-MPG program on Sys-
tems Biology (GDRE 513 SysBio), and the warm hospitality of the iSSB in
Evry where most of this work was done.

References

[1] Wolfgang Banzhaf. On the dynamics of an artificial regulatory network.
In W. Banzhaf, T. Christaller, P. Dittrich, J. Kim, and J. Ziegler, editors,
Advances in Artificial Life, Proceedings of the 7th European Conference
(ECAL-2003), Dortmund, September 15-17, 2003, Lecture Notes in
Artificial Intelligence, LNAI 2801, pages 217–227. Springer, Berlin,
2003.

[2] Amsrtya Bhattacharjya and Shoudan Liang. Power-law distributions in
some random boolean networks. Physical Review Letters, 77:1644–1646,
1996.

[3] J. E. Cabrera and D. J. Jin. The distribution of RNA polymerase in
Escherichia Coli is dynamic and sensitive to environmental cues. Mol.
Microbiol., 50:1493–1505, 2003.

[4] Stefano Ciliberti, Oliver C. Martin, and Andreas Wagner. Innovation
and robustness in complex regulatory networks. Proc. Natl. Acad. Sci.,
104:13591–13596, 2007.

[5] Maria I. Davidich and Stefan Bornholdt. Boolean network model predicts
cell cycle sequence of fission yeast. PLoS ONE, 3:e1672, 2008.

[6] B. Derrida and Y. Pomeau. Random networks of automata: a simple
annealed approximation. Europhys. Lett., 1:45–49, 1986.

[7] Z. Duan, M. Andronescu, K. Schutz, S. Mcllwain, Y. J. Kim, C. Lee,
J. Shendure, S. Fields, C. A. Balu, and W. S. Noble. A three-dimensional
model of the yeast genome. Nature, 465:363–367, 2010.

[8] D. A. Jackson, A. B. Hassan, R. J. Errington, and P.R. Cook. Visual-
ization of focal sites of transcription within human nuclei. J. Cell. Biol.,
164:515–524, 2004.

[9] Ivan Junier, Olivier Martin, and François Képès. Spatial and topological
organization of dna chains induced by gene co-localization. PLoS
Comput Biol, 6(2):e1000678, 02 2010.

88 MODELLING COMPLEX BIOLOGICAL SYSTEMS



[10] S.A. Kauffman. Metabolic stability and epigenesis in randomly con-
structed genetic nets. J. Theor. Biol., 22:437–467, 1969.

[11] François Képès. Periodic transcriptional organization of the E. Coli
genome. J. Mol. Biol., 340:957–964, 2004.

[12] François Képès and C. Vaillant. Transcription-based solenoidal model of
chromosomes. Complexus, 1:171–180, 2003.

[13] Paul Dwight Kuo, Andre Leier, and Wolfgang Banzhaf. Evolving
dynamics in an artificial regulatory network model. In Yao X., Burke
E., Lozano J.A., Smith J., Merelo-Guervos J.J., Bullinaria J.A., Rowe
J., Tino P., Kaban A., and Schwefel H.-P., editors, Proc. of the Parallel
Problem Solving from Nature Conference (PPSN-04), Birmingham, UK,
September 2004, pages 571–580. Springer, LNCS 3242, Berlin, 2004.

[14] A. Leier, D.P. Kuo, and W. Banzhaf. Analysis of preferential network
motif generation in an artificial regulatory network model created by
duplication and divergence. Advances in Complex Systems, 10:155 –
172, 2007.

[15] F. Li, T. Long, Y. Lu, . Quyang, Q, and C. Tang. The yeast cell-cycle
network is robustly designed. Proc. Natl. Acad. Sci. USA, 101(14):4781–
4786, 2004.

[16] B. Luque and R. V. Sole. Controlling chaos in random boolean networks.
Europhys. Lett., 37(9):597–602, MAR 20 1997.

[17] M. Manceny, M. Aiguierand P. Le Gall, I. Junier, J. Hérisson, and
F. Képès. Spatial information and boolean genetic regulatory networks.
BICoB, 5462:270–281, 2009.

[18] Andre Auto Moreira and Luis A. Nunes Amaral. Canalizing kauffman
networks: Nonergodicity and its effect on their critical behavior. Phys.
Rev. Lett., 94:218702, 2005.

[19] B. Muller-Hill. The function of auxiliary operators. Mol. Microbiol.,
29:13–18, 1998.

[20] A. P. Quayle and S. Bullock. Modelling the evolution of genetic
regulatory networks. J. Theor. Biol., 238(4):737–753, FEB 21 2006.

[21] C. J. Olson Reichhardt and Kevin E. Bassler. Canalization and symmetry
in boolean models for genetic regulatory networks. J. Phys. A, 40:4339,
2007.

MODELLING COMPLEX BIOLOGICAL SYSTEMS 89



[22] T. Reil. Dynamics of gene expression in an artificial genome - impli-
cations for biological and artificial ontogeny. In Proceedings of the 5th
European Conference on Artificial Life, pages 457–466. Springer, 1999.

[23] T. Rohlf and S. Bornholdt. Criticality in random threshold networks:
Annealed approximation and beyond. Physica A, 310:245–259, 2002.

[24] Thimo Rohlf. Critical line in random threshold networks with inhomo-
geneous thresholds. Phys. Rev. E, 78:066118, 2008.

[25] Thimo Rohlf, Natali Gulbahce, and Christof Teuscher. Damage spread-
ing and criticality in finite dynamical networks. Phys. Rev. Lett.,
99:248701, 2007.

[26] Thimo Rohlf and Christopher R. Winkler. Emergent network structure,
evolvable robustness, and nonlinear effects of point mutations in an
artificial genome model. Adv. Comp. Sys., 12:293–310, 2009.

[27] Peter S. Swain, Michael B. Elowitz, and Eric D. Siggia. Intrinsic and
extrinsic contributions to stochasticity in gene expression. Proceedings
of the National Academy of Sciences, 99(20):12795–12800, 2002.

[28] Jose M. G. Vilar and Stanislas Leibler. DNA looping and physical
constraints on transcription regulation. J. Mol. Biol., 331:981–989, 2003.

[29] D. J. Watts and S. H. Strogatz. Collective dynamics of “small-world”
networks. Nature, 393:440–442, 1998.

90 MODELLING COMPLEX BIOLOGICAL SYSTEMS



Logic, Automation, and the Future of Biology
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Abstract

I present my vision of the future of laboratory biology based on using logic
to represent biological knowledge and hypotheses, and advanced computers /
robotics to automate the formation and testing of hypotheses. The advantages
of using logic to represent scientific knowledge have long been understood.
Despite this very little scientific knowledge has ever been represented using
logic. This is now changing, and the application of the Semantic Web to
science is developing a logic-based distributed infrastructure that is integrating
large amounts of scientific knowledge. General purpose scientific reasoning
tolls are also being developed to reason across the semantic web. These ad-
vances opens up the possibility of utilising the Semantic Web to provide a
logical foundation for computational biology, and then using this foundation
to develop novel tools and services. High-throughput laboratory automation is
transforming biology and revealing vast amounts of new scientific knowledge.
A natural extension of the trend is the concept of a Robot Scientist: this is a
physically implemented laboratory automation system that exploits techniques
from the field of artificial intelligence to execute cycles of scientific experimen-
tation. If the trend to increased automation is continue laboratory automation
hardware/software will have to overcome a number of existing limitations:
flexibility, reliability, improved integration, etc. The greatest limitation of
Robot Scientists is the lack of intelligence of the software. Improving this
software is intimately linked to the goal of using logic to represent biological
knowledge and hypotheses, and developing general purpose scientific reason-
ing tools.

1 State-of-the-Art

1.1 Logic and Biology

With a two and half thousand year tradition logic is the best understood way
of representing scientific knowledge. Only logic provides the semantic clarity
necessary to ensure the comprehensibility, reproducibility, and free exchange
of knowledge [20]. Use of logic is also necessary to enable computers to play
a full part in science: it removes the intractable difficulties with understanding
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natural language, and enables computational reasoning. Although the advan-
tages of logic for science have long been understood [5], very little scientific
knowledge has ever been represented using logic.

1.1.1 The Semantic Web

The Semantic Web was born out of a confluence of ideas from computer sci-
ence, logic, and library science [2]. The best way to understand the Semantic
Web, is not as the standard Web with an extra semantic layer, but rather as
a world-wide knowledge base represented in logic. The Semantic Web is
becoming a universal publishing platform for scientific knowledge [18]. The
focus of Semantic Web development is now on the logical layer and developing
applications.

1.1.2 Reasoning and the Semantic Web

Like the standard Web, the Semantic Web it can be used to search for infor-
mation [2]. The advantage of the Semantic Web is that its information has
clearer semantics, enabling information to be found easier. For example, if a
human user or a computer are searching for information on ”RIF” (the rule
interchange format), using the Semantic Web both should be able to easily
avoid getting information on the Rif region in Morocco, the company RIF
Worldwide, etc. For science the Semantic Web can also provide facilities
such as integrating metadata, providing provenance information, integrating
publications with original data and analysis methods, etc. Important as these
advantages of the Semantic Web will be for science, the real benefits will be
in enabling new inferences to be made from the knowledge available on the
Semantic Web. This is because it is these inferences that will enable new types
of tools and services.

There are three basic form of logical inference: deduction, abductions,
and induction, and these along with probabilistic reasoning are the basis of all
scientific inference. Deduction is the basis of traditional logic, mathematics,
and computer science. It is a valid form of reasoning, so if a knowledge base is
consistent then only new truths can be inferred. An example of a bioinformatic
deduction is the following:

rule) if a cell grows it can synthesise tryptophan (P→ Q);
fact) cell cannot synthesise tryptophan (¬Q);
then infer) cell cannot grow (P).

Research on deduction has until recently dominated research on inference for
the Semantic Web (e.g. [11] is typical). There are now stable open source and
commercial reasoning engines.

92 MODELLING COMPLEX BIOLOGICAL SYSTEMS



Deductive reasoning is insufficient for science as it cannot infer any knowl-
edge that isn’t already implicit in a knowledge base. This means that abductive
and inductive inference are required to advance science. The easiest way to
think about abduction is as deduction in reverse. An example of abduction is:

rule) if a cell grows it can synthesise tryptophan (P→ Q);
fact) cell cannot grow (¬P);
then infer) cell cannot synthesise tryptophan (Q).

Abductive reasoning is not valid, and therefore new empirical observations are
required to ensure the truth of abductive inferences. Very little research has
been done on developing abduction for the Semantic Web, but see e.g. [4].

More work has been done on developing induction for the Semantic Web
(e.g. [12]), but it is still an under researched area. In relational learning (RL)
there exists a technology which is “pre-adapted” for inductive reasoning over
the Semantic Web [17]. The main technical challenge of adopting RL for the
the Semantic Web are: the large amounts of data involved, engineering the
inference methods to work over an open, and distributed environment of the
Web, and the previous focus of RL on Datalog [21] rather than description
logics [1]. Within machine learning RL’s position is unusual. It is generally
agreed to be theoretically important, yet its practical impact has been low. The
main reason for this is that very little data has been natively represented using
logic, this is now changing with the Semantic Web, and RL is becoming a
central technology.

Logical inference and the Semantic Web fit well together. However, as
James Clerk Maxwell pointed out “the true logic of this world is in the calculus
of probabilities”. By this he meant that all scientific knowledge is essentially
probabilistic. The integration of relational learning with probability theory is
one of the most exciting areas in machine learning [8, 7]. The main theoretical
issue is that the traditional foundation of probability theory is propositional
logic, while some variety of 1st-order predicate logic is required for RL and
the Semantic Web.

1.1.3 Biology and the Semantic Web

Computers are essential to modern biology. Typical computational biological
tasks are: genome annotation, analysing gene expression, protein structure
prediction, phylogenetics, metabolomic analysis, systems modelling, etc. The
state-of-the-art in computational biology is to use sophisticated scripting lan-
guages and Web services. This enables the zoo of existing bioinformatic
programs to be integrated together, and enables some form of reproducibility.

MODELLING COMPLEX BIOLOGICAL SYSTEMS 93



Biological knowledge makes up a large percentage of the scientific Se-
mantic Web, and many of the problems that makes general Semantic Web
reasoning difficult don’t apply to bioinformatics:

• A ground truth of scientific knowledge exists.

• A top level ontology have been agreed - the Basic Formal Ontology
(BFO). This ensures that specific bioinformatic ontologies are logically
compatible, and promotes cross-domain reasoning.

• The bioinformatic Semantic Web is large, but not as large as many
other areas of the Semantic Web. It is therefore more computationally
tractable.

These advantages have enabled work to proceed on describing biological knowl-
edge using logic, and the European Bioinformatics Institute (EBI), and other
large providers of bioinformatic data are now routinely publishing biological
knowledge on the Semantic Web.

However, there is a mismatch between the growing use of the Semantic
Web to represent biological knowledge, and the tools and scripts currently
used for bioinformatic inference. Traditional biological software uses ad hoc
inference, and the assumptions (logical and biological) they make are rarely
explicit. This is unsatisfactory, as the hard-coding of scientific assumptions
makes them obscure, difficult to understand, and difficult to change. It also
precludes biologists checking these assumptions. From a formal point of view
bioinformatic programs are invariably making logical inferences: deductions,
abductions, inductions, with perhaps a probabilistic element. The form of these
inferences need to be clarified if bioinformatics is ever to have a solid scientific
foundation.

1.2 Automation and Biology

The use of computers to control the execution of experiments contributes to a
vast expansion in the production of biological data [9]. This growth in data,
in turn, requires the increased use of computers for analysis and modelling.
High-throughput laboratory automation is transforming biology and revealing
vast amounts of new scientific knowledge [10]. Nevertheless, existing high-
throughput methods are currently inadequate for areas such as Systems Bio-
logy. This is because, even though very large numbers of experiments can be
executed, each individual experiment cannot be designed to test a hypothesis
about a model.
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A natural extension of the trend to ever-greater computer involvement in
the automation of experiments is the concept of a Robot Scientist [14, 15].
This is a physically implemented laboratory automation system that exploits
techniques from the field of artificial intelligence [3, 16, 22] to execute cy-
cles of scientific experimentation. A Robot Scientist automatically originates
hypotheses to explain observations, devises experiments to test these hypothe-
ses, physically runs the experiments using laboratory robotics, interprets the
results, and then repeats the cycle. Robot Scientists have the potential to
automate high-throughput hypothesis led experimentation.

1.2.1 Adam

The Robot Scientist Adam was designed to investigate the functional genomics
of S. cerevisiae. Adam is the first machine demonstrated to have autonomously
discovered novel scientific knowledge [15]. Adam is physically one of the
most advanced laboratory automation systems in existence (Fig 1). (We are
aware of larger and more expensive automated systems in a few academic labs,
and in many companies, but we are unaware of any more flexible system). The
advances that distinguish Adam from other complex laboratory systems such
as high-throughput drug screening pipelines, and X-ray crystallography crys-
tal screening systems, are its AI software, its many complex internal cycles,
and is its ability in high-throughput to execute individually planned cycles of
experiments.

Adam is designed to measure, in high-throughput, growth curves (phe-
notypes) of selected microbial strains (genotypes) in a defined media (envi-
ronment). Adam is fully automated and there is no essential requirement for
a technician except to periodically add laboratory consumables and remove
waste. (However, the system is a prototype and it is advisable to have a
technician nearby in case of minor problems.) Adam is able to run “lights
out” for days at a time, and is capable of designing and initiating > 1,000
new strain / defined growth-medium experiments each day (from a selection
of 1,000s of yeast strains), with each experiment lasting up to 4 days. The
design enables optical density (OD) measurement for each experiment every
20 minutes, enabling accurate growth curves to be obtained (>10,000 growth
measurements a day) - plus associated metadata.

Adam has autonomously generated functional genomics hypotheses about
the yeast S. cerevisiae, and experimentally tested these hypotheses using lab-
oratory automation. We have confirmed Adam’s conclusions through manual
experiments. To describe Adam’s research we have developed an ontology and
logical language. The resulting formalisation involves over 10,000 different
research units in a nested tree-like structure, ten levels deep, that relates the 6.6
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Figure 1: Part of Adam’s integrated robotics and instrumentation

Figure 2: Part of Eve’s integrated robotics and instrumentation
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million biomass measurements to their logical description. This formalisation
describes how a machine discovered new scientific knowledge.

1.2.2 Eve

Our second Robot Scientist, Eve, is a prototype system designed to demon-
strate the automation of drug design and discovery [19]. Eve’s robotic system
is capable of moderately high-throughput compound screening (greater than
10,000 compounds per day depending on assay time) and is designed to be
flexible enough such that it can be rapidly re-configured to run a number of
different biological assays. Eve is designed to use chimeric yeast strains as the
assay system. These strains are designed in collaboration with Steve Oliver’s
group in Cambridge. The main drug targets we are focussing on are enzymes
from parasites such as Plasmodium falciparum and Schistosoma mansoni. Our
assay approach is to create chimeric yeast strains that have yeast enzyme(s)
removed and replaced by human EOR parasite ones.

A key objective Eve is to demonstrate the utility of integrating automated
Quantitative Structure-activity relationship (QSAR) learning in the screening
process. The idea is that once enough “hits” have been found (compounds
found to be active through random screening of the compound library), then
Eve will switch over to QSAR hypothesis formation and testing. The benefits
of this are: lower attrition of the compound library, faster lead identification,
lower costs, and better record taking.

2 The Future
2.1 Logic and Biology
2.1.1 A Logical Foundation for Computational Biology

The vision is to semantically integrate the existing computational biology ser-
vice infrastructure with the growing amount of biological knowledge available
on the Semantic Web. This will have two parts:

• Clarification of the semantics of existing computational biology soft-
ware. The assumptions and inference mechanisms used by most existing
computational biology software are not explicit. The aim is to make
them explicit for the main classes of computational biology software.

• Formation of general purpose implementations of existing computational
biology software. Given known assumptions and using general purpose
Semantic Web inference tools implement standard computational bio-
logy tools.
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To illustrate what I mean I will sketch what this would mean for two separate
problem classes of computational biology software:

1. Predicting the structure of a protein domain based on sequence homo-
logy. This is typically the first step in a structural bioinformatics in-
vestigation. The computation is as follows: the distance between the
target domain’s sequence and all the domain sequences in the database of
known structure is first calculated, then the target’s structure is predicted
to be the same as that of the closest sequence in the database. The
biological rationale for this is based on the conservation of domain struc-
ture by evolution. Logical analysis reveals that many assumptions are
made concerning the conservation of structure during evolution. It also
reveals that the inference method is abductive. What is being abduced
is the existence of a common ancestral domain shared by both the target
domain and the domain with the closest sequence in the database, but by
no other domains in the database

2. Predicting protein function from a micro-array profile. This is a common
task in functional genomics. The goal is to predict the function of a
gene by generalising patterns observed in transcriptomic experiments.
The problem is technically interesting for machine learning as protein
functions are organised in class hierarchy using gene ontology, and pro-
teins may have more than one function. Logical analysis reveals that
a number of implicit assumptions are made when applying machine
learning to this problem. The most important of these is the closed-world
assumption: if a protein is not known to have a specific function then it
doesn’t have that function. This assumption makes learning much more
efficient as it generates large amounts of negative examples. However,
it is in general a false assumption, as proteins may have functions which
we do not yet know. This closed-world assumption clashes with the use
of the semantic web language OWL. For the prediction task the inference
mechanism is induction, as transcriptomic patterns associated with gene
ontology classes are generalised.

2.1.2 Scientific Reasoning for the Semantic Web

There is a need to develop new inference mechanisms designed that takes
full advantage of the logical infrastructure of the Semantic Web. These non-
deductive reasoning methods will necessarily be based on Relational Learning
[6] to be powerful enough to be able to reason using the logics used to represent
scientific knowledge in the Semantic Web. The Relational Learning methods
will include: Abductive Logic Programming, Relational Machine Learning,
and Probabilistic methods.
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2.1.3 Novel Computational Biology Tools

The key motivation for providing a logical foundation for computational bio-
logy and developing general purpose scientific inference mechanisms is not
simply to improve our understanding of computational biology software, im-
portant as that is, but rather to use this understanding to develop new improved
computational biology tools and services. Taking the same two examples from
above, logical analysis will enable new variants to be envisaged, and these
can be implemented using the general purpose scientific reasoning methods
developed in the following ways:

1. Predicting protein domain structure on sequence homology. When it is
realised that the basic logical inference involved is abduction of a com-
mon ancestral sequence, plus an assumption of conservation of function,
it is possible to envisage variants of the basic bioinformatic method
which are biologically more realistic, and which will result in more
accurate predictions. For example it is clear that it should not be just
a single ancestral sequence should be abduced, but rather a population
of ancestors; and that the use of this population for prediction should
be weighted by their evolutionary distance as estimated by the sequence
metric. This produces a complex probabilistic relational graph similar to
that generated in probabilistic relational learning [7]. Logical analysis
of the problem can therefore be used to develop a representation then be
solved using general purpose statistical relational learning methods.

2. The problem of predicting protein function from a micro-array profile
is currently normally tackled using propositional learning methods, and
these methods are generally limited to using only a limited set of at-
tributes for prediction [6]. Logical analysis reveals that there is a large
number of important sources of information that should be used in pre-
diction: the gene ontology hierarchical class structure, the existence
of multiple functions for the same protein (multiple-labels), that the
micro-array data comes from multiple experiments often consisting of
small time-series, the metabolic network that integrates the enzymes, the
signalling networks that integrate the signalling pathways, the genome
structure, etc. The bioinformatic semantic web will make collection and
logical and biological integration of these sources simple to do. Then
general purpose relational learning algorithms, plus the closed-world
assumption, can be used to exploit all available sources of information
for prediction - a basic law of reasoning is to use all available relevant
information [13].
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2.2 Automation and Biology

2.2.1 Hardware

Modern laboratory biology would be impossible without automation, for ex-
ample high-throughput laboratory automation makes possible: the sequencing
of DNA; the measurement of mRNA, proteins, of metabolites; identification
of protein-protein and protein-DNA interactions; creation of deletant libraries;
inhibition of gene expression, etc. [10]. Continuing advances in laboratory
automation hardware mean that currently most biological manipulations can be
done both faster and more accurately using automation than by hand. I expect
this trend to continue, and for automation to increasingly dominate laboratory
biology. If this to occur laboratory automation will have to overcome a number
of existing limitations:

• Lack of flexibility. Almost all existing laboratory automation equipment
is designed to do one or a few related tasks. This contrasts both with
human scientists / technicians who when trained to use their hands to
execute a vast array of laboratory operations; and to computers, which
are capable of general purpose computing. Therefore, one the great
challenges for laboratory automation is the design of equipment that can
be reconfigured to execute a wide range of experimental tasks.

• Poor reliability. Almost all existing laboratory automation equipment is
“brittle”, that is if something goes wrong then the whole system ceases
to function.

• Lack of standards. There are few agreed laboratory automation stan-
dards, and this greatly hinders the integration of different pieces of equip-
ment. In addition even some the agreed standards are poorly designed
for automation, e.g. the size / shape of 96-well microtire plates is not
designed to be manipulated by equipment, unlike say wooden-pallets.

• High costs. Laboratory automation is very expensive relative to the
sophistication of the equipment purchased. Our Robot Scientist Adam
cost ∼$1,000,000 but its hardware is less sophisticated than that in a
$30,000 car. This is because of the small market for laboratory automa-
tion equipment - and possibly the ability of pharmaceutical companies
to pass on their costs to consumers.
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2.2.2 Software

Improved software is the key to the future of laboratory automation. Existing
laboratory automation software is very limited, just like laboratory automation
hardware, it lacks flexibility, is unreliable, there are few standards, and it is
very expensive for what you get. To tackle these problems my colleagues (es-
pecially Dr. Amanda Clare) and myself have been trying to promote the open-
source software for the control of laboratory automation. Recently Caliper Life
Sciences kindly donated their software (formerly known as iLink or Clara) to
Aberystwyth University in order that we can make it available to the open
source community. This was the software that was used to control the Robot
Scientist Adam here at Aberystwyth, and is in use in many other lab automa-
tion projects around the world:
see http://www.aber.ac.uk/en/cs/research/cb/projects/labux

The most exciting areas of software research for laboratory automation
is the development of AI software. In my view the most fundamental limiting
factor in developing Robot Scientists is the lack of intelligence of the software.
The development of this software is very closely related to the development
of the vision in section 3.1: a logical foundation for computational biology,
scientific reasoning for the semantic web, and new computational biology
tools. Robot Scientist software can be improved in the following ways:

• Improved background knowledge: This is currently represented as logic
programs (1 st-order logic). This needs to be extended to include prob-
abilistic knowledge, perhaps through the use of 1 st-order probabilistic
logics (FOPLs). It will also be essential to augment the Robot Scientist’s
background knowledge with core knowledge about biology; currently
Robot Scientists are idiot savants which have no real understanding what
they are doing. This research is closely connection with developing a
logical foundation for computational biology (2.1.1.).

• Improved methods of hypothesis formation: This is currently done using
both pure abduction and bioinformatics, but the type of hypotheses that
can be generated are limited. This research is closely connection with
developing scientific reasoning for the semantic web (2.1.2.).

• Improved experiment formation: The current method is limited by as-
suming the execution of only one experiment at a time and does not
properly take time into account. This research is closely connection
with developing new computational biology tools (2.1.3.).
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François KEPES (Genopole, CNRS, Evry)
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Frank JÜLICHER (MPI-PKS, Dresden)

Introduction

In 2006, the CNRS and the MPG began to think about the value of close
collaborations in the field of ”Systems Biology”, which may be defined as
the attempt to understand the behaviour of biological networks of interaction
and, in particular, their spatio-temporal dynamics. This field typically requires
cross-disciplinary import of concepts and crosstalk between benchwork, mod-
elling and simulation. It turns out that research in Systems Biology is very
vigorous and of a high standard on both sides of the Rhine and that there is an
urgent need for collaboration.

After a small and successful first scientific meeting in Evry in February 2007,
a bigger and more diverse meeting was organised in Berlin in September 2007
to broaden the appeal of MPG-CNRS cooperation in Systems Biology. Since
then, general meetings have been organised each year, alternating between
France and Germany. In January 2008, soon after the Berlin meeting, the
European Research Network in Systems Biology (Groupement De Recherche
Européen – CNRS GDRE 513) was created.

The main activities that were proposed by the scientific board in Berlin and
validated by both CNRS and MPG are:

• Contribution to this yearly Thematic Research School on Systems Biol-
ogy;

• Organisation of a general workshop held once a year alternatively in
France and in Germany;

• Organisation of small focused workshops decided bottom-up to initiate
or pursue specific CNRS- MPG collaborations.
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This programme goes hand-in-hand with the CNRS-MPG post-doctoral pro-
gramme, also established in 2008, which has appointed so far six high-level
post-doctoral fellows subsidised by either the CNRS or the MPG. These fel-
lows have either a major host in a CNRS laboratory and a minor host in a MPI,
or vice-versa. The synergy between the two programmes became evident in
2009 when the fellows went beyond their own bi-institutional research projects
to participate actively in fostering CNRS-MPG relations in systems biology.
In particular, the fellows invested heavily in the organisation of some of the
exceptionally successful, focused workshops.

Objectives

The GDRE exists to coordinate and improve CNRS-MPG collaboration in
Systems Biology. Its specific objectives are to organise a yearly general confer-
ence as well as more focused workshops. The latter are proposed by scientists
from both countries and allow concrete collaborations to be set up. The GDRE
also contributes to a yearly Spring School on Systems Biology.

Report for 2008-2010

The yearly schools and conferences on Systems Biology, together with focused
workshops (2 in 2009 and 3 in 2010) and exchange visits by senior scientists (1
in 2009 and 5 in 2010), have led to the creation of three ”small world networks”
of strong collaboration:

1. Paris - Évry - Orsay / Leipzig - Halle
2. Montpellier - Bordeaux / Berlin
3. Lille / Saarbrücken - Dresden

The meetings included:
• 3 annual conferences in Grenoble, Leipzig et Paris which brought to-

gether a total of 180 participants.
• 3 thematic schools in Sophia and Evry which brought together a total of

260 participants.
• 5 focused workshops, proposed by the members of the network, namely,

two small meetings in Evry and Berlin involving 8 groups and three
bigger meetings in Lille, Leipzig and Paris bringing together 180 people.

It should be noted that the focused meeting in 2009 resulted in a publication
that has been highly accessed and that several of these meetings have led to
applications for international funding. The schools have each produced a book
with an ISBN, totalling 500 pages. More details are given in the Annexes.
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Perspectives

It is anticipated that the funds at the disposal of the GDRE will continue to
be used to ”pump prime” new small, strong, long-term collaborative networks
as well as to reinforce the collaborations already built. The agenda for 2011
includes:

• Organisation of a general Systems Biology conference in Dresden
• Partial support of a yearly thematic school
• Promotion of closer links between the CNRS and the MPG by providing

information on the GDRE
• A call for focused workshops
• Encouraging further involvement of the GDRE postdocs in its activities
• Possibly setting up a visitors program for high level scientists
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ANNEX 1
3rd CNRS-MPG workshop on Systems Biology

ORGANIZATION CHAIR
Philippe Tracqui

PROGRAMME CHAIRS

Philippe Tracqui
CNRS, Lab. TIMC-
IMAG/DynaCell , Grenoble

Frank Jülicher
Max Planck Institut für Physik
komplexer Systeme, Dresden

More than fifty scientists from France and Germany gathered in Grenoble
between 24 and 25 November 2008 for the 3rd edition of the CNRS-MPG
workshop on Systems Biology.

It was the third time, after the launching meeting in Evry (February, 2007)
and the following larger Berlin workshop (September, 2007), that scientists
from CNRS and Max Plank Institutes have opportunities for discussions and
exchanges on Systems Biologyresearch advances.

The “Centre de Congrès Europole” in Grenoble proved a fitting place for
a workshop that brought together some of the leading scientists in France
and Germany for intellectually stimulating debates and discussions on a wide
range of timely topics, from the mechanical properties of the cell cytoskeleton
and the response of mechanosensitive genes to the emergence of forms and
functions in developing tissues and model organisms, from the integration and
analysis of “omics” data to the development of models of gene and enzymes
networks regulation.

Top ranking presentations of the keynote speakers, followed by questions drawn
from a talented audience, helped to move the discussions with a brisk pace.
Workshop schedule allowed very significant time for discussions, notably stim-
ulated by the permanent exhibition of posters by junior scientists.

This 2008 workshop will certainly contribute to foster and facilitate interdisci-
plinary collaborations between both CNRS and MPG research organizations,
already sustained by the perspective of the 2009 edition that will be hosted in
Germany.
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ANNEX 2
4th CNRS-MPG joint workshop on Systems Biology

November 23 24, 2009 Leipzig, Germany

ORGANIZATION CHAIR
Jürgen JOST

PROGRAMME CHAIRS

Jürgen JOST
MPI MiS, Leipzig

Victor J. NORRIS
University of Rouen

More than thirty scientists from France and Germany gathered in Leipzig on
23 and 24 November 2009 for the 4th edition of the CNRS-MPG workshop on
Systems Biology.

It inaugurated a slight change in the mode of scientific interaction, as compared
to previous general meetings. Indeed, it was a bit more focused, with the hope
to increase the chances of finding common issues for collaborative work.

This workshop has in particular addressed the fundamental question in Sys-
tems Biology of how the interaction, regulation, and coordination of molecular
processes leads to (a diversity of) coherent phenotypes at the cellular level.
The workshop programme has been aptly distributed along three main lines of
investigation, looking at control by structures, by molecules and by network
properties.

The MPI MiS in Leipzig proved a fitting place for a workshop that brought
together some of the leading scientists in France and Germany and abroad, for
intellectually stimulating debates and discussions on timely topics in a cozy
atmosphere. Top ranking presentations of the speakers, followed by questions
from a talented audience, helped to move the discussions with a brisk pace.
Workshop schedule allowed very significant time for discussions. The organiz-
ers would have hoped to see a higher number of posters by junior scientists, and
stronger advertizing for this efficient means of direct interactions is envisioned
for the next editions.

This 2009 workshop will certainly contribute to foster and facilitate interdisci-
plinary collaborations between both CNRS and MPG research organizations,
already sustained by the perspective of the 2010 edition to be hosted in France.
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ANNEX 3
Report of the meeting

“Understanding robustness via dynamical transitions”
July 20-21, 2009, Berlin

Organizers:
Ovidiu Radulescu and Markus Ralser

Participants:
From CNRS : Ovidiu Radulescu (Rennes), Vincent Noel (Rennes), Jean-Pierre
Mazat (Bordeaux), Christine Nazaret (Bordeaux)

From MPIMG Berlin: Markus Ralser, Christoph Wierling, Martin Kirch, Wasko
Wruck, Marc Jung, Raed Abu Dawud, Anirban Banerjee, Hendrik Hache.

Summary:
The objective of the meeting was to organize a first contact between French
modellers and German biologists and computer scientists interested in pio-
neering a new modeling approach to biological robustness. The focus of the
discussions was the modelling of the transitions of the central carbohydrate
metabolism as well as the general framework for studying robustness. Other
topics have also been discussed such as: stemness, fate switching and robust-
ness by differentiation, reverse engineering and parameter finding for pathway
models, metabolomics technology.

Consequences of the meeting:
French and German participants to this meeting had not physically met before.
Sociologically, new possibilities for interactions have been created. The Bor-
deaux group (JP Mazat and C Nazaret) interact with other persons in Berlin
(Edda Klipp). The new contacts in MPIMG will strengthen and enrich the
already existing collaboration.

O.Radulescu and C.Wierling will answer a general FP7 methodological call in
systems biology.

We are seeking for common ressources (a joint post-doc) to continue the col-
laboration on modeling the glycolysis-PPP transition.

Remarks:
MPIMG Berlin was not aware of the MPG-CNRS agreement; however they
financed the meeting at the same level as CNRS.
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Both MPIMG and French parts would have been interested to support the
post-doctoral programme of the CNRS-MPG systems biology consortium, by
offering a collaborative environment and complementary infrastructures, but
none of the institutions of the participants is authorized to do that.
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ANNEX 4
Report of the meeting

“Challenges in experimental data integration within
genome-scale metabolic models”

October 10-11, 2009, Paris, Institut Henri Poincaré

Organizers:
Prof. J. Jost, MPI for Mathematics in the Sciences, Leipzig
Prof. O. Martin, LPTMS, UMR 8626 CNRS/Univ. Paris XI
Dr. P.-Y. Bourguignon, MPI MiS, Leipzig
Dr. A. Samal, MPI MiS, Leipzig.

Participants:
Country Speakers Participants
Germany 3+2 17
France 2 31

United States 2 4
Israel 2 5

United Kingdom 2 3
Switzerland 1 1

Hungary 1 2
Denmark 1 3

Spain 0 4

An awaited and timely event:
The main objective of the meeting was to bring together scientists working
with constraints-based and kinetic models of metabolism. Aimed at bridging
the gap between biochemistry and physiology using a combination of math-
ematics and computer science techniques, this subfield of systems biology is
built upon a set of specific mathematical structures and computational method-
ologies. Researchers presenting their work in non-specialized conferences are
frustrated by the need to introduce this background material at the expense of
the originality of their contribution; because of this, they prefer by far more
specialized audiences.
At a time when such modeling frameworks are moving towards ambitious
endeavors such as integrating different omics data, we felt it was important
to remedy the above problem and organize a specialized event. We thus seized
the opportunity to invite world-class scientists who have recently contributed
significant advances in the field to have interactive and in depth exchanges.
We also wanted them to stimulate one another on promising alternative points
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of view that are emerging (e.g. statistical vs. optimization-based predictions).
Finally, it was an excellent means to have younger scientists (Ph.D.s and post-
docs) to get in a mere 2 days a complete view of the field and its actors.
The conference was divided into 8 sessions, plus two panel discussions held
at the end of each day. The latter benefited from a very active participation,
allowing very diverse issues to be debated. This success was to be expected
given the quality and vivacity of the participants, which also translated into
good discussions after the talks. We feel that all this owed much to the friendly
atmosphere that dominated the whole event. It should be stressed here that
several talks presented yet unpublished works.

Some figures:
Following the aforementioned motivations, 14 invited speakers had been se-
lected based on their commitment to experimental data integration using metabolic
models. Given the limited number of time slots available, only two high-level
contributed talks were accepted. The very high rate of positive answers to
the organizers’ invitations, as well as the multiple requests to organize such a
conference again, testify to the usefulness of such an event.
The requests for participation was very high and so the registration had to be
closed within a month of the announcement, when the maximum number of
participants (70) was reached (limited by the conference hall capacity). The
organizers thus had to reject a number of registration requests. The distribution
of participants and speakers across countries is shown below. It is noteworthy
that five participants were actually employed by companies (3 french biotechs
- Genomining, Metabolic Explorer, Global Bioenergies- and Dupont).

Expected Impacts:
While Germany harbors the largest number of research groups working with
metabolic models in Europe, this research topic has not yet attracted a com-
parable interest in France. However, the large number of attendees work-
ing in French research centers indicates that this situation is likely to change
in the near future. This impression was confirmed by informal discussions
with French participants, among which, interestingly enough, several consider
themselves as potential end-users. It is thus foreseen that this workshop will
have helped French researchers interested by these approaches identify poten-
tial collaborators in Germany.
From a more general perspective, many speakers (including the foremost ac-
tors of the field) said they had been delighted to have been part of the workshop
and had found it very stimulating; in fact several requested that a follow-up
workshop be organized. Having brought together people developing differ-
ent approaches (small scale and detailed models vs. genome-scale coarser
ones, optimization- based predictions vs. statistical frameworks) made the
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connections between all these approaches more understandable to everyone.
An impact of the workshop will be an increased level of interaction between
the various types of models of metabolism in the near future, in particular in
France and Germany. Finally, given the strong interest shown by participants
that were relatively new to the field, it would be useful to invest in some train-
ing on the subject, for instance via a thematic school for Ph.Ds and postdocs.

MODELLING COMPLEX BIOLOGICAL SYSTEMS 117



118 MODELLING COMPLEX BIOLOGICAL SYSTEMS



ANNEX 5
5th MPG-CNRS joint workshop on Systems Biology

December 9-10, 2010, Paris, France

INTEGRATIVE NEUROSCIENCES

The meeting was held at Institut Henri Poincaré on December 9 and 10 and
was dedicated to integrative neurosciences, an important domain of systems
biology that had not been explored in previous meetings. Talks were delivered
by fourteen well-known speakers, seven belonging to MPIs and seven from
CNRS, also split about equally between theorists and experimentalists. The
meeting was attended by more than seventy registered participants coming of
course mainly from France and Germany, but also from other countries (mainly
the UK). About a dozen presented posters on their work. It was also attended
by about twenty unregistered participants. The unexpected bad weather condi-
tions and allied flight and train cancellations at the meeting start, only resulted
in one speaker cancellation, perhaps a sign of the speakers motivation to attend
(one reported a 26 hour travel from Leipzig).

The topics ranged from basic issues of neural connectivity and anatomy as
well as single neuron description to information processing and memory in
different neural structures and animals (from invertebrates to mammals). The
response to the meeting was very positive both from the audience and speak-
ers. The talks were judged of high scientific quality by the participants and
suscited a lot of interest as testified from the numerous questions and animated
scientific discussions. The speakers also particularly liked the variety of topics
and approaches that were described and discussed, and the meeting allowed
extensive exchanges between theoreticians and experimentalists. The various
scientific exchanges started at the meeting will undoubtly deepen existing col-
laborations and also promote new ones. The meeting success is expected to
lead to strengthened links between CNRS and MPG scientists.

ORGANIZATION CHAIR: Vincent HAKIM
PROGRAMME CHAIRS: Vincent Hakim (CNRS, ENS Paris), Jürgen Jost
(MPI für Mathematik in den Naturwissenschaften, Leipzig), Fred Wolf (MPI
für Dynamik und Selbstorganisation, Göttingen).

Event URL:
http://www.mis.mpg.de/calendar/conferences/2010/cnrs-mpg5.html
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ANNEX 6

Report of the meeting
“Multi-scale dynamics and evolvability of biological

networks”
October 4-6, 2010, Leipzig

Organizers:

Jürgen Jost, MPI-MIS, Leipzig
François Képès, ISSB, Evry
Olivier C. Martin, LPTMS, Orsay
Thimo Rohlf, ISSB, Evry
Areejit Samal, LPTMS, Orsay

Venue: Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
Event URL:
http://www.mis.mpg.de/calendar/conferences/2010/musebio10.html

A major challenge in systems biology is to understand the dynamics of biologi-
cal networks at different scales of organization, and to integrate this knowledge
into models, thereby exhibiting functional sub- networks embedded in larger
dynamical systems. Multi-scale dynamics is at the heart of biological function:
proteins and RNA molecules, for example, may be seen as elementary com-
putational devices that capture various types of information from the cellular
environment, providing the bottom layer of cellular dynamics from which
emerge the functional networks of metabolism, signal transduction and gene
regulation. Similarly, the genome not only codes for proteins, but it also
determines the dynamical processing of this information in space and time via
gene regulatory networks and in the epigenetic organization of the genome.
The multi-scale architecture of biological networks has been shaped by evo-
lution, and it clearly influences strongly the evolvability of organisms, i.e.
their potential to adopt new functions or new phenotypes. Thus evolutionary
frameworks are also necessary for us to reach a good understanding of the how
and why of cellular dynamics.

The main objective of this interdisciplinary workshop was to bring together
leading MPG and CNRS scientists in key fields for integrated modeling of the
function and evolution of biological networks. While the main focus was on
the theoretical (modelling) side, recent advances from experiments were also
presented at the meeting.
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Some figures

This two day conference was divided into 10 sessions, of which 8 were devoted
to 18 invited talks, plus one poster session and one panel discussion session.
The panel discussion benefitted from a very active participation, allowing very
diverse issues to be debated in a fairly thorough manner. This success was
in agreement with the quality and vivacity of the discussions occurring after
most of the talks, and obviously owed much to the friendly atmosphere that
dominated the whole event.

In order to initiate and foster collaboration between CNRS and MPG scien-
tists, 18 leading scientists, mostly from Germany and France, were invited
to present their work at the event. Of the 18 invited speakers, 6 were from
CNRS/French institutions while 10 were from MPG/German institutions. The
organizers enjoyed an overwhelming response from scientific community for
participation at this projected medium sized event. The registration had to be
closed before scheduled deadline, since the maximum number of participants
(70) was reached before the closing date (the conference theatre had limited
capacity of 70 people). Further, there were 25 poster presentations by various
participants at the event which was way beyond what was initially planned.
The organizers regret rejecting several registration and poster requests due to
limited space at the conference venue. The distribution of participants’ and
speakers’ host countries is shown below:

Country Speakers Participants
Germany 10 45
France 6 18

Rest of the World 2 7

Expected Impacts

It is foreseen that this workshop will lead to long-term collaborations between
CNRS and MPG researchers pursuing modeling of biological networks. Fur-
thermore, this event has communicated very efficiently the goals and scope of
the CNRS-MPG programme on Systems Biology to the research community,
certainly leading to an increased interest and future applications of postdoc-
toral scientists to the program. Given the overwhelming response to this year’s
event from scientists in France and Germany, we believe it would be very
useful to organize a similar event in 2011 in France to further strengthen ties
between CNRS and MPG researchers.
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ANNEX 7
Report of the meeting

“Chromatin Days: chromatin remodeling”
October 7-8, 2010, IRI, Lille

Organizers:
Christophe Lavelle, Ralf Blossey (IRI CNRS 3078).

Venue: Interdisciplinary Research Institute, Lille
Event URL:

http://www.iri.univ-lille1.fr/doc/chromatin days 2010/

The meeting was held on October 7 & 8 at the Interdisciplinary Research
Institute in Lille. The second edition of the IRI Chromatin Days, which was
supported by the CNRS GDRE 513 “Biologie Systémique”, the IFR 147 of
Lille 1 University, and the Fédération de Physique et Interfaces, University
Lille 1, was dedicated to the topic of chromatin remodeling. Eight speakers
with backgrounds in molecular and structural biology, bioimaging, single-
molecule biophysics and theoretical physics addressed this topic, giving ample
proof of the high activity the field currently witnesses. About 40 participants
subscribed to the meeting. Although mostly a topic of interest to molecular
biologists, we are particularly proud that a substantial number of bioinformati-
cians were attending the meeting.

The response to the meeting was very positive, both from the audience and the
speakers. The latter particularly enjoyed that the focus of this small meeting
allowed them to interact and exchange on their scientific interest in a very
concentrated fashion. In order to foster this exchange further, the organizers
have sollicited a minireview series in the FEBS Journal, to which seven of
the eight speakers will work together to publish four minireviews focusing on
the themes of the meeting : molecular and structural biology of chromatin
remodelers, single-molecule methods, imaging and a theoretical article on the
dynamics of nucleosome displacement.
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ANNEX 8

Report of the meeting
“Biological networks”

December 7, 2010, iSSB, Evry

Organizers:

Pierre-Yves Bourguignon (MPI-MIS, Leipzig), Thimo Rohlf (iSSB, Evry) and
Areejit Samal (LPTMS, Orsay).

Venue: institute for Systems and Synthetic Biology, Evry, France.

Outcome

A novel aspect about this event was the involvement of junior researchers from
iSSB (Evry), LPTMS (Orsay) and MPI (Leipzig). Through this gathering, the
biologists at iSSB (Evry) became aware of the new mathematical approaches
developed at the MPI (Leipzig). This interdisciplinary event witnessed in-
depth and stimulating discussions between theorists and experimentalists at
the meeting. Further, the speakers from Max Planck Institute realized many
new applications for their mathematical methods.

Program

15:45 - 16:15 Informal introduction over coffee and tea

16:15 - 16:40 Frank Bauer, MPI-MIS, Leipzig
On the synchronization of coupled oscillators in directed and signed networks

In this talk I will consider synchronizability of coupled oscillators in directed
networks whose links may carry weights of mixed signs. I will show how the
normalized Laplace operator naturally arises in case the coupling function does
not vanish at the origin. I will study network synchronizability as characterized
by the smallest real part of the Laplacian eigenvalues, with respect to the
presence of directed links and signed weights and characterize cases when
directed links improve synchronizability in comparison to undirected links.

16:40 - 17:05 Davide Fichera, iSSB, Evry
Enumeration of pathways in metabolic networks
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17:05 - 17:30 Nils Bertschinger, MPI-MIS, Leipzig
Statistical complexity, exponential random graphs and motif statistics

In the context of time series analysis, statistical complexity is a well de-
veloped method to quantify dependencies of probability distributions. Here,
we investigate the related idea of exponential random graph ensembles as a
framework for quantifying the structure of networks. For these graphs, the
counts of subgraphs with at most k links are a sufficient statistics for graph
ensembles (exponential families) of order k. This framework allows to sys-
tematically study relation between cluster coefficient and assortativity, which
are commonly used to quantify structure in networks. Finally, we present a
principled way to construct null models for motif analysis.

17:30 - 19:00 Discussions on possibilities for collaborations.

126 MODELLING COMPLEX BIOLOGICAL SYSTEMS



From the glycolytic oscillations to the control of the cell
cycle: a minimal biological oscillator

Rui Dilão1

1 Nonlinear Dynamics Group, Instituto Superior Técnico
Av. Rovisco Pais, 1049-001 Lisbon, Portugal

Abstract

We introduce the basic modeling approach in order to describe chains of en-
zymatic reactions. We analyze the effects of activation feedback loops in
these chains of reactions, and we derive the conditions for the existence of
oscillations. We show that enzymatic chain reactions with two sequential
chains and one feedback activation loop describe the basic features of the
cell cycle control in eukaryotes. This same enzymatic chain reaction also
describes the glycolytic oscillations in yeast. From this modeling approach,
it results that the S/G2 checkpoint of the cell cycle is under the control of
the concentration of the Cdk protein Cdc25. The concentration of this protein
tune several bifurcation parameters of the model equations and its variation
can induce the crossing of a Hopf bifurcation, leading to stable oscillation in
the concentrations of the Maturation Promoting Factor (MPF=cyclin B+Cdc2)
and of its phosphorylated state. This model is consistent with the recent finding
that the oscillation of a single Cdk module is sufficient to trigger the major cell
cycle events (Coudreuse and Nurse, Nature, 468 (2010) 1074-1079).

1 Introduction

Oscillatory behavior in biological systems and in aggregates of cells and tis-
sues is observed as periodic variations over time of protein concentrations.
Examples of biological systems with this time behavior are oscillations in the
concentrations of cyclin proteins and of the Cdk enzymes controlling the cell
cycle [15, 1, 7, 18, 19]; glycolytic oscillations in yeast anaerobic respiration [9,
10]; calcium oscillations controlling several cellular processes [8]; oscillation
in the expression of proteins that trigger morphogenetic signals in mammals
and responsible for the definition of the animal body plans [16]; oscillatory
signals in the spatial aggregation patterns of the Dictyostelium Discoideum
amoeba [12]; circadian rhythms in eukaryotes [17], bacteria [20] and plants
[6].

There are several mathematical models aiming to describe oscillations in
the concentration of specific enzymes and proteins in cells and tissues. All
these mathematical models are based on the same biological assumptions and
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observations. For example, in order to describe glycolytic oscillations in yeast,
Higgins [10], Selkov [21] and Goldbeter [7], among others, provided different
models describing quantitatively the oscillatory behavior in time of the con-
centration of glycolysis in yeast cells. The differences between these models
is due to different assumption on the molecular interaction mechanisms and
processes. The interaction mechanisms involve the choice of different ad-hoc
rate functions and threshold mechanisms. Other differences can result from
different technical and simulation approaches as, for example, deterministic
versus stochastic approach or delay versus non-delay differential equation ap-
proach.

One of the processes that is common to all the organisms and that has been
conserved through evolution is the regulation and control of the cell cycle. One
of the features of this process is its periodicity together with the existence of
checkpoints in order to determine the order of transitions between the different
phases of the cell. As this process is transversal to all life phenomena, it is
admissible to assume that the basic cell cycle control mechanism has been
conserved across evolution. For that, it must be minimal and the role of
evolution has been to fine-tune the core system, [14, 3].

One of the first attempts to obtain a classification of the main type of
cellular regulatory mechanisms was done in 1961 by Monod and Jacob, [14].
In this classification, they have proposed six different structural mechanisms
present in bacteria that can exist and have been preserved by evolution in
higher organisms. According to Monod and Jacob, one of these models pro-
duce cyclic phenomena. The key ingredients of this Monod and Jacob os-
cillatory mechanisms is the existence of one activating and one co-repressing
loop in the production of two oscillating proteins. Their analysis is largely
qualitative.

To explain glycolytic oscillations in yeast, Higgins, [10], proposed a model
that produces oscillations through a feedback activation loop. Latter, Higgins,
[11], classified the simplest sequences of enzymatic chain reactions with neg-
ative and positive feedback and feedforward loops.

One of our goals here is to arrive at a simple, minimal and realistic bio-
chemical model leading to oscillatory time behavior of the concentrations of
proteins or other substances as observed in cells, tissues and higher organisms.
In our modeling context, simple and minimal means to have a minimum num-
ber of elementary chemical reactions, and realistic means to have only first and
second order reactions.
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Here, we show that the enzymatic chain reaction with two sequential chains
and a feedback activation loop describes the basic features of the cell cycle
control in eukaryotes, as well as the glycolytic oscillations in yeast. Moreover,
we show that the S/G2 checkpoint of the cell cycle is under the control of
the concentration of the Cdk protein Cdc25. The concentration of this protein
tune several bifurcation parameters of the model equations and its variation
can induce the crossing of a Hopf bifurcation, leading to stable oscillation in
the concentrations of the Maturation Promoting Factor (MPF=cyclin B+Cdc2)
and of its phosphorylated state.

In the next section, we briefly overview and derive the properties of the
minimal model for a chain of two enzymatic reactions showing oscillatory
behavior in time. This model is derived solely from the mass action law.
The mass action law is the only theoretical mechanism that has a bottom-up
justification based on molecular dynamics. In sections 3 and 4, we apply the
basic features of the model to the particular cases of the control of the cell cycle
and of glycolytic oscillations in yeast. In the case of the cell cycle, our model is
not specific to any eukaryote organism (yeast, frog, humans). With this model,
we pretend to describe a cytoplasmic oscillator, [15, p. 26], the core engine of
the cell cycle. In the last section, we summarize the main conclusions of this
paper.

2 Enzymatic chains of reactions with feedback and feedforward
loops

We distinguish a kinetic reaction from an enzymatic reaction. Kinetic reactions
are represented by collisional diagrams of the type,

A + B k1−→ C (1)

where A, B and C represents atoms or molecules. The diagram (1) means that
when the molecules A and B collide, they can bind and form a third molecule
C. The rate constant k1 measures the speed of the reaction in the media. If
this reaction occurs in a well mixed media, then the evolution in time of the
concentrations of the three chemicals can easily be calculated by the mass
action law, [2, 4].

A Michaelis-Menten enzymatic chain reaction, is described by the se-
quence of kinetic reactions,

S + E
k1

�
k−1

C k2−→ E + P (2)
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where the enzyme E is a catalytic variable and C is a complex. In enzymatic
chemistry, S is the substrate and P is the product of the reactions. Due to the
lack of information about the role and rates of the intermediate steps in (2), this
kinetic reaction is sometimes simplified and it is represent by the schematic
diagram,

S
E99KMM P (3)

In order to determine the equations describing the variation in time of the
concentrations of S and P, it is necessary to consider the concentrations of
E and C, as well as the rates that are explicit in (2), but are implicit in (3).
This information is hidden from the diagram (3) because most of the time it is
unknown. However, for every chains of enzymatic reactions these parameters
must be taken into account.

One of the basic simplifications that it is used in enzymatic chemistry is
to consider the steady state approximation. It is generally assumed that the
concentration of the complex C is constant in time and therefore the equations
describing the kinetic mechanism (2) greatly simplify. For the simple 1-chain
enzymatic reaction (2), the existence of an additional conservation law together
with the steady state approximation derived from the mass action law implies
that the enzyme concentration E is also constant over time. The validity of this
approach when we compare the solutions of the full and of the approximate
equations are justified by a theorem of Tihonov, [13].

The process of simplification just described will be done for every collision
diagram involving different types arrows as the ones represented in (2) and (3).
In chains of enzymatic and kinetic equations, the simplifications is important
and must be carried out for the full set of chemical reactions. In general, in the
description of biological mechanism there is a ambiguity on the meaning of
interaction arrows. Here, we will use arrows with a precise meaning, and all the
arrows used in diagrams will be associated with a specific kinetic mechanism.

The classification of the simplest linear chains of enzymatic reactions with
feedback and feedforward activation and inhibition loops can be done by ex-
haustively analyzing all the possible interaction diagrams. The simplest cases,
involving feedback and feedforward loops are the four enzymatic reactions
represented in figure 1.

The activation and inhibition mechanism represented by the signed arrows
in figure 1 are associated with the reversible kinetic mechanisms,

(+) P + E−
k1

�
k−1

E

(−) P + E
k1

�
k−1

E−
(4)
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Figure 1: Linear chains of enzymatic reactions with feedback (a) and b)) and
feedforward (c) and d)) activation (+) and inhibitory loops (−). Full line arrows
without signals represent collisional kinetic mechanisms as in (1) and (2). Dashed
line arrows represent enzymatic reactions as in (3). Signed arrows represent activation
and inhibitory interactions and their meaning are explicited in (4).

where E− is a non-active state of the enzyme E. If an enzyme is not affected
by other mechanisms, it is assumed that it is in an active state.

It can be shown, that the enzymatic mechanisms b), c) and d) of figure1
cannot lead to oscillatory motion for all the values of the parameters1, but the
reaction a) has parameters values for which the dynamics oscillates in time. To
be more specific, with the equivalences between (2) and (3) and the meaning
of the signed arrows in (4), to the mechanisms in figure 1a), we associate the
kinetic reactions,

G k1−→ G + S

S + E
k2

�
k−2

C k3−→ E + P

P + E−
k4

�
k−4

E

P + E2

k5

�
k−5

D k6−→ E2 + P2

(5)

The first reaction in (5) represents protein production from the gene G, [2]. The
second reaction corresponds to the first Michaelis-Menten enzymatic reaction
in figure1a), and the third reaction is the feedback activation loop. Note that,
the forth reaction is also an enzymatic reaction, where we have explicitly
introduced the additional enzyme E2 and the new complex D. These substances
are absent from the diagrams in figure1, however they must be taken into
account. If we substitute this last reaction by a direct kinetic mechanism
similar to the first reaction in (5), it can be exactly proved that the associated
differential equations cannot have stable self-sustained oscillatory behavior
(limit cycles).

1The proofs of these facts can be done as nonlinear dynamics exercises.
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By the mass action law, [4, 5], the differential equations describing the time
variation of the concentrations of the substances in the kinetic mechanisms (5)
or in the diagram in figure 1a) are,

C′(t) = k−2(−C(t))− k3C(t) + k2E(t)S(t)
D′(t) = k−5(−D(t))− k6D(t) + k5E2(t)P(t)
E−′(t) = k−4E(t)− k4E−(t)P(t)
P′(t) = k3C(t) + k−5D(t) + k−4E(t)− k4E−(t)P(t)− k5E2(t)P(t)
S′(t) = k−2C(t)− k2E(t)S(t) + k1G(t)

(6)
with conservation laws,

G(t) = G0

D(t) + E2(t) = E2(0)
C(t) + E(t) + E−(t) = E(0)

(7)

where G0 is the concentration of the gene G associated with the production of
the protein S, and E(0) and E2(0) are the concentrations of the enzymes E and
E2, respectively.

Solving the conservation equations (7) and the steady state conditions

C′(t) = 0 ,D′(t) = 0 and E−′(t) = 0

in order to E, E2, C, D and E−, we obtain,

E2(t) =
E2(0) (k−5 + k6)
k5P (t) + k−5 + k6

E(t) =
E(0) (k−2 + k3) k4P (t)

k4P (t) (k2S(t) + k−2 + k3) + k−4 (k−2 + k3)

C(t) =
E(0)k2k4P (t)S(t)

k4P (t) (k2S(t) + k−2 + k3) + k−4 (k−2 + k3)

D(t)→ E2(0)k5P (t)
k5P (t) + k−5 + k6

E−(t) =
E(0)k−4 (k−2 + k3)

k4P (t) (k2S(t) + k−2 + k3) + k−4 (k−2 + k3)
.

(8)

Introducing (8) into (6), the system of equations (6) simplify to, S′(t) = ν − f(S,P)

P′(t) = f(S,P)− β2P(t)
P(t) + α3

(9)
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where,

f(S,P) =
β1P(t)S(t)

P(t) (S(t) + α1) + α2

and
ν = G0k1, β1 = E(0)k3, β2 = E2(0)k6

α1 =
k−2 + k3

k2
, α2 =

k−4

k4
α2, α3 =

k−5 + k6

k5

(10)

are positive parameters.

The differential equation (9) has a unique and positive fixed point with
coordinates, 

S∗ =
α1α3ν + α2(β2 − ν)

α3(β1 − ν)
P∗ =

α3ν

(β2 − ν)
(11)

provided (β1 − ν) > 0 and (β2 − ν) > 0. The differential equation (9) has
a Hopf bifurcation in the vicinity of the fixed point (11) if the trace of the
Jacobian matrix of the vector field defined by (9) and calculated at fixed point
(S∗,P∗) is zero and the corresponding determinant is positive. So, from this
condition, it follows easily that equation (9) has a stable limit cycle in phase
space if,

α2(β1 − β2)(β2 − ν)2 > α2
3β2(β1 − ν)2 + α1α3β1(β2 − ν)2 (12)

where necessarily, β1 > β2 and α3 > 0.

In figure 2, we show the region of the parameter space (β1, β2) for which
equation (9) has a stable limit cycle in phase space and therefore its solutions
show stable sustained oscillations. Numerical simulations have shown that the
solutions differential equation (9) has stiffness behaviour for α3 close to zero.
In the case of existence of stable limit cycles this is an indication of existence
of relaxation oscillations.

In figure 3, we show three limit cycle solutions of equation (9) and the
corresponding dependence on time of S and P, for the points A, B and C
indicated in the bifurcation diagram of figure 2.

From the condition (12), a necessary condition for existence of sustained
oscillations is β1 > β2, which, by (10), implies that,

E(0)k3 > E2(0)k6 (13)

As we see from figure 2, with the parameters ν, α1, α2 and α3 fixed, it is
possible to control the existence of stable oscillations by changing β1 or β2.
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Figure 2: Region of the parameter space (β1, β2) for which equation (9) has a stable
limit cycle in phase space. The region of existence of stable limit cycles has been
calculated with condition (12). The other parameters are fixed and have the values:
ν = 0.5, α1 = 1.0, α2 = 1.0 and α3 = 0.12. Point A has coordinates, β1 = 3.0 and
β2 = 0.8. Point B has coordinates, β1 = 3.0 and β2 = 1.2, and for point C, β1 = 1.6
and β2 = 1.25.

From the biological point of view, by (13), this change is equivalent to a change
in the concentration of the enzymes of the mechanism of figure 1a). This will
be discussed in more detail below.

3 A minimal model for the cell cycle

The cell cycle is divided into four phases: the phases G1, S, G2 and M. During
the phase G1, the new cell absorb nutrients, synthetize mRNA and proteins
and grows. During the phase S, the synthesis phase, chromosome replication
occurs. The phase G2 is the preparation for mitosis and the cell continues
to synthetize mRNAs and proteins. In the phase M, in most eukaryotes, the
nuclear envelope breaks and begins a complicated process of separation of
chromosomes preparing the cellular division (cytokinesis) at the end of phase
M. After these processes, the cell enters again in the phase G1.

Human somatic cells complete a full cell cycle in 24h. Mitosis (M) takes
30 minutes, the phase G1 last 9h, the phase S last 10h and the phase G2 takes
4.5h to complete. In yeast cells, the full cell cycle takes 90 minutes.

The transitions between the different developmental stages of the cell are
controlled by checkpoints. The checkpoint mechanisms determines if the cell
remains in its actual state or if it makes the transition to the next cell stage.

All these processes are controlled by two families of proteins, the cyclins
and the Cdk enzymes or cyclin dependent kinases.
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Figure 3: Limit cycle solutions of equation (9), for the points A, B and C shown in
figure 2. On the right side we show the time evolution of P(t) and S(t). In A: β1 = 3.0
and β2 = 0.8. In B: β1 = 3.0 and β2 = 1.2. In C: β1 = 1.6 and β2 = 1.25. The other
parameter values are ν = 0.5, α1 = 1.0, α2 = 1.0 and α3 = 0.12.

The Cdk enzymes are kinase proteins (enzymes), also called phosphotrans-
ferases, whose function is to transfer phosphate groups in a process called
phosphorylation. The cyclins control the progression of the cell cycle. Their
effect is to activate the Cdk enzymes, forming an enzymatic complex. These
complexes in its phosphorylated form trigger the different processes of the cell
cycle, including protein synthesis, chromosome duplication, mitotic spindler
formation, protease, etc.. The oscillations of different cyclins determine the
cell fate and, for example, dictate if a cell stays longer in a specific phase
or proceeds to the next stage. In particular, the mechanism of cell death is
strongly dependent on the effectiveness of the cell cycle control. For biological
details see [15, 1].

The starting points of the control of cell cycle is the the formation of
the Maturation Promoting Factor (MPF). This complex is responsible for the
signaling of mitosis initiation. As it is known from experiment from frog eggs,
MPF can drive cells into mitosis without finishing the DNA replication. This
suggest the existence of a cytoplasmic oscillator, [15, p. 26].
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This MPF complex is a compound formed with one cyclin-B molecule and
one Cdk molecule Cdc2 (MPF=cyclin-B + Cdc2). The beginning of mitosis is
marked by the phosphorylation or activation of this complex. This phosphory-
lated or active form of MPF is denote by (MPF)+. During the cell cycle, the
concentration of cyclin-B increases during interphase but drops down at the
exit of mitosis, after the initiation of anaphase.

During interphase, we can assume that the concentration of cyclin-B is
under genetic control, and MPF is formed as cyclin-B is available. These
processes can be described by the kinetic mechanisms,

G k1−→ G + cyclinB

cyclinB k2−→
Cdc2 + cyclinB k3−→ MPF

(14)

The activation of the MPF is a complex process involving the Cdc25 pro-
tein. It is known that the Cdc25 promotes the activation (phosphorylation) of
MPF, and the removal of Cdc25 prevents the entry in mitosis of the cell. This
process is enzymatic and we can assume that it follows a Michalis-Menten
type kinetics, occurring at a faster time scale when compared with the cellular
processes. Therefore, we can represent the MPF activation by the mechanism,

MPF + Cdc25
k4

�
k−4

C k5−→ Cdc25 + (MPF)+ (15)

The activate or phosphorylated state of MPF — MPF+ —- activates the
activity of Cdc25. This feedback activation loop is represented by the mecha-
nism, [15, p. 62],

(MPF)+ + Cdc25−
k6

�
k−6

Cdc25 (16)

The MPF+ complex then promotes the formation of the Anaphase Pro-
moting Complex (APC) that triggers the beginning of anaphase. So, this
subsequent enzymatic reaction can be represented by the mechanism,

MPF+ + E1

k−7

�
k7

D k8−→ E1 + APC (17)

where E1 represent a non specific enzyme.
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The mechanisms just described form the basic process that determines the
entry of a cell into mitosis. In figure 4, we show the schematic diagram of the
basic process just described, including the passage from the S/G2 checkpoint.
In the diagram of the figure, arrows represent chemical transformations as
in chemical kinetics. Dashed arrows represent irreversible Michaelis-Menten
complex mechanisms.

Figure 4: Minimal mechanism of control of the cell cycle. The passage from
the checkpoint in the transition from phase S to phase G2 should emerge from the
properties of this minimal model.

The reaction mechanisms in (14)-(17) are described by the set of indepen-
dent differential equations,

C′(t) = −k−4C(t)− k5C(t) + k4Cdc25(t)MPF(t)
D′(t) = −k−7D(t)− k8D(t) + k7E1(t)MPF+(t)
Cdc25′(t) = k−4C(t) + k5C(t)− k4Cdc25(t)MPF(t)

−k−6Cdc25(t) + k6Cdc25−(t)MPF+(t)
Cdc25−′(t) = k−6Cdc25(t)− k6Cdc25−(t)MPF+(t)
cyclinB′(t) = −k3Cdc2(0)cyclinB(t)− k2cyclinB(t) + k1G(t)
E′1(t) = k−7D(t) + k8D(t)− k7E1(t)MPF+(t)
MPF′(t) = k−4C(t) + k3Cdc2(0)cyclinB(t)− k4Cdc25(t)MPF(t)
MPF+′(t) = k5C(t) + k−7D(t) + k−6Cdc25(t)

−k6Cdc25−(t)MPF+(t)− k7E1(t)MPF+(t)
(18)

with conservation laws,

G(t) = G0

D(t) + E1(t) = E10

C(t) + Cdc25(t) + Cdc25−(t) = Cdc25(0)
(19)

where Cdc25(0) and E10 are the initial concentrations of the enzymes Cdc25
and E1, respectively. The constant G0 is the concentration of the gene that
produces cyclin-B and the concentration of Cdc2 is considered constant along
all the cell cycle, Cdc2(t) = Cdc2(0).

In order to simplify the model equations (18) we use the conservation laws
(19) together with the additional steady state assumptions: C′(t) = 0, D′(t) =
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0 and Cdc25−′(t) = 0. Solving all together the steady state equations with the
conservation laws (19) in order to E1, C, D, Cdc25 and Cdc25−, we obtain,

E1(t) =
E10 (k−7 + k8)

k7MPF+(t) + k−7 + k8

Cdc25(t) =
Cdc25(0) (k−4 + k5) k6MPF+(t)

k6MPF+(t) (k4MPF(t) + k−4 + k5) + k−6 (k−4 + k5)

C(t) =
Cdc25(0)k4k6MPF(t)MPF+(t)

k6MPF+(t) (k4MPF(t) + k−4 + k5) + k−6 (k−4 + k5)

D(t) =
E10k7MPF+(t)

k7MPF+(t) + k−7 + k8

Cdc25−(t) =
Cdc25(0)k−6 (k−4 + k5)

k6MPF+(t) (k4MPF(t) + k−4 + k5) + k−6 (k−4 + k5)
.

(20)
Introducing (20) into (18), the model equations simplify to,

cyclinB′(t) = = −k3Cdc2(0)cyclinB(t)− k2cyclinB(t) + k1G0

MPF′(t) = k3Cdc2(0)cyclinB(t)− f(MPF,MPF+)

MPF+′(t) = f(MPF,MPF+)− β2MPF+(t)
MPF+(t) + α3

(21)
where,

f(MPF,MPF+) =
β1MPF(t)MPF+(t)

MPF+(t) (MPF(t) + α1) + α2

and
β1 = Cdc25(0)k5, β2 = E10k8

α1 =
k−4 + k5

k4
, α2 =

k−6

k6
α2, α3 =

k−7 + k8

k7

(22)

are positive parameters. Model equations (21) describe the biological mecha-
nism of figure 4, for the control of the cell cycle.

The system of equations (21) has a unique fixed point with coordinates,
cyclinB∗ =

k1G0

k3Cdc2(0) + k2

MPF∗ =
α1α3ν + α2(β2 − ν)

α3(β1 − ν)
MPF+∗ =

α3ν

(β2 − ν)

(23)
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where,

ν =
k1k3Cdc2(0)G0

k3Cdc2(0) + k2

By the analysis we have performed in the previous section, necessary condi-
tions for the existence of sustained oscillations in the solutions of equations
(21) are,

(β1 > ν) =⇒ Cdc25(0)k5 >
k1k3Cdc2(0)G0

k3Cdc2(0) + k2

(β2 > ν) =⇒ E10k8 >
k1k3Cdc2(0)G0

k3Cdc2(0) + k2

(β1 > β2) =⇒ Cdc25(0)k5 > E10k8

(24)

In figure 5, we show the solutions of equations (21) for the parameters
values of point A in figure 3, and the additional parameter values, k2 = 0.1,
k3 = 0.1 and Cdc2(0) = 1.0. After a transient time, the oscillations are
established and the systems describe qualitatively the interphase and the mitose
phases of the cell cycle. The mitose phase corresponds to the regions where
MPF+ is high. Concerning the concentration of cycline-B, in this minimal
model, we have not considered other dynamical processes involved in the
dynamics of cyclins. From observations, it is know that a cell once in mitosis,
and after the entry in anaphase phase, APC has a proteolytic action on cyclin-
B, lowering its concentration to very low values. In this model, the cyclin-B
is considered to be permanently produced without other effects. This justifies
the constant values shown in figure 5.
One of the important properties of this minimal model is modulation of the
Hopf bifurcation by changing the concentration of Cdc25(0) as shown in the
first and third conditions in (24). By changing the concentration of this Cdk
protein, we can force, the crossing of the Hopf bifurcation boundary of figure 2,
and therefore forcing cells to enter mitosis or to be arrested in some phase of
the cell cycle. This effect explains cell fusion experiments where cells can
enter mitosis without finishing phase S. On the other hand, this mechanism
can explain the effect of the S/G2 checkpoint on the progression of the cell to
mitosis.

For example, from (24), it follows that lowering the concentration of Cdc25
in cells and tissues, can inhibit the entry of a cell into mitosis, preventing, for
example, the proliferation of damaged cells. A new class of drugs with these
properties are being tested, [22].
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Figure 5: Limit cycle solutions of equation (21), with the parameters values: α1 =
1.0, α2 = 1.0 and α3 = 0.12, β1 = 3.0, β2 = 0.8, k2 = 0.1, k3 = 0.1, k1G0 = 0.5
and Cdc2(0) = 1.0. Fixing all the parameter values except β2, the system of equations
(21) has oscillatory solutions (stable limit cycle) for β2 ∈ [0.387, 2.588].

4 Glycolytic oscillations

In 1964, Higgins proposed that glycolytic oscillations in yeast cells could be
understood as a sequential enzymatic mechanism, involving glucose (GLU),
fructose-6-phosphate (F6P) and fructose diphosphate (FDP), [10]. The mecha-
nism proposed by Higgins, can be summarize in the enzymatic chain reactions
shown in figure 6. Comparing the diagrams in figure 6 and in figure 1a), we
conclude that these mechanism are the same.

Figure 6: Higgins mechanism of glycolytic oscillations in yeast.

One of the conclusions we derive from this comparison is that this very
simple biological mechanism is present in different biological system, showing
that different biological systems can be described by the same biochemical
mechanisms, even if their biological functions are different.

5 Conclusions

We have introduced a minimal model aiming to describe the cytoplasmic oscil-
lator of the cell cycle. This cytoplasmic oscillator can drive cells into mitoses
and insures that the transitions between cell phases are done in a specific order.
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One of the control parameters of this model is the concentration of the Cdc25
protein. According to the analysis done here, the concentration of this protein
simulates the effect of the S/G2 checkpoint of the cell cycle.

One of the consequences of this model is that lowering the concentration
of Cdc25 in cells and tissues can inhibit the entry of a cell into mitosis, pre-
venting, for example, the proliferation of damaged cells.

The cytoplasmic oscillator model derived here is structurally similar to a
model describing glycolytic oscillations in yeast. This fact, together with the
property that this model is associated with the simplest biochemical mecha-
nism that we can imagine that explains sustained oscillations, imply that it is
conceivable that the mechanism analyzed here is the biochemical back-bone
for several biological systems exhibiting oscillations.
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Abstract

There are several ways that our species might try to send a message to another
species separated from us by space and/or time. Synthetic biology might be
used to write “Kilroy was here” into the patterns of codons in the genome of
a bacterium. I suggest here how this pattern might be used to create DNA
movies. I also suggest that this may be a useful way to analyse DNA and I
speculate unashamedly that a message from aliens may already exist in the
genomes of cyanobacteria and other bacteria.

1 Introduction

The urge to leave traces of ourselves is revealed by the pictures in our muse-
ums, by the books in our libraries and by the tags on the walls in our cities.
This urge led to the message written onto the gold-anodized aluminium plaques
on the Pioneer 10 and 11 probes sent out by NASA. The same urge might be
harnessed to send a message to future species on our own planet. The question
would then arise as to how such a message might be written. Attempts to
answer this question risk crossing the line that separates science from science
fiction. Sometimes, however, breaching the divide between scientific specula-
tion and science fiction can be desirable. Indeed, it has been encouraged by
the physicist and science fiction writer, Gregory Benford, who proposed that
there is “a link between the science I practise, and the fiction I deploy in order
to think about the larger implications of my work, and of others’.” [1]. In other
words, allowing one’s imagination to explore new possibilities in the writing of
science fiction can be of value to real science. I use this to license the following
series of speculations about intelligent life in the universe, its likely desire to
communicate, and the use it may make of synthetic biology to write ’Kilroy
was here’ as an epitaph to Homo sapiens in the genome of bacteria.
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2 The Problem

It is conceivable that “intelligent”, dominant, life-forms like ours have arisen
previously on Earth. It is even conceivable that they have arisen - and will
continue to arise - many times. The problem for species such as Homo sapiens
(or, as we might prefer to call it, Homo systemicus) is that the selection for
tribalism, aggression, power-seeking and, above all, obedience to the group
(i.e. uncritically adopting its beliefs and values), that leads to their dominance
is also likely to lead to their destruction. It might be argued that no evident
trace of such species has been found, as yet, in the fossil record. This might
seem a powerful counter-argument given the effects of Homo sapiens on the
ecosystem (e.g. via the relative abundance of pollens) or on fossilised artefacts
(e.g. via our sophisticated tools). A possible explanation for this would be
that such species have destroyed themselves so rapidly that they have left little
trace behind. Homo sapiens may have lasted longer than most because its low
intelligence relative to earlier species has retarded its development of weapons
of mass destruction (e.g. of psychic, literally mind-blowing, weapons). Given
awareness of its transience, an intelligent species (like many individuals) may
want to want to leave a message for a future species, either just a “Kilroy was
here” or some more interesting “message in a bottle”. But how could they do it
so as to ensure that it could be read after tens or hundreds of millions of years?

3 Possible approaches

One way would be to create artefacts on Earth along the lines of a modern
equivalent of the pyramids. It is unlikely though that such artefacts could be
constructed to last more than a few tens of thousands of years rather than a few
hundreds of millions of years that be may needed for them to be interpreted
[14]. The precursors of the pyramids, the mastabas, are already in a poor state
despite the good conditions for preservation that have prevailed in Egypt. And
little that we might construct is likely to survive a trip down a subduction zone.
Another way would be to leave the message somewhere in the Solar System,
perhaps to put it in a Lagrange Point, where one might hope it would stay for
some time (I may be wrong here), or to send it off into the great black yonder
as in the case of Pioneer 10 and 11. Yet another way would be to make use of
biology.

4 The biological solution

Bacteria have the advantage of being able to maintain themselves unscathed
over millions of year in different conditions in which, to take the extremes,
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they can either grow by faithful reproduction or survive by sporulation. How
then might bacteria be used to send a message across the aeons or the light
years? One possibility would be to write it in the DNA of an organism that was
likely to be sequenced. This raises the question of how to encode the message.
Suppose, for example, we were to take a circular bacterial chromosome like
that of Escherichia coli and to use the sequences of the two replichores (i.e. the
two oriC-terC sequences) as the axes of a 2-D matrix. (There are, of course,
other possibilities such as taking the entire linear sequence from oriC back to
oriC and then using that same sequence for both axes of the 2-D matrix). If
one were to attribute a colour to each nucleotide base pair combination of x,y
coordinates, this might be used to make a pretty pattern. It might be used to
make a still prettier one if one were to use pairs of amino acids as combinations
or simply pairs of similar/identical amino acids. It might be make a more
interesting and accessible code if use were made of natural punctuation marks
in the chromosome. Then the sequence it could be divided up so as to make a
series of frames and a movie could be made out of it.

5 Implementation of DNA movies

“Punctuation marks” are the basis of the solenoid model for chromosome
folding via the DNA-binding sites for sequence-specific transcriptional reg-
ulators which are located at regular distances that are multiples of 1/50th of
the chromosome length [6]. Other periods such as the 33 kb in E. coli have
been revealed by analysis of its ’core’ genes and may be based on require-
ments for translation and possibly transcription [8]. These are not the only
results (see for example [3, 13]. Overall, periodicities may reflect two or more
opposing constraints acting on the system. For example, there may be one
constraint for unexpressed DNA and a different constraint for expressed DNA.
The former constraint might correspond to maximising a reversible packing
of DNA that would be obtained by the spontaneous adoption of a cholesteric
structure as guided perhaps by sequences favouring high curvature [9] at the
end of the loops or by other, as yet known, factors [4]. (An easily testable
prediction is that this type of periodicity should be more evident in DNA that
is largely untranscribed as in much of the DNA found in some dinoflagellates
[7, 2].) The latter constraint might correspond to maximising the efficiency of
translation by, for example, having all the codons for a particular amino acid
translated near one another, which might be achieved by a particular set of 3-D
distributions of codons within the cytoplasm and hence a particular set of 1-D
distributions of these codons along the chromosome.

Irrespective of the exact nature and function of natural periodicities, the
idea here is to exploit them as the frames in which a message is encoded. In one
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type of coding, this message would be in the position of pairs of amino acids in
the two ori-ter arms or replichores. This would require extensive modification
of existing coding sequences. It would require genes to be shifted from one
location to another and for the sequences of individual genes to be extensively
modified. But it is feasible. For example, the genes encoding nitrogen fixation
in Klebsiella have been extensively modified with codons being exchanged and
unwanted sites for regulation being removed [11].

6 The problems

One problem is that the synthetic messenger, which we might term Escherichia
nuntius or Nostoc nuntius (depending on its origin), is likely to undergo so
many recombinations, rearrangements and mutations that the message will be
lost. A partial solution might be to use a slimmer version of E. coli from which
elements that favour recombination have been removed [10]. In addition, key
elements in the message might be carried by proteins that interact with several
partners as in the case of ribosomal proteins since mutations in such proteins
have an increased risk of disrupting an interaction important for survival.

Another problem is that E. nuntius is likely to be outcompeted by its natural
competitors which have a billion years of selection on their side. This is not a
problem if the conditions do not allow growth and only survival is important.
(Note here that bacteria are reported to have been resuscitated after millions
of years without growth [5].) Being outcompeted may not be a problem if E.
nuntius can occupy fully the niche it is to grow in or if a new niche exists for
which it can be designed to fill perfectly. Given the proportion of domestic
animals compared to wild animals on Earth, E. nuntius could be added to
feedstuffs so as to progressively replace the natural gut population.

7 Discussion

A first step in the construction of a synthetic messenger would be to make
a matrix of the codons of a real bacterium and to experiment with the size
and number of the frames to see what one gets. The joke here would be if
this gave something non-random. The question would then be ’what does
it mean?’ In fact, this is not so silly. It is likely that bacteria have been
selected so as to obtain optimal compromises between rates and fidelity of
translation depending, for example, on growth conditions. One way to achieve
this would be if ribosomes could tell the future - which, in principle, they
could if a ribosome were to be informed of the codons that it would meet next
by the preceding ribosomes (which have already met that codon). Suppose,
for example, the tRNA used by ribosomet tells ribosomet+1 which amino acid
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it will need next then, if recently used tRNAs were to increase the affinity
of tRNA synthetases for one another, a functioning-dependent hyperstructure
might form. Assembly of such a hyperstructure might profit greatly from a
non-random distribution of codons in the group of genes that are expressed
at any one time. The second joke would be to find that my proposal had
already been acted on by an alien species and, funnier still, that the bacteria that
made our world actually arrived via panspermia [12] - and contain a message.
Reciprocally, absence of a message might be interpreted as indicating that there
is no species out there - or back there - that wants to communicate with us.
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Abstract

Increasing evidence supports a role for the microenvironment as the major
player in signaling pathways, however, lack of a dynamic integrated perspec-
tive constitute a strong impediment to the understanding of cell responses to
microenvironment. Based on mathematical models and computational meth-
ods, systems biology have been recently developed to understand the interac-
tions between components of a biological system and how these interactions
give rise to the function and behavior of that system. Complex signaling by
the transforming growth factor TGF-β is one of the most intriguing networks
that governs complex multifunctional profiles and plays a pivotal role during
chronic liver disease by activating the hepatic stellate cells and promoting
tissue remodeling. TGF-β signals through a heteromeric complex of trans-
membrane serine/threonine kinases, the type I (TβRI) and type II (TβRII)
receptors which transduces signals to downstream intracellular substrates, the
Smad proteins. Alternatively, non-Smad pathways involved in TGF-β signal-
ing include the Rho-like GTPase and PI3K/AKT pathways. Hence, combina-
tions of SMAD and nonSMAD pathways might contribute to the diversity of
cellular responses to TGF-β[4].

We develop differential model including the nuclear Transcriptional In-
termediary Factor (Tif1γ) which was recently described as a new controver-
sial regulator of Smad activity either through binding to Smad4 or Smad2-
Smad3[3, 5, 6]. We took advantages of previous models of Smad shuttling[2]
and receptors trafficking[7] to develop an integrated TGF-β signaling model
which included Tifγ1. Dynamic simulation of the differential equation system
demonstrated that controversial observations were compatible according to the
Tif1γ/Smad4 ratio present in the cells. In addition we propose that Tif1γ,
Smad4 and Smad2 might be transitory involved in a unique complex within
the nucleus.

In a different way, we work on discrete model integrating both the Smad
and non Smad dependant pathways to investigate the dual role of TGF-β on
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cell cycle. Biological observations are extracted form literature and parsed in
a database. To translate biological knowledge into a formal model built on
the state concept, and to specify the evolution equation of each variable, we
develop a new language based on State-chart formalism[1]. A computational
environment for the design of statecharts graphs, software for the compilation
of graphs in logic language and algorithms for simulation are under develop-
ment.
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Abstract

Networks coming from protein-protein interactions, transcriptional regulation,
signaling, or metabolism may appear to have ”unusual” properties. To quantify
this, it is appropriate to randomize the network and test the hypothesis that the
network is not statistically different from expected in a motivated ensemble.
However, when dealing with metabolic networks, the straightforward random-
ization of the network generates fictitious reactions that are biochemically
meaningless. Here we provide several natural ensembles for randomizing such
metabolic networks. A first constraint is to use valid biochemical reactions.
Further constraints correspond to imposing appropriate functional constraints.
We explain how to perform these randomizations and show how they allow one
to approach the properties of biological metabolic networks. The implication
of the present work is that the observed global structural properties of real
metabolic networks are likely to be the consequence of simple biochemical
and functional constraints.
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