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“But technology will ultimately and usefully be better served by following
the spirit of Eddington, by attempting to provide enough time and intellectual

space for those who want to invest themselves in exploration of levels
beyond the genome independently of any quick promises for still quicker

solutions to extremely complex problems.”

Strohman RC (1977) Nature Biotech 15:199

FOREWORD
What are the salient features of the new scientific context within which biological

modelling and simulation will evolve from now on? The global project of high-throughput
biology may be summarized as follows. After genome sequencing comes the annotation
by ’classical’ bioinformatics means. It then becomes important to interpret the annota-
tions, to understand the interactions between biological functions, to predict the outcome
of perturbations, while incorporating the results from post genomics studies (of course,
sequencing and annotation do not stop when simulation comes into the picture). At that
stage, a tight interplay between model, simulation and bench experimentation is crucial.
Taking on this challenge therefore requires specialists from across the sciences to learn
each other’s language so as to collaborate effectively on defined projects.

Just such a multi-disciplinary group of scientists has been meeting regularly at Genopole,
a leading centre for genomics in France. This, the Epigenomics project, is divided into
six subgroups. The GolgiTop subgroup focuses on membrane deformations involved in
the functionning of the Golgi. The Hyperstructures subgroup focuses on cell division,
on the dynamics of the cytoskeleton, and on the dynamics of hyperstructures (which are
extended multi-molecule assemblies that serve a particular function). The Organisation
subgroup has adopted a systems biology approach with the application and development
of new programming languages to describe biological systems which it has been applying
to problems in the growth and differentiation of plants and in the structure and functioning
of mitochondria. The Observability subgroup addresses the question of which models
are coherent and how can they best be tested by applying a formal system, originally
used for testing computer programs, to an epigenetic model for mucus production by
Pseudomonas aeruginosa, the bacterium involved in cystic fibrosis. The Bioputing group
works on new approaches proposed to understand biological computing using computing
machine made of biomolecules or bacterial colonies. The SMABio subgroup focuses on
how multi-agents systems (MAS) can be used to model biological systems.

The works of subgroups underpinned the conferences organised in Autrans in 2002, in
Dieppe in 2003, in Evry in 2004, in Montpelliers in 2005, in Bordeaux in 2006, back to Evry
in 2007 and in Lille in 2008. The conferences in Nice in 2009 which as reported here,
brought together over a hundred participants, biologists, physical chemists, physicists,
statisticians, mathematicians and computer scientists and gave leading specialists the
opportunity to address an audience of doctoral and post-doctoral students as well as
colleagues from other disciplines.

This book gathers overviews of the talks, original articles contributed by speakers and
subgroups, and poster abstracts. We thank the sponsors of this conference for making it
possible for all the participants to share their enthusiasm and ideas in such a constructive
way.

Patrick Amar, Gilles Bernot, Marie Beurton-Aimar, Jean-Louis Giavitto, Christophe Godin,
Bruno Goffinet, Janine Guespin, François Képès, Jean-Pierre Mazat, Franck Molina,
Victor Norris, Vincent Schächter, Bernard Vandenbunder.
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http://rnsc.csregistry.org/tiki-index.php

• GDR CNRS 3003 Bioinformatique Moléculaire:
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From cell to tissue dynamics

Jacques Prost1,2

1 Physicochimie Curie (CNRS-UMR168), Institut Curie, Section de Recherche,
26 rue d’Ulm 75248 Paris Cedex 05 France

2 E.S.P.C.I, 10 rue Vauquelin, 75231 Paris Cedex 05, France

Abstract

I give a survey of the work which we have done over the last years on ”active
gels”. In particular, I show how one can construct a set of equations describing
gels in which the cross-links can be moved around by active elements con-
stantly consuming energy. This situation corresponds to the cell cytoskeleton,
which is thought to control most of cell dynamics. We illustrate the potential
usefulness of the equations by discussing cell behavior such as motility, oscil-
lations, wound healing and cytokinesis. Eventually, I discuss tissue growth,
introducing the concept of homeostatic pressure and tumor nucleation.

1 Introduction

Our knowledge in Biology has improved significantly over the last fifty years,
with impressive successes in molecular biology, genetics, developmental and
cell biology. The wealth of information is such that it is hard to make use of
all of them. Although it is clear that details matter in biological systems, it
is also clear that one currently needs to develop a global picture taking into
account the main features and recognizing what is universal. Cell biology
provides a good example of this need: with exactly the same genome cells can
differentiate in about three hundred different types in complex animals such as
vertebrates [1]. Physicists would say that they can go to three hundred stable
attractors depending on external conditions. Considering that cell phase space
is controlled among other things by the expression of a few 104 genes, three
hundred is a very small number. A possible explanation for this small number
of cell types is that they are not only controlled by gene expression, but that
they are also constrained by generic physical laws. We are far from being
able to discuss this problem in its generality, but in the following I address a
simpler problem which illustrates how physics could provide generic tools for
raising these questions. Namely I investigate what can be learned from using
symmetry arguments and conservation laws in describing cell morphology
and dynamics. In view of the acknowledged specificity of biology such an
endeavor may seem futile. I hope to convince the attendee that it is on the
contrary helpful. Indeed I will present:

MODELLING COMPLEX BIOLOGICAL SYSTEMS 13
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- one simple aspect of cell motility, namely the shape and speed of a
lamellipodium, thin protrusion leading the cell motion on a substrate,

- cell oscillations which are observed when cells are suspended in a phys-
iological serum,

- wound healing of xenopus eggs and the onset of cytokinesis,

- tissue growth in specific geometrical conditions.

For the first three examples I use the the same theoretical framework.
Lessons and numbers learned from one example are useful to understand the
next. For tissue growth the approach is very similar, but conservation laws
differ.

In order to do so, one needs to construct the tools. It is nowadays textbook
knowledge that the shape of cells is maintained by a network of cross-linked
biofilaments: the cytoskeleton [2]. At this stage, all we need to know is that
the network constitutes a physical gel which would be rather conventional in
the absence of molecular motors. At short time scales, it behaves like a con-
ventional solid, at long time scales like a liquid. There are in fact some added
complexities which will be discussed in the conclusion. The essential novelty
comes from molecular motors. They consume continuously ATP (Adenosine
Triphosphate) and are able to exert stresses on the cross-links of the gel. The
question is then how to describe such a gel, which we call ”active”. Using
conservation laws and symmetry arguments only I will derive the relevant
equations. Since they result from general considerations these equations can
describe many different situations and are very similar to those derived in
different contexts such as motions of bacterial colonies, fish shoals and bird
flocks [3, 4, 5]. Active gels could also be made artificially, leading to original
material properties [6]. Some of these expected original properties, are the
spontaneous transition to a moving state of a thin slab and the rotation of
disclinations.

The main difference between tissue growth description and active gel de-
scription comes from the fact that cell number is not conserved. Although
this difference may seem to be innocuous, it has profound influence on growth
properties. In particular it allows for the definition of the homeostatic pressure
of a tissue in a given biochemical environment. This pressure is different
from the hydrostatic pressure and corresponds to the mechanical force per
unit area that a tissue can exert on a wall permeable to nutrients and growth
factors, when duplication exactly balances apoptosis. Orders of magnitude of
the homeostatic pressure may be obtained from the analysis of cell behavior
presented before. I will further show that if two tissues are in competition

14 MODELLING COMPLEX BIOLOGICAL SYSTEMS
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for finite space, the tissue which has the largest homeostatic pressure will
always win with no compromise. If one adds that the tissues interface exhibit
(active) surface tension, this leads naturally to the concept of nucleation of
small tumors in three dimensions. This concept is consistent with experiments
showing ”metastasis inefficiency”.
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How to play with DNA inside and outside of the
bacteriophage capsid

Françoise Livolant1

1 Laboratoire de Physique des Solides, Bât 510, UMR 8502, Université Paris-Sud,
91405 Orsay Cedex, France

Abstract

Tailed bacteriophages are complex macromolecular machineries that deliver
their genome into the host cytoplasm while their capsid and tail remain bound
to the cell surface. Although several models have been proposed, DNA or-
ganization is still unknown in the phage head but dimensions of the capsids
are adjusted to keep DNA at a concentration close to 500mg/ml (interhelix
distances close to 27Å) independent of the species. DNA ejection from the
capsid is triggered by specific interaction of a phage tail protein with a receptor
inserted in the wall of the bacteria. DNA progresses in the tail and is injected
in the cytoplasm. For some species (T5, λ and SPP1), the bacterial receptors
have been isolated, allowing to reconstitute the ejection process in vitro and
to investigate the underlying mechanisms. Our goal here is to understand the
DNA ejection process, using the bacteriophage T5.

1 DNA organization inside the capsid

Once triggered, the DNA release from the bacteriophage T5 is not an all-or-
none process but occurs in a stepwise fashion as revealed by fluorescence
imaging [1] of individual bacteriophages deposited on a surface and also by
light scattering on whole T5 populations [2]. During this process, the concen-
tration of DNA goes down from more than 500mg/ml to zero. We followed
the organization of DNA inside the capsids at different steps of the ejection
process. Our goal was to understand what happens when the amount of DNA
progressively decreases. Using cryoElectron microscopy (cryoEM), we ob-
served the organization of DNA inside individual capsids and correlated these
observations with the lengths and concentrations of encapsidated DNA. We
show that upon decrease of its length and concentration, DNA always occupies
the total volume of the capsid and reorganizes under confinement. The single
DNA chain undergoes several phase transitions, from constrained hexagonal
to hexagonal, cholesteric and isotropic phases [3].
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2 DNA ejection under pressure

Both theoretical [1, 2, 3] and experimental [4, 5, 6, 7] studies have shown that
full packaging of the genome inside the capsid requires forces of the order
of 50-100 pN that would correspond to internal pressures of the order of 50-
100 Atm. These high values would result from the confinement and bending
of the long double-stranded DNA chain [8, 9] (typically tens of µm with a
persistence length of 50 nm) inside the small volume of the capsid (50 to 80 nm
in diameter). It has been hypothesised that this internal pressure is responsible
for DNA release after interaction with the receptor protein, in the absence of
any external source of energy.

The role of pressure in the process can be investigated by opposing an
external osmotic pressure to DNA ejection. The external pressure can be
tuned precisely and over a very large range using solutions of an osmolyte
that cannot permeate the capsid such as polyethylene glycol (PEG). According
to theoretical models, a decrease of the length of ejected DNA is expected
with the increase of the external pressure [4, 5, 6]. Experiments with phages
λ/LamB and SPP1/YueB systems showed the behaviour predicted from theory.
For bacteriophage T5 in the presence of its receptor FhuA, DNA ejection is
sensitive to the pressure but the process is far more complex. In the high
pressure range, (7-16 atm), the ejected DNA length decreases with the increase
of the pressure, as predicted. However, in the low and moderate pressure
ranges (2-7Atm), the behaviour is puzzling: multiple discrete steps coexist in
the population independently of the applied pressure. Moreover, a fraction of
the phages eject significantly more DNA than expected (and sometimes their
total content). Under pressure, T5 DNA ejection can be blocked at different
stages and, surprisingly, the DNA remaining inside the phage may be shorter or
longer than the one expected considering an equilibrium between the internal
pressure exerted by the non-ejected DNA packing and the outside. We suspect
kinetics effects or structural characteristics of the tail and connector involved
in the ejection process to play a yet unexplained role in this process [13].

3 Toroidal DNA structure

The bacteriophage can also be used as a nanocontainer, permeable to water and
ions. Individual DNA chains, 3000 to 55000bp long (1.4 − 18µm) have been
collapsed inside the volume of the bacteriophage capsid, (80 nm in diameter),
after partial ejection of its DNA. The tetravalent cation spermine was diffused
through the capsid to condense DNA under conditions chosen to determine a
hexagonal packing of DNA. Using cryoEM, we describe the toroidal structure
and show how the frustration arising between chirality and hexagonal pack-
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ing combined with the strong curvature imposed by the small volume of the
container impose phasing of the helices and variations the DNA helical pitch
[14].
Many questions remain unanswered yet and would deserve more experiments
and modelisation.
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Abstract

The components of the bacterial cell division machinery assemble to form a
dynamic ring at mid-cell towards the end of the cell cycle. The ring is formed
by at least ten division specific proteins, most of them integral membrane
proteins. The first multi-protein complex formed is the bacterial proto-ring
that initiates division. In E. coli the proto-ring is a complex of three proteins
(FtsZ, FtsA, and ZipA) assembling on the cytoplasmic membrane, which is
required for the incorporation of the remaining proteins at the mature ring [1].
The GTP-mediated assembly and disassembly of FtsZ (a bacterial ancestor
of the eukaryotic tubulin) are thought to be essential for the formation of the
septal ring. We will review our contributions to understand quantitatively the
behavior of E. coli FtsZ (in different states, from soluble monomers, to single
filaments and bundles) and how it is modulated by membrane components of
the division machinery, namely the ZipA protein and the lipid composition of
the inner bacterial membrane [2, 3, 4, 5, 6, 7, 8]. We use a multidisciplinary
approach in which we combine experimental (physicochemical, biochemical,
biophysical and structural) and theoretical tools to attain structural, dynamical
and ensemble mechanical (single molecule versus collective behavior) infor-
mation of the molecular events that control the reversible interactions leading
to the formation of the complexes active in division.
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Abstract

In human, only ˜22,000 genes out of ˜69,000 correspond to protein-coding
genes. Emphasis has been put recently on the large fraction (˜2/3) of non-
protein-coding genes, and especially on those encoding micro RNAs (miR-
NAs). miRNAs have been discovered in 1993 by the groups of V. Ambros
and G. Ruvkun as a class of small regulatory RNA controlling developmental
timing in C. elegans. Since then, hundreds of distinct miRNAs have been
discovered. They act at a post-transcriptional level and down-regulate mRNA
expression. As many as 30% of human mRNAs may interact functionally
with miRNAs. This implies that miRNAs potentially regulate many important
cellular functions. Particular patterns of miRNAs expression are associated
to specific stem cells, terminally differentiated cells, or cancer cells. This
specifies a strong relationship between a given cell type and a small repertoire
corresponding to the miRNAs showing the highest level of expression into a
cell.

Recent data derived from high throughput sequencing suggest than less
than 20 distinct miRNAs can probably cover more than 80% of the total miRNA
available in a airway epithelial cell. The interactions between these highly
expressed miRNAs and their targets therefore represent one minimal network
of interactions specifying such a cell. Different levels of interaction have to
be considered since: (1) several miRNAs can interact with the 3’-non-coding
region of a same mRNA, but can also interact with many others mRNA targets;
(2) one genomic locus can encode several miRNAs (e.g. cluster mir-17/mir-
18a/mir-19a/mir-20a/mir-20b/mir-19b1/mir-92), which are likely to share sim-
ilar profiles of expression. Intronic miRNAs can also act in synergy with other
products from the same operational genetic unit. These different modes of
regulation need to be correctly integrated in order to define the exact cellular
impact of miRNAs.

I will illustrate how such relationships can play a role in the context of
the respiratory epithelium. Airway epithelial cells (AECs) develop specific
traits of differentiation (such as the development of cilia), in order to protect
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efficiently the mucosa of the respiratory tract against external aggressions,
and for providing specific responses against various stresses. AECs not only
represent an excellent paradigm to study mechanisms of differentiation, but
are also central to important health issues (asthma, cystic fibrosis, cancer,?).
Our group has identified several miRNAs which expression is altered during
differentiation, transformation and/or after infection of the airways. The use
of several quantitative approaches derived from the microarray technologies
(DNA microarray, high throughput sequencing) highlights how: (1) chromoso-
mal rearrangements can affect the expression of some miRNAs; (2) production
of miRNAs can be altered by genetic and epigenetic mechanisms; (3) the
interplay existing between miRNAs and their mRNAs targets.

We anticipate from this project a definition of new specific markers of
normal or pathological airway epithelial cells (basal, ciliated, goblet cells).
The potential of some of these miRNAs in the context of wound healing,
innate defense against virus infection and balance between proliferation and
differentiation will be discussed.

Supports: CNRS, FP7 (Microenvimet n◦ 201279), InCA (PL0079), Infec-
tiopole SUD, Région PACA, CG06, VLM.
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An ontology-based tool for the integration of metabolic data

in kinetic modeling

Armando Reyes-Palomares, Raul Montañez, Alejando del Real-Chicharro,
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Abstract

In systems biology it is becoming a routine task to build models of increas-
ing complexity on a given biochemical network or pathway of interest. In
this communication, we present SBMM Assistant [1], a tool built using an
ontology-based mediator, and designed to facilitate metabolic modeling through
the integration of data from repositories that contain valuable metabolic in-
formation. SBMM Assistant is an SBML-compatible [2] and user-friendly
tool that gives the user the ability to capture, enrich, generate and visualize
biological networks, to make basic queries about enzymatic kinetics and regu-
lation, and it can be used as an assistant for kinetic modelling [3]. Furthermore,
SBMM Assistant annotates this information using MIRIAM specifications [4]
and facilitates friendly cross-talk among different resources and tools (for in-
stance, COPASY: http://www.copasi.org). Assistant is freely available
for academic use at http://www.sbmm.uma.es.
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Abstract

There is an urgent need to found new drugs leads to face a major threat of
this century, the development of multi-resistant pathogenic bacteria. The Acti-
nomycetes genus that includes several hundred species is at the origin of the
production of over two third of all known antibiotics. Each specie is known
to produce 2 to 4 different antibiotics but the sequence of the genome of
five species of this large genera (mainly Streptomyces species: S. coelicolor,
S. avermilis, S. scabies, S. griseus and S. ambofaciens) revealed that each
specie possesses 5 to 10 fold more biosynthetic pathways that could have been
predicted from their biosynthetic abilities. This enormous genetic diversity
is likely to result in the production of secondary metabolites with different
chemical structures and bio-activities. A very important, but incompletely
explored, and thus under-exploited reservoir of genetic and metabolic diversity
resides in the hundred species of this genus.

It has long been known that, in Streptomyces, antibiotic production occurs
in the period of slow or no growth (weak anabolism) and is triggered by
a nutritional limitation in phosphate, condition that correlates with a weak
energetic charge. Antibiotics are synthesised by huge enzymatic complexes
that use precursors originating from primary metabolism. Sugars, nucleosides,
amino acids, lipids etc. can be modified, assembled, combined, to generate the
great chemical diversity of antibiotics (http://www.123bio.net/cours/
antibio/index.html). However, many antibiotics fall in two major classes:
the polyketides and the peptidyls. The polyketides are synthesized by polyke-
tide synthetase (PKS) from precursors derived from acetyl CoA (butyryl CoA,
malonyl CoA, methylmalonyl CoA etc.) that originate from the catabolism
of sugars, fatty acids or amino acids. The peptidyls are synthesized by None
Ribosomal Peptide Synthetase (NRPS) using modified or not amino acids. The
genes responsible for the biosynthesis of a given antibiotic are grouped in clus-
ter on the chromosome and their coordinated expression is under the control
of activators (the ”SARP” for “Streptomyces Antibiotic Regulatory Protein” of
the OmpR family) or repressors linked to the biosynthetic pathways.
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However, the cascade of regulation that goes from the sensing of a nutri-
tional limitation in phosphate to the triggering of antibiotic production is still
poorly understood. The expression of the putative biosynthetic pathways, de-
tected in silico, is often weak and the resulting metabolites too poorly produced
to be characterised. In consequence, a major challenge of the coming years is
to find ways to enhance the expression of these “cryptic” biosynthetic path-
ways in order to exploit the outstanding genetic potential and thus metabolic
richness of the several hundreds of Actinomycetes species present on earth. To
do so, one needs to get a deeper understanding of what triggers the expression
of the biosynthetic pathways and what is the nature of the regulatory changes
that lead the cell to redirect its central metabolism, usually aimed at biomass
construction, toward the production of secondary metabolites.

A novel understanding of the regulation of antibiotic biosynthesis was in-
ferred from the analysis of a mutant of Streptomyces lividans (fig.1), a naturally
very weak antibiotic producing strain, that became a very high producer of
some coloured antibiotics, upon the interruption of a single gene, called ppk
[1]. This gene was shown to encode an enzyme acting, in vitro, as a polyphos-
phate kinase (PPK), polymerising the ? phosphate of ATP into polyphosphate
when the ATP/ADP ratio in the reaction was high and as a nucleoside di-
phosphate kinase (NDPK), regenerating ATP from ADP and polyphosphate,
when this ratio was low [1]. In vivo, the expression of ppk was shown to
be induced in condition of Pi limitation (condition correlating with a weak
energetic charge) [2]. In this condition, the expression of ppk was shown to
be positively controlled by the two components system PhoR/PhoP whereas
in condition of phosphate sufficiency, the expression of ppk is thought to be
negatively controlled by a repressor using ATP as co-repressor [3].

In order to assess the in vivo enzymatic function of Ppk, a comparative
analysis of the intracellular content in ATP, ADP and polyphosphate of the wild
type strain of S. lividans and of the ppk mutant was carried out, in condition
of phosphate limitation. During active growth, the absence of this enzyme in
the ppk mutant, was indeed shown to correlate with an higher intracellular
concentration of ADP than in the wild type strain suggesting a default of
ADP to ATP regeneration in that strain. During active growth, the internal
concentration in ATP was the same in both strains but at stationary phase the
concentration of ATP was, unexpectedly, much higher in the ppk mutant strain
than in the wt strain. This high internal concentration of ATP in the ppk mutant
is thought to result from a strong activation of central metabolism, that coupled
to the respiratory chain, is the main ATP producing route within the cell.

The energetic deficit characteristic of the ppk mutant strain, that is lacking
an important ATP regenerating enzyme, obviously provokes important changes
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Figure 1: Novel model of the regulation of antibiotic biosynthesis in Streptomyces
lividans

in the functioning of central metabolism. These changes still remain to be
precisely described but some results of our proteomic studies suggested that a
sequential activation of specific central metabolic pathways (glycolysis, Krebs
cycle and β-oxydation of fatty acids) was taking place in the ppk mutant.
This strong activation, likely aimed at maintaining the energetic balance of
the ppk strain (ATP generation), concomitantly yields carbon skeletons that
are constituting ”building blocks” for antibiotics biosynthesis. As a matter
of fact, in condition of active growth, the energetic and anabolic functions of
the Krebs cycle are both required whereas when growth ceases (conditions
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of antibiotics production) the anabolic function of the Krebs cycle is not re-
quired. However, in these conditions, the bacteria still has to produce ATP,
in order to maintain its integrity and survive and some of our results suggest
that the bacteria generates ATP via a strong activation of glycolysis that leads
to the accumulation of acetylCoA stored as fatty acids in triacylglycerols.
However, if the energetic deficit becomes very severe, as in the ppk mutant
that is lacking a very important ATP regenerating enzyme, the degradation
of these storage lipids would be triggered yielding glycerol, acetylCoA and
numerous reduced co-factors (FADH2) whose regeneration by the respiratory
chain would produce the necessary ATP. The glycerol will be metabolised via
the Krebs cycle yielding carbon skeletons that, in this period of slow or no
growth, will not be used for anabolism but will constitute precursors entering
in the biosynthesis of antibiotics other than polyketides (peptidyl antibiotics for
instance) whereas the generated acetylCoA will be used for the biosynthesis
of polyketide antibiotics.

Our work demonstrated for the first time that an energetic deficit is the real
trigger of antibiotic biosynthesis in Streptomyces and that this energetic deficit
leads to specific adjustments of central metabolic pathways that results in
the accumulation of precursors of antibiotic biosynthesis. The comparison of
the metabolic fluxes determined in condition of energetic surplus or energetic
deficit will lead to a better understanding of these specific adjustments and of
the conditions required to promote good antibiotic production.

The MES group is funded by the French CNRS, the University Paris XI and
the European program ACTINOGEN
(http://www.swan.ac.uk/research/ActinoGEN).
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Abstract

A bioreactor used for the purpose of wastewater depollution contains thou-
sands of different species with populations ranging from 109 to 1012 individu-
als. A possible model for the description of the dynamics of such an ecosystem
is :



ds

dt
= d(εt)(Sin − s)−

∑N
i=1 µi(s)xi

dxi

dt
= (µi(s)− d(εt))xi + σ{

∑N
j=1 αijµj(s)xj − µi(s)xi} i = 1, 2, ..., N

where :
• xi(t) is the concentration of the species i at instant t,
• s(t) is the concentration of the nutriment at instant t,
• µi(s) is a function with “Monod” shape which represents the growth rate

of the species i,
• αij is the mutation rate from species j to species i,
• d is the flux through the reactor.

If one integrates such a system, a typical picture obtained is shown on Fig. 1.
We do not comment this picture in this short abstract; actually the main objec-
tive of the course is to explain such pictures. For that purpose we shall:

• Recall the well known theory of the chemostat (Spicer 1950)
• The competitive exclusion principle (Hardin 1960)
• Experiments of Hansel and Hubbell (1980)
• Evidences of coexistence of many species in bioreactors using “finger

prints”
• Possible explanation through “Ratio Dependence” (Arditi Ginzburg 1990)
• Variable environments
• ”Kill the winner hypothesis”.
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Figure 1: N = 200 σ = 0.000001 ε = 0.001
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Abstract

The purpose of my lecture is to present some recent mathematical works on the
relationships between the structure of genetic regulatory networks (typically
the presence of positive or negative circuits) and the emergence of significant
dynamical properties such as multistability (involved in differentiation) and
periodic oscillations (involved in homeostasis).

Introduction

It is acknowledged that the activity of a biological cell is to a large extent
controlled by genetic regulation, an interactive process usually represented by
graphs called genetic regulatory networks. In these graphs, vertices represent
genes, and a directed edge from i to j represents a regulatory influence of gene
i on gene j. Such an influence may be an activation (in which case the edge is
said positive) or an inhibition (negative edge).

Since this interactive process is in general very complex, it is interesting to
relate the dynamical properties of these networks to their (simpler) structure.
In particular, in the early 1980’s, the biologist R. Thomas, following earlier
work by Delbrück, suggested that the existence of a positive circuit in the
regulatory network (the sign of a circuit being defined as the product of the
signs of its edges) is a necessary condition for multistability (i. e., the existence
of several stable fixed points in the dynamics), and that a negative circuit is
necessary for the presence of sustained oscillations.

The purpose of my lecture is to present some recent mathematical works
inspired by these two rules, or somehow related to them.
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From the Birth of the Cell to Molecular Movies
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Abstract

It took 200 years for the cell theory to emerge. Robert Hook, a british polymath
considered one of the father of microscopy coined the term “cell” in 1665 to
describe the small pores he observed in a sliver of cork. After contributions by
a multitude of Europeans including Leewenhoek, Dutrochet, Raspail, Oken,
Fontana, Purkinje, in 1847, Schleiden and Schwann declared that “All living
things are composed of cells and cell products” and stressed the central role of
the nucleus - the Cell theory was born [1, 2]. Discovery of chromosomes, or-
ganelles, macromolecules followed and the cell biology has now federated and
united many fields from zoology and genetics, to molecular and developmental
biology.

The first moving images of cell a dividing sea urchin egg - appeared in
1909 [3]. Films of cells, embryos and tissues have multiplied in the last 20
years since the introduction of video and digital imaging techniques coupled
with the development of fluorescent or luminescent probes [4, 5]. Some of
these documents are beginning to reach TV, feature movies and video sites
such as YouTube and impact the general public [6, 7] . Video journals [8],
sites and even festivals [9] devoted to movies of cells and macromolecular
structure are now available for students of the cell.

Most interestingly, computer animations can generate molecular movies
which propose possible representations of living “nanomachines” in action
[10]. No doubt advances in 3D structures of molecules [11], high resolution
cell imaging and computer animation will lead to modelling the cell and it’s
components.

The time is ripe for collectively building a “Virtual Cell”.
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Experiment-based mathematical modelling of
energy metabolism in diseases caused by

unfolded/misfolded proteins

Judit Ovádi1
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Academy of Sciences, H-1113 Budapest, Hungary

Abstract

Research in the near past has revealed that a major part of neurodegeneration
is a multistep process during which unfolded/misfolded proteins initiate a cas-
cade of aberrant protein-protein interactions resulting in inclusions with toxic
aggregates that culminate in neuronal dysfunction. These complex pathologi-
cal processes are potent targets for development of early diagnosis and of drugs
to improve therapies of these diseases. The hallmark proteins of these confor-
mational diseases such as Parkinson’s, Alzheimer’s or Huntington’s diseases,
are α-synuclein, tau or mutant huntington, respectively, do not have well-
defined 3D structures and require protein partners to express their functions.
Recently we isolated and identified a new unstructured protein denoted Tubulin
Polymerization Promoting Protein, TPPP/p25 which was found to be enriched
in human pathological inclusions characteristic for synucleinopathies (fig1).

Figure 1: Tubulin Polymerization Promoting Protein, TPPP/p25

This unfolded protein has become the target of many structural, functional
and pathological studies due to its potential involvement in different CNS
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diseases. TPPP/p25 was discovered as the first member of a new protein family
which primarily targets microtubule structures displaying dominant MAP-like
function by affecting the dynamics and stability of microtubule networks.

The formation of diverse protein aggregates frequently induces mitochon-
drial dysfunction and failure of synaptic, transport and other crucial physio-
logical processes, which contributes to the development of pathological symp-
toms. Genomic and proteomic data provided useful information for under-
standing the structural and functional perturbations in the cases of diverse neu-
rodegenerative diseases frequently coupled with mitochondrial dysfunction.
However, our knowledge whether and how the presence of the unfolded/mis-
folded proteins affects the energy metabolism in the pathogenesis of the con-
formational diseases is scarce.

Figure 2: metabolization of glucose via glycolysis.

This gappy area has been an object of our recent research applying of biosim-
ulation based upon well-established rate equations of glycolytic enzymes and
the mitochondrial complexes and experimentally determined kinetic parame-
ters. These studies were performed, on one hand, on blood cells of human
models suffering from a rare glycolytic enzymopathy, caused by the mutation
of triosephosphate isomerase, and coupled with neurological disorder; on the
other hand, on brain tissue of mouse model for Huntington’s disease caused
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by the mutation-derived insertion of an unfolded polyglutamine track in the
huntingtin protein. In addition, a specific human cell model, SK-N-MC cell
expressing TPPP/p25 protein stably was established which rendered it pos-
sible to characterize the effect of the unfolded protein on the mitochondrial
membrane polarization related to the energy metabolism at single cell level, as
well as on the glucose metabolism at system level.

Glucose is the major or the only energy source of the brain tissue and the
red blood cells. It is metabolized primarily via glycolysis (fig 2). To evaluate
the effect of the expression of the unfolded/misfolded proteins on the energy
metabolism, the activities of the glycolytic enzymes were measured in the
controls and the ”diseased” cells, and, on one hand, compared with that of
the isolated enzymes, on the other hand, used to compute the glycolytic fluxes
using the well-established rate equations of the individual glycolytic enzymes.

These data gave information on the local changes, on the influence of intra-
cellular heterologous interactions and for their effects on the glycolytic fluxes.
Then the glycolytic fluxes were also measured in the control and ”diseased”
cells and compared with the computed ones. These studies rendered it possible
to evaluate the mechanisms responsible for the altered glycolytic fluxes such
as enzyme activation/inhibition or metabolite channelling of key metabolites.
Various mechanisms were identified in the three systems studied which were
responsible for the altered metabolic fluxes, i.e., association of the mutant
misfolded isomerase to the red cell membrane, or the microcompartmentation
of glyceraldehyde-3-phosphate intermediate by the simultaneous association
of the glyceraldehyde-3-phosphate dehydrogenase and aldolase to the mu-
tant huntingtin protein resulting in enzyme inhibition. Therefore, the local
changes were found to be compensated at system level either by activation
of other glycolytic enzymes or the direct transfer of the intermediate of the
aldolase-dehydogenase-catalysed consecutive reactions. No metabolic impair-
ments were observed in any cases studied rather enhanced ATP production
was detected when either mutant isomerase or mutant huntingtin or unfolded
TPPP/p25 proteins were accommodated in the ”diseased” cells. In addition,
immunofluorescence images using reporter molecule in TPPP/p25-transfected
cells showed that the mitochondrial membrane was highly polarized which
concerns with the kinetic data obtained with brain tissue of the transgenic mice:
there was no impairment in activities of the mitochondrial complexes.

Therefore, our results suggest that unfolded/misfolded proteins cause en-
hancement of the intracellular ATP level which associated primarily with in-
creased glycolytic flux leading to altered metabolite pattern with pathological
consequences manifesting themselves in distinct clinical symptoms.
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Abstract

In the next decades mammalian cell culture-derived vaccines will play an in-
creasing role in prevention and control of seasonal disease but also of pandemic
outbreaks. To guarantee an affordable supply of safe and highly immunogenic
vaccines significant efforts in design and optimization of process technologies
in vaccine manufacturing are required. Particularly, virus yields of large-scale
bioreactor harvests are of interest, which mainly depend on host cell line, cell
concentration at time of infection, virus seed and cultivation conditions. For
process monitoring, comprehensive analytical methods for characterization
of cell growth and virus replication are required. In addition, quantitative
analyses by mathematical modelling approaches are of crucial importance for
interpretation of experimental data, establishment of control strategies, scale-
up studies and improvement of overall productivity.

Main goal of our group is the development of integrated concepts to op-
timize viral-based production processes [1]. As an example we investigate
influenza virus replication in various adherent and suspension cell lines in
stirred tank and wave bioreactors. At present, we focus on optimization of cell
growth and virus yield, design of high cell density cultivations, and detailed
characterization of cellular metabolism and intracellular virus replication ki-
netics. On-line data from bioreactors are monitored and extra and intracellular
metabolites quantified with numerous newly established assays. This includes
off-line analysis of glucose, lactate, ammonia and amino acids as well as phos-
phorylated sugars, organic acids, ATP and NAD(P)H, all relevant in glycolysis
and TCA cycle. Influenza virus yield is determined by hemagglutination and
infectivity assays. From flow cytometry measurements additional information
concerning cell cycle status, progress of infection and virus-induced cell death
by apoptosis are gained.

Mathematical modelling plays a crucial role with regard to a quantitative
understanding of cell growth and virus replication for this process [2]. Based
on extensive sets of experimental data, models of different complexity are be-
ing developed and validated. These include basic dynamic models to describe
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cell growth in bioreactors and models for metabolic flux analysis. Further-
more, virus replication dynamics is described at various levels of complexity.

Focus of this presentation will be on influenza A virus replication in adherent
Madin Darby canine kidney (MDCK) cells covering:

• basic virus dynamics in bioreactors (unstructured, segregated
models) [3],

• single cell infection models (structured models) [4], and

• virus spreading in populations of cells (structured, segregated
models) [5, 7].

Use of such mathematical models not only allows the simulation of the overall
dynamics of virus replication in bioreactors but also supports the analysis of
limiting factors for increasing process yields. Furthermore, models facilitate
interpretation of an ever increasing amount of experimental data available at
all process levels. In particularly, they encourage systems biology studies re-
garding virus replication at a cellular level to obtain a more detailed knowledge
of the basic laws and mechanisms that control virus replication in mammalian
cells. This is a prerequisite not only for the optimization of virus-related pro-
duction processes but also essential for a better understanding of viral diseases
and the identification of molecular targets for antiviral therapies.

References

[1] Genzel, Y., Reichl, U. (2007): Vaccine production - state of the art and
future needs in upstream processing, In: Animal Cell Biotechnology -
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p53-Mdm2 network
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Abstract

We investigate the dynamical properties of a simple four-variable model de-
scribing the interactions between the tumour suppressor protein p53, its main
negative regulator Mdm2 and DNA damage, a model inspired by the work
of Ciliberto et al. [1]. Its core consists of an antagonist circuit between
p53 and nuclear Mdm2 embedded in a 3-element negative circuit involving
p53, cytoplasmic and nuclear Mdm2. Rather than choosing a unique mode of
description, we develop an integrated approach combining a multilevel logical
method with a differential approach and stochastic simulations. We show that
the essential dynamical properties of our network are described by a small
number of bifurcation scenarios that can be interpreted in terms of the balance
between the positive and negative loops of the core of the network. These
bifurcation scenarios depend on two parameters linked to post-translational
modifications of p53, the DNA-binding affinity and transcriptional activity of
p53. Since these parameters are known to be cell- and stress-type specific,
we propose that different types of cells or stresses could be characterized by
different bifurcation schemes and lead to different responses upon irradiation.
Our results also account for important features of the kinetics of the p53 re-
sponse to damage that, to our knowledge, have not been addressed in other
modeling approaches. In particular, we provide an interpretation of the tuning
of the oscillation frequency that has been observed experimentally depending
on the irradiation dose [2], and predict that the rate of damage repair should
play an important role for this behaviour [3].
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Abstract

There is an increasing body of evidence showing the importance of stochastic-
ity in gene expression in various biological phenomena [1, 12, 5, 3] ; for recent
review see [7, 11, 9], including differentiation [13, 6, 8, 10, 2].

We are aiming at understanding the molecular causes of this stochastic-
ity in gene expression in higher eukaryotic cells through a system’s biology
approach, combining modeling and experimental evidences. Our modeling
focuses on the promoter level, and integrates the complex interplay of the
dynamics of transcription factors and their combinatorial mutual influences.
In parallel we have started acquiring expression level in single cells in real
time, using a model of primary chicken erythrocytic progenitors [4]. Although
the completion of the virtuous circle (modeling >experiments >modeling) still
lies ahead of us, preliminary evidences indicate that stochasticity is a complex
phenomenon that can only be fully understood by a systemic approach.
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Multiscale modelling of structured cell populations:
application to ovulation control
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Abstract

We will present an instance of multiscale modelling of coupled structured
populations and its application to the selection process of ovarian follicles for
ovulation. The follicle selection process is viewed as an FSH (follicle stim-
ulating hormone)-dependent controlled process. FSH acts on the molecular
scale through a signal transduction pathway. Integration of FSH signaling on
the cellular scale rules the dynamics of the transition rates between different
cellular states, hence cell commitment towards either proliferation, differenti-
ation or apoptosis. Further scaling determines the follicular fate based on its
cell content and contribution to ovarian endocrine status. Summing-up each
follicular contribution finally defines the ovarian feedback pressure on FSH
release, closing the loop. Our approach thus merges a detailed multi-scaled
description of follicular development with population dynamics issues, due to
competition for FSH resource.

1 Introduction

In vertebrates, the gonadotrope axis is made up of the hypothalamus, belonging
to the central nervous system, the pituitary gland and the gonads. These organs
communicate with one another within entangled endocrine loops. We will
focus here on the gonadic level and present an instance of multiscale modelling
for coupled structured cell populations and its application to the selection
process of ovarian follicles for ovulation.

1.1 Physiological background: follicular development

The ovulation process is the endpoint of follicular development, the process
of growth and functional maturation undergone by ovarian follicles, from the
time they leave the pool of primordial follicles until ovulatory stage. Its bi-
ological meaning is to release one (in mono-ovulating species) or several (in
poly-ovulating species) fertilisable oocyte(s) enabled to subsequent embryo
development. Actually, very few follicles reach an ovulatory size; most of
them undergo a degeneration process, known as atresia. The species-specific
ovulation rate (number of ovulatory follicles) results from an FSH-dependent
follicle selection process.
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1.2 Biological and medical challenges

The development of ovarian follicles is a crucial, limiting step for the success
of reproduction in mammals. Yet, the process of follicle selection, the regula-
tion of the species-specific ovulation rate and the meaning of the tremendous
wasting of follicles through atresia are still incompletely understood. Resolv-
ing these basic scientific questions correspond to both clinical and zootechnical
challenges. A better understanding of follicular development is required to im-
prove the control of anovulatory infertility in women and to control ovulation
rate and ovarian cycle chronology in domestic species.
Beyond the frame of reproduction physiology, follicular development is a unique
instance of rapid and controlled development in adult organisms, and follicular
cells (particularly the granulosa cells surrounding the oocyte) constitute an
interesting model in cell kinetics studies. Also, the FSH receptor belongs to
the seven transmembrane spanning receptor family, which represents the most
frequent target (over 50%) amongst the therapeutic agents currently available.

2 Middle-out modelling approach

Our working hypothesis is that understanding how FSH controls the outcome
of follicular development (ovulation or not) amounts to understand how FSH
acts on its target cells within ovarian follicles (the granulosa cells) and controls
their commitment towards either proliferation, differentiation or apoptosis.
The changes in the cellular composition of the granulosa ultimately determine
the follicular fate. The ovulatory trajectories correspond to a FSH-controlled
transition from a proliferative state to a differentiated one, while the atretic
trajectories correspond to either the proliferation-apoptosis sequence or the
proliferation-differentiation-apoptosis sequence.
Accordingly, the dynamics of the granulosa cell population was first expressed
as a function of follicular age, by a system of ordinary differential equations
associated to a compartmental model, where the compartments correspond to
each cellular state (Proliferative-Differentiated-Apoptotic) [3]. The transition
rates between compartments act as control variables mediating the interactions
of the follicle with its hormonal environment, while the model outputs consist
in the cell numbers in each compartment. Such a modelling framework raised
the notion of follicular proliferative resources, that can be investigated on the
experimental ground by cell kinetics experiments (measurement of the growth
fraction [4]). This notion leads to question whether there exists an optimal
strategy of exploiting these resources to reach ovulation [5]. Both the experi-
mental and modelling studies have highlighted the crucial role of the dynamics
of the cellular transition rates in the outcome of follicular development.
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Hence, to further understand the control of the granulosa dynamics, we
needed to investigate the action of gonadotrophins on the cellular transition
rates. Since the response to FSH depends on the cell maturity level (granulosa
cells from small follicles tend to proliferate, while those from big follicles
tend to differentiate), we had to change for a less simple formalism than the
ODE-compartmental one, that considered homogenous cell populations. The
first step in designing another formalism was to characterise the biochemical
basis of FSH action on the intracellular level, so that we shifted to a top-down
modelling phase.

3 Top-down modelling approach

FSH is a pituitary glycoprotein hormone that specifically acts on granulosa
cells of the ovary in female. FSH exerts its biological functions via a 7 trans-
membrane spanning receptor (7TMR), namely the FSH receptor (FSH-R),
which preferentially couples to the Gαs subunit. So far, the FSH-induced
downstream signalling pathways were thought to be activated solely by the
cAMP (cyclic Adenosine Mono-Phosphate)-PKA (Protein Kinase A) pathway
[6]. We have thus focused up to now on this pathway to characterise the
sensitivity of granulosa cells to FSH, hence their maturity.

The control of cAMP levels in granulosa cells involves both fast biochemical
processes, occurring on a time scale of a few minutes, such as binding and
desensitisation, and slower physiological processes lasting hours or even a few
days, which mainly result in changing the efficiency of the enhancement of
cAMP synthesis by stimulated FSH receptors via adenylyl cyclase activation.
The design of our model followed from the interactions between these contrast-
ing biochemical and physiological dynamics and aimed at accounting for both
the FSH-dependent and auto-amplified settling and efficiency of the cAMP
cascade through follicular development. The use of quasi-steady state approx-
imations allowed us to reduce the biochemical system to a single differential
equation [7].

Recently, the paradigm for 7TMR signalling has been renewed [8]. At least
three protein families have been involved in signal transduction: not only Gαs,
but also GRKs (G protein-coupled Receptor Kinases) and β-arrestins. We are
currently investigating the relative contributions of these different pathways
within FSH signalling network, from a systems biology viewpoint [9]. The
qualitative and quantitative properties of this network will be analysed and
summarised to enrich the intracellular level of the model.
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4 Bottom-up modelling approach

The bottom-up embedding of FSH signal transduction dynamics into the gran-
ulosa cell population dynamics results in multiscale structured conservation
laws in each follicle. Coupling of the follicular densities through a common
control term further allows to consider the upper, ovarian (tissular) scale [10].
For each follicle, the cell population dynamics is ruled by a conservation law
with variable coefficients, which describes the changes in age and maturity of
the granulosa cell density. A coupling control term, representing FSH signal,
intervenes both in the velocity and loss terms of the conservation law. Two
acting controls are distinguished: a global control resulting from the ovarian
feedback and corresponding to FSH plasmatic levels, and a local control, spe-
cific to each follicle, accounting for the modulation in FSH bioavailability due
to follicular vascularisation. Besides, cells are characterised by their position
within or outside the cell cycle and their sensitivity to FSH. This leads to
distinguish 3 cellular phases within the granulosa cell population. Phases 1
and 2 correspond to the proliferation phases (describing respectively the G1
phase and S to M phases of the cell cycle), and phase 3 corresponds to the
differentiation phase, after cells have exited the cell cycle.
The cell population within an ovarian follicle, f , is thus represented by the
density function φi

f (a, γ, t) whose dynamics is described by the following
equation:

∂φi
f

∂t
+

∂gf (uf )φi
f

∂a
+

∂hf (γ, uf )φi
f

∂γ
= −λ(γ, U)φi

f

on Ωi, i ∈ {1, 2, 3} , f ∈ {1, . . . , N}

The structuring variables, a and γ, correspond respectively to the age and
maturity of the cells. φi

f (t; a, γ) represents the density of cells of age a and
maturity γ in phase i at time t within the follicle f . Ω1, Ω2 and Ω3 correspond
to the different phases of the cell cycle within the age-maturity plane.The trans-
fer from one phase to another is governed by appropriate boundary conditions.
The aging rate, gf (uf ), and the maturation rate, hf (γ, uf ), are controlled by
the level of FSH available on the follicular scale, noted by uf , whereas the
lost term, λ(γ, U), is controlled by the plasmatic level of this hormone. The
FSH levels are themselves defined in closed-loop and as a function of some
moments of the density, leading to integro-differential terms. The stopping
time coincident with ovulation triggering by the hypothalamus is scheduled by
the maturity first-order moment reaching a threshold.

Numerical simulations of conservation laws can be performed in the frame-
work of finite volume methods [11]. In our case, the numerical scheme is
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based on high-resolution, wave-propagation algorithms developed for multi-
dimensional hyperbolic systems [12]. Running simulations allows to predict
the outcome of follicular development (ovulation and ovulation rate, or anovu-
lation) for a given parameter combination. It can also be useful in testing
control strategies. For instance, preliminary trials of exogenous FSH admin-
istration to compensate the drop in FSH suggest that it is possible to tune the
ovulation rate finely [10].
The multi-level property of the model allows to propose an integrative scenario
for the control of ovulation rate, where multiple ovulations ensue from the
combined increased follicular sensitivity to FSH, leading to lower whole folli-
cle cell numbers at ovulation time decreased sensitivity of the pituitary gland
to ovarian negative feedback and/or decreased sensitivity of the hypothalamus
to ovarian positive feedback. Whatever the ovulation rate, the ”losing” atretic
follicles are those whose cells are confined within the maturity zone of vul-
nerability whereas cells of ”winning” ovulatory follicles can escape from this
zone before the drop in FSH be too severe. An alternative follicular fate is to
escape from atresia without becoming able of ovulating, if the cellular mass is
too low.

Current works consist in exploring systematically the different situations en-
gendered by the model from given combinations of parameters and solving the
associated control problems (control of ovulation rate and chronology). Since
the original PDE conservation law is not directly tractable, solving of such
problems first goes through a step of model reduction. For instance, we have
used the quite standard method of characteristics, in the framework of reach-
ability theory, to look for the initial conditions which are either compatible
with ovulation or atresia [13]. An alternative model reduction strategy is based
on the specific asymptotic properties of the model. It amounts to handling a
dynamical system of coupled nonlinear ordinary differential equations ruling
the change in the mass and maturity of each follicle [14]. The dynamical
system can be considered as a game where each follicle plays against the others
for its survival and analysed in the framework of bifurcation theory.
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The VPH Toolkit for collaborative multi-scale modelling of
multi-organ systems for the Physiome
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1 CNRS FRE 3190, Evry, F-91000, France

Abstract

European Physiome activity is currently funded under the 7th Framework Pro-
gram VPH call (Virtual Physiological Human), which supports more than a
dozen targeted projects and also one Network of Excellence (NoE), whose mis-
sion is to coordinate these efforts, explore training possibilities, disseminate
information about VPH resources and projects, and furnish a VPH ToolKit. I
briefly summarize this activity and then focus on progress in the Renal Phys-
iome, which is linked to the VPH NoE through the SAPHIR Exemplar Project
treating blood pressure regulation in a Guyton-inspired modular modeling en-
vironment. The Renal Physiome includes: (1) the Quantitative Kidney DataBase
(QKDB) of experimental measurements and anatomical details, (2) links to
other disciplines (incl. high-throughput data) through common ontologies
(e.g., FMA, GO...), (3) a library for models of channels and transporters ex-
pressed along the nephron, and (4) a repository of legacy models of kidney
physiology at various scales (tubule transport, tubuloglomerular feedback, me-
dullary models addressing the problem of urine concentration, etc.), with in-
ternet access through a KidneyGrid Portal (in collaboration with Univ. Mel-
bourne).

1 Introduction

The IUPS Physiome project [4], and its European manifestation, the Virtual
Physiological Human (in the European 7th Framework Program), is a complex
systems approach to human physiology: the aim is to put in place a toolbox that
will enable a cooperative environment for mathematical modeling of human
physiology over a wide range of time and space scales. Associated with the
model development are several tools to facilitate sharing and interconnection
of models developed under various software environments and by different
research groups.

The core model environment is a modular multi-resolution approach to the
problem of accomodating in a single mathematical model the global effects
(at the level of integrated physiological parameters such as blood pressure or
salt balance) of local perturbations (such as the modification of the kinetics
of a coupled ion transporter in a particular segment of the nephron, due, for
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example, to a drug effect or to a mutation of the gene coding for the transporter
protein). A basic requirement is to bridge the molecular-to-organism scales
while keeping computation time manageable on a personal computer, since
such a system is called for, for example, in order to provide in silico exploration
of clinical treatment scenarios. In partial fulfillment of this need, we have im-
plemented several modular versions of the classic Guyton [6] models, centered
on blood pressure regulation, and one of the offshoots, the model of Ikeda et al.
[8] targeting acid-base regulation. These are implanted in a multi-formalism
simulation package (M2SL, developed at LTSI, Inserm U642, Rennes)[5] that
allows replacement of the individual low-resolution basic modules of any given
organ system by detailed mechanistic models representing the mechanisms
involved in a target process [10]. I will present recent progress on two aspects
of this project.

Towards a library of detailed local models for the Renal Physiome

There exists a rich literature of mathematical models of various aspects of renal
function at all scales from the kinetics of membrane channels and coupled
transporters, inclusion of these in tubule models of segmental reabsorption/
secretion along the nephron, to models of tubuloglomerular feedback regu-
lation and renal hemodynamics, and medullary models of nephro-vascular
solute and water recycling involved in the urine concentrating mechanism.
However, there has been scant effort at integrating these detailed ‘local’ models
into global descriptions of renal function sensitive to hormonal and neural
controls and relevant to questions of the role of the kidneys in whole organism
processes such as blood pressure regulation. This is precisely the goal of our
core modelling environment.

Via the dependence of salt excretion on arterial pressure (PA), known as
the ‘pressure-natriuresis relation’ or the ‘renal function curve’ [7], the kidney
is responsible for setting the long-term level of PA. As a consequence, the
kidney is necessarily involved in the genesis of hypertension, as reflected in
the fact that genetic polymorphisms linked to hypertension invariably involve
the kidney. In particular, several hypertension-related defects involve gain-
of-function mutations in membrane proteins responsible for salt reabsorption
in the late portions of the nephron. Major anti-hypertensive drugs, such as
the thiazides, act by inhibiting these transporters. However, the effectiveness
of such drugs depends on several other steps in the salt reabsorption process,
including especially the Na, K-ATPase, which in turn depends on connections
to the cytoskeleton.

In order to explore these scenarios in silico, we present a model of distal
tubule transport based on kinetics of the implicated membrane channels and
transporters [1, 2, 3, 9, 11, 12]. This involves the constitution of a library
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of available kinetic descriptions for membrane channels and transporters (and
their various isoforms) in the different cell types along the nephron. We are
particularly interested in the role of polymorphisms of alpha-adducin (a cy-
toskeleton protein associated with the Na,K-ATPase in distal tubule cells) in
the effectiveness of thiazide diuretics. The use of this library of kinetic models
as a set of building blocks for integrated tubular models of secretion and re-
absorption, and inclusion as part of the modular core modelling environment,
is facilitated by coding the descriptions in an XML markup language, which
serves as the pivot for translation into an arbitrary variety of numerical solution
environments.

Brief Biography S. Randall Thomas received his M.A. in Biology in 1973
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ment de Recherche), and is a founding member of the Institute of Theoretical
Medicine (Lyon).

References

[1] Andersen, O. S., J. E. Silveira, et al. (1985). ”Intrinsic characteristics of
the proton pump in the luminal membrane of a tight urinary epithelium.
The relation between transport rate and delta mu H.” J Gen Physiol 86(2):
215-34.

[2] Chang, H. and T. Fujita (1999). ”A kinetic model of the thiazide-sensitive
Na-Cl cotransporter.” Am J Physiol 276(6 Pt 2): F952-9.

[3] Chang, H. and T. Fujita (2001). ”A numerical model of acid-base
transport in rat distal tubule.” Am J Physiol Renal Physiol 281(2): F222-
43.

[4] Crampin, E. J., M. Halstead, P. Hunter, P. Nielsen, D. Noble, N. Smith
and M. Tawhai (2004). “Computational physiology and the Physiome
Project.” Exp Physiol 89(1): 1-26.

MODELLING COMPLEX BIOLOGICAL SYSTEMS 67



9/4/2009- page #68

[5] Defontaine, A., A. I. Hernández, and G. Carrault, ”Multi-formalism
Modelling of Cardiac Tissue,” Lecture Notes in Computer Science, pp.
394-403, 2005.

[6] Guyton, A. C., T. G. Coleman and H. J. Granger (1972). ”Circulation:
overall regulation.” Annu Rev Physiol 34: 13-46.

[7] Guyton, A. C. (1987). ”Renal function curve–a key to understanding the
pathogenesis of hypertension.” Hypertension 10(1): 1-6.

[8] Ikeda, N., F. Marumo, M. Shirataka and T. Sato (1979). ”A model of
overall regulation of body fluids.” Annals of Biomedical Engineering 7:
135-166.

[9] Monroy, A., C. Plata, et al. (2000). ”Characterization of the thiazide-
sensitive Na(+)-Cl(-) cotransporter: a new model for ions and diuretics
interaction.” Am J Physiol Renal Physiol 279(1): F161-9.

[10] Thomas, S. R., P. Baconnier, J. Fontecave, J.-P. Françoise, F. Guillaud, P.
Hannaert, A. Hernandez, V. L. Rolle, P. Maziere, F. Tahi and R. J. White
(2008). ”SAPHIR: a physiome core model of of body fluid homeostasis
and blood pressure regulation.” Philos Transact A Math Phys Eng Sci (in
press).

[11] Weinstein, A. M. (2005). ”A mathematical model of rat distal convoluted
tubule. I. Cotransporter function in early DCT.” Am J Physiol Renal
Physiol 289(4): F699-720.

[12] Weinstein, A. M. (1995). ”A kinetically defined Na+/H+ antiporter
within a mathematical model of the rat proximal tubule.” J Gen Physiol
105(5): 617-41.

68 MODELLING COMPLEX BIOLOGICAL SYSTEMS



9/4/2009- page #69

PART II ARTICLES



9/4/2009- page #70



9/4/2009- page #71

Hyperstructures 2008-2009

Vic Norris, Patrick Amar, Marie Aimar, Pascal Ballet, Anne-Francoise Batto,
Georgia Barlovatz, Gilles Bernot, Guillaume Beslon, Armelle Cabin,
Sylvie Chevalier, Anthony Delaune, Jean-Marc Delosme, Eric Fanchon,
Hongjun Gao, Nicolas Glade, Yohann Grondin, Danielle Hernandez-Verdun,
Laurent Janniere, Francois Képès, Catherine Lange, Guillaume Legent,
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1 Introduction

Many functions in both prokaryotes and eukaryotes are performed by large
structures in which molecules, macromolecules and ions are physically as-
sociated [23]. In the case of Escherichia coli, Bacillus subtilis, Caulobacter
crescentus and other model bacteria, examples of such hyperstructures include:
the array of chemotaxis-specific receptors (Tar, Tsr, Trg, Tap, and Aer) [4]; dy-
namic, coupled transcription-translation and transcription-translation-insertion
(transertion) hyperstructures comprising active RNA polymerases and ribo-
somes along with the nascent mRNAs and nascent proteins and indeed the
highly expressed genes themselves [3]; the cytoskeletal filaments MreB, CreS
and FtsZ; filaments of elongation factor EF-Tu [20]; metabolons of glycolytic
enzymes [33]; foci of ATP synthase and succinate dehydrogenase in the mem-
brane [15]; foci of the enzymes E1 of the phosphoenolpyruvate:sugar phospho-
transferase system; clusters of secretion enzymes such as SecA; nucleofil-
aments of recombination enzymes such as RecA; the cell division machin-
ery (comprising a lipid domain and proteins such FtsZ, FtsA, FtsI, FtsK and
AmiC); the DNA replication factory (comprising enzymes such as PolC, DnaB,
DnaG and DnaE as well as enzymes responsible for the synthesis of precur-
sors such as ribonucleoside diphosphate reductase); cellulosomes and poly-
cellulosomes [10]. Ambiquitous enzymes can occupy two different positions
in the cell [21] and some hyperstructures depend on such enzymes and are
functioning-dependent structures that assemble only when functioning and
that disassemble when no longer functioning [31]. Other hyperstructures are
equilibrium or quasi-equilibrium structures that remain even in the absence of
a flow of energy or nutrients.

It has been proposed that hyperstructures constitute a level of organisation
intermediate between macromolecules and the bacterial cell itself [23]. Com-
munication between hyperstructures would then take the form of changes in:
DNA supercoiling (which may be modulated by the transcription in one hy-
perstructure to affect the transcription needed for another hyperstructure), ion
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condensation on charged filaments (which by being concentrated in stabilising
one hyperstructure may be in short supply for another hyperstructure), sig-
nalling molecules (which may be emitted by hyperstructures), water structures
(which may lead to the formation of one hyperstructure at the expense of an-
other), and distribution of membrane domains (whereby a hyperstructure with
particular lipid preferences may stabilise another with the same preferences).
At this intermediate level of organization, hyperstructures would control the
phenotype and, in particular, the bifurcations that occur, as during the cell
cycle, so that events take place in the right place, at the right time and in the
right order.

Exploration of the hyperstructure concept may also prove useful for under-
standing eukaryotic cells. Interactions between hyperstructures in eukaryotes
have been invoked to explain the structure and functioning of mitochondria
and to explain the existence of mitochondrial DNA [32]. Members of the
hyperstructures group work on podosomes, which are important in motility
and mechanotransduction [9] and on the nucleolus, which has a multitude of
roles in addition to the assembly of ribosomes [29]. Here we review briefly
new discoveries about hyperstructures and describe some of the work being
done by members of the hyperstructures group.

2 New hyperstructures

Evidence for new hyperstructures or for new aspects of known hyperstructures
since our reviews in 2007 includes:

1. RNaseE is the main component of the RNA degradosome of Escherichia
coli, which plays an essential role in RNA processing and decay. The
degradosome also contains RNA helicase B, polynucleotide phospho-
rylase and, intriguingly in view of possible interactions between hyper-
structures, the glycolytic enzyme, enolase. It has now been found that
the degradosome forms helical filaments just under the membrane that
may regulate access to substrates to prevent uncontrolled degradation
[30]. The significance of the two hybrid finding for interaction between
RNaseE and MinD (part of the Min hyperstructure for regulating cell
division) remains to be determined.

2. Carboxysomes in bacteria such as Synechococcus, Synechocystis and
Halothiobacillus enhance autotrophic carbon fixation via the Calvin cy-
cle and are widely distributed among chemoautotrophs and cyanobacte-
ria [7]. These hyperstructures, which the authors term ’microcompart-
ments’, are about 80-150 nm in cross section and are bounded by a 3-4
nm thick protein shell. Their mass is about 300 MDa and they are com-
posed of several thousand polypeptides of 10-15 different types. There
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is no evidence they contain lipids, RNA or DNA. The interior of the
carboxysome contains the sequential metabolic enzymes carbonic an-
hydrase and ribulose bis-phosphate carboxylase monooxygenase. Car-
bonic anhydrase converts HCO3 to CO2 within the carboxysome, then
ribulose bis-phosphate carboxylase monooxygenase converts CO2 and
ribulose bisphosphate to 3-phosphoglycerate. The shell of the carboxy-
some may prevent diffusion of CO2 (and exclude O2) and so keep it
close to the ribulose bis-phosphate carboxylase monooxygenase.

3. Pdu microcompartments or hyperstructures are responsible in bacteria
such as Salmonella enterica for B12-dependent 1,2-propanediol utiliza-
tion (pdu) [7]. They are 100-150 nm in cross section with a 3-4 nm
protein shell. Their mass is about 600 MDa and they are composed
of about 18,000 individual polypeptides of about 14-18 different types.
They are believed to sequester an intermediate of 1,2-propanediol degra-
dation (propionaldehyde) to prevent toxicity and diffusive loss. 1,2-
propanediol degradation is also implicated in the pathogenesis of Salmo-
nella and Listeria. In S. enterica, the genes involved in 1,2-propanediol
degradation form a contiguous, twenty-three-gene cluster, one of the
largest clusters of functionally related genes in this organism. It might
be expected that coupled transcription, translation and assembly would
mean that genes, nascent mRNA and nascent protein would at some
stage be physically coupled to the Pdu hyperstructure yet, like carboxy-
somes, the Pdu hyperstructures are not believed to contain RNA, DNA
or lipids. At least, not at present.

4. Eut microcompartments or hyperstructures are responsible in S. enterica
for B12-dependent ethanolamine utilization (Eut) [7]. Ethanolamine
utilization begins with conversion of ethanolamine to acetaldehyde by
the B12-dependent enzyme, ethanolamine ammonia lyase, after which
acetaldehyde is degraded to acetate and ethanol by a pathway analo-
gous to 1,2-propanediol degradation. Overall, the degradation of 1,2-
propanediol and ethanolamine share many features with the main differ-
ence being that 1,2-propanediol is a C3 compound and ethanolamine is
a C2 compound. It has been suggested that the Eut hyperstructure con-
centrates substrates and enzymes to either increase metabolic efficiency
or regulate metabolite levels.

5. Pyr hyperstructures are involved in E. coli in the phosphorylation of uri-
dine monophosphate [35]. PyrH and MetK formed discrete protein foci
within the cell as well of which 1 or 2 moved around the cytoplasm in a
circles. PyrH also regulates the transcription of carbamoyl phosphatase
and is thought to play a key role in chromosome partitioning and cell
division.

MODELLING COMPLEX BIOLOGICAL SYSTEMS 73



9/4/2009- page #74

6. The ’stressosome’ in B. subtilis, a 1.8-megadalton hyperstructure of many
different proteins that integrates a variety of signals to effect a single
outcome [19]. These include the Rsb proteins which interact physically
with one of the enzymes responsible for DNA replication, DnaE (Lau-
rent Janniere, unpublished)

7. Podosomes are transient intracellular organelles with a biological role
that is the subject of much active research and debate. Podosomes dis-
play many features of hyperstructures, notably as potential functioning-
dependent structures. Indeed, podosomes are actin-rich membrane struc-
tures, with size ranging from 0.5 to few ?m, that form close contact with
the surrounding substrate. Podosomes are more dynamic and instable
than focal adhesions, dissolving and then reforming in new locations.
They typically appear as a ring of adhesive molecules centred around
a dense F-actin core [12]. It is still uncertain whether the first event
in the formation of podosomes is actin nucleation or adhesion to the
extracellular matrix (which leads to the activity of scaffolding proteins
made up of combinations of protein/lipid and protein/protein interaction
motifs involved in podosome formation and turnover). Furthermore,
circular superstructures of podosomes, called rosettes, are formed spon-
taneously or after the stimulation with growth factors. The formation
of podosomes and sealing zones as primary adhesive structures of re-
sorbing osteoclasts upon contact with bone is well documented, but
podosomes can be formed on a variety of other substrates. Interestingly,
they appear as functioning-dependent mechanosensors [8]. Thus, they
are sensitive to changes in substrate rigidity [9] and influenced by cellu-
lar contractility. Podosomes represent a powerful paradigm to study the
mechanosensory machinery that integrates cytoskeletal elements with
adhesion and signalling.

3 Modelling hyperstructures

3.1 HSIM

The stochastic automaton, HSIM, has been used to show that PTS and gly-
colytic metabolons can increase production of pyruvate eightfold at low con-
centrations of phosphoenolpyruvate [1]. A fourfold increase in the numbers
of enzyme EI led to a 40% increase in pyruvate production, similar to that
observed in vivo in the presence of glucose. Surprisingly, little improvement
resulted from the assembly of metabolons into a hyperstructure. However,
HSIM allowed us to see that such assembly is a powerful way of generating
gradients of metabolites and signalling molecules. During the last year, we
have been using HSIM to investigate how pausing during the replication of
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the chromosome might lead to differential gene expression [25]. Although
the situation analysed was somewhat different from the one we envisage, it
is encouraging that there is a report of replication-associated changes in the
expression of the dps, pyrI and gapA genes [2].

3.2 BioDyne

BioDyn is a multiagent software made to simulate self-assembly systems at
cellular level. An agent is a cube located in a 3D grid. An agent can move
according to the three axes (x,y and z) with a certain probability per simulation
step. To allow self-assembly, two kinds of interactions are modelled. A short-
distance adhesion interaction allows the agents to aggregate and form large
rigid structures like actin filaments. Adhesion is given a probability which
allows structures to be reconfigurable. A medium-distance attraction/repulsion
interaction is designed to reproduce the action of ’soft’ interactions which
lead, for example, to the formation of the mitochondrial network. In order
to improve the number of biological mechanisms that BioDyn can simulate, a
software engine of reactions between agents has been made. It can reproduce
phenomena like agent proliferation, agent destruction, agent creation or agent
modification. The combination of the interactions and the reaction engine
makes possible, in an abstract and qualitative manner, the reproduction of
different biological hyperstructures. This system has different drawbacks. For
instance, it is impossible to rotation an agent (only translations are allowed)
and the multiscale is limited to one order of magnitude. BioDyn is available as
a java applet at the url http://netbiodyn.tuxfamily.org. Example and tutorials
are also available online.

3.3 Interaction networks

Interaction networks can prove useful in modelling hyperstructures. Indeed, a
hyperstructure can be modelled by means of an interaction network
R = (N, I, f) which is defined as follows:

• N is a set of nodes representing the molecules, macromolecules and ions
which, by associating physically, constitute the hyperstructure;

• I is the set of arcs and hyperarcs representing, respectively, the simple
interactions (involving two or more elements of N , i.e. two molecules,
macromolecules or ions) and the multiple interactions (involving more
than two elements of N );

• f is an interaction function defined on the set I and whose the values
could represent properties of the interactions (for example their intensi-
ties).
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Such a representation would allow the simulation (e.g. via a Multi-Agent
System) of processes involving hyperstructures such as the formation of a hy-
perstructure, the interactions between its constituents, or the interaction func-
tion related to it, etc.

Let us consider the example of the compaction hyperstructure (for refer-
ences see [24]. In E. coli, the MukB protein is localized to discrete structures,
with reports suggesting that it forms either foci at the [1/4] and [3/4] positions
during the cell cycle or larger oblongs in the nucleoid. In vitro, MukB is
associated with MukE and MukF in a large complex. MukB is a member
of the SMC superfamily (like RecN), while MukF is a non-SMC protein or
kleisin. It is generally believed that the MukB, MukE, and MukF proteins
form a ”condensin” that compacts DNA, probably in association with DNA
gyrase, and that this condensin assists in the separation of sister chromosomes.
With such a role in chromosome topology, it is not surprising that the MukB
and SeqA foci are related. Indeed, the latter are perturbed in both size and
distribution in the mukB null mutant. An interaction network of the type
R = (N, I, f) could then be used to obtain an interaction network R′ =
(N ′, I ′, f ′) modelling a compaction hyperstructure; this would have a node set
N = { condensing(MukB, MukE, MukF); chromosomes; DNA gyrase; DNA},
and a interaction set I which express the interactions respectively between
condensing(MukB, MukE, MukF) and DNA gyrase and DNA, and between
condensing(MukB, MukE, MukF) and chromosomes. The interaction network
R’ would have a node set I’ = {sister chromosomes, complex(Mukb, SeqA
foci), compacted DNA}.

3.4 Functioning-dependent structures

The concept of functioning-dependent structure (FDS) describes an assem-
bly of objects that forms and maintains itself as a result of its action in ac-
complishing a task and that dissociates when its task is over. It is therefore
a scale-free concept. To explore quantitatively this concept at the level of
macromolecules, we have studied the behavior in steady state of a simple
model of the functioning-dependent association of two sequential enzymes
of the Michaelis-Menten type (Thellier et al., 2006). We are now studying
the properties of an FDS in transient states using the MAPLE 9.5 software
to solve the set of ordinary non-linear differential equations that constitute the
model. Our initial findings are that a two-enzyme FDS can have properties that
are very different from those of a system of free enzymes. The most salient
of these properties is the generation of bursts of the final product. We suggest
that, in principle, almost any metabolic pathway in which the enzymes can
associate in a functioning-dependent manner can generate signals.
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Some of the hyperstructures mentioned above fall into the class of functioning-
dependent structures. This is the case for the pdu hyperstructures which dis-
appear when the substrate, 1,2-propanediol, is removed and which cannot be
purified in the absence of 1,2-propanediol. Remarkably, pdu hyperstructures
do not form in vivo in the absence of 1,2-propanediol even under conditions
where the genes are induced (Tom Bobik, personal communication). This may
also be the case of the RNA degradosome (see above) where the association
between RNase E, Hfq (an RNA binding protein) and sRNA (small, non-
coding regulatory RNA) may also depend on the binding of the substrate.
The sRNA act by base pairing with mRNA targets to inhibit translation and
promote mRNA degradation. In E. coli, Hfq is required for the function of
sRNA and RNase E has a role in the degradation of mRNA targets. Note
that sRNAs are not present in normally growing cells; they are induced by a
’stress’ or ’shock’, accumulating to relatively high concentration for a transient
period. Since researchers in the field have failed to detect a direct protein-
protein interaction between Hfq and RNase E, one model for the interaction is
that the sRNA is acting as a ’bridge’ between Hfq and RNase E. The evidence
suggests that sRNA induction leads to remodeling in which the canonical RNA
degradsome is ’transformed’ into a complex containing RNase E, Hfq and
sRNA (for references see [6]).

3.5 Globally Constrained Shape Deformation

Jean-Marc Delosme has been working on the deformation of shapes under
constraints on both perimeter and area which occur during the dynamics of
hyperstructures such as the Golgi. Modelling these deformations is a chal-
lenging task due to the highly non-trivial interaction between the need for
flexible local rules for manipulating the boundary and the global constraints.
In collaboration with Freddy Bruckstein and Ishay Goldin, he has developed
several methods to address this problem that entail ”random walks” in the
space of shapes obeying time-varying constraints on their perimeter and area
[13]. Design of perimeter and area preserving deformations are an interesting
and useful special case of this problem. The resulting deformation models
are employed in annealing processes that evolve original shapes toward shapes
that are optimal in terms of boundary bending-energy or other functionals.
Furthermore, such models may find applications in the analysis of sequences
of real images of deforming objects obeying global constraints as building
blocks for registration and tracking algorithms.
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3.6 Hyperstructure interactions

A think-tank in the Epigenomics Project (a ’Nirvana’) brought together physi-
cal chemists (Jerry Manning, Max Berkowitz and Camille Ripoll), a physicist
specialising in water structures (Alfons Geiger), and biologists interested in
hyperstructures (Frank Mayer, Francois Kepes and Vic Norris). The first ob-
jective was to relate the phenomenon of counterion condensation (whereby a
fraction of the counterions will run along a linear, charged polymer provided
that the number of charges per unit length exceeds a critical value) to water
structures and to 2-D structures such as membrane domains [28, 18]. The
second objective was to treat counterion condensation as a solution looking
for a problem in biology and then to come up with that problem. There is
an urgent need in systems biology for solutions to the problem of how cells
negotiate the enormity of phenotype space and, in particular, of how cells
generate the coherent and reproducible phenotypes on which natural selection
acts. The think-tank therefore had the objective of exploring a possible con-
tribution in terms of ion condensation. A significant advance was made when
the regulation of the cell cycle of bacteria was identified as the area in which
suitable biological problems might be found - and the nature of the key step in
the initiation of chromosome replication was identified as the most promising
fundamental problem to explore. A hypothesis was then formulated in which
Initiation is controlled by an initiation hyperstructure in which:

1. The key event of the separation of the strands at the origin of replication
is mediated in part by the DnaA protein. This separation is favoured
by the decondensation of ions from the origin region which leads to the
strands in the origin region repelling one another. Such movements of
ions involve linear filaments, membrane domains and water structures.

2. Sequestration of newly replicated origins of replication is controlled by
a sequestration hyperstructure. The formation of this hyperstructure
is favoured by the recondensation of ions occurring as the GATC se-
quences in the origin DNA go from being fully methylated to being
hemi-methylated so increasing the charge parameter. This condensa-
tion also stabilises polymers of the SeqA protein which binds to these
sequences.

3. Sequestration ends when ions decondense from this DNA and from the
SeqA polymers in the sequestration hyperstructure to condense else-
where on other hyperstructures.

4. The fundamental nature of the cell cycle has its origins in the coupling
between ion condensation and the growth of the cell in terms of the
production of the linear polymers and membranes that constitute certain
hyperstructures. When the mass of polymers in the form of, for example,
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ribosomal hyperstructures, reaches a critical threshold, condensation on
these polymers at the expense of condensation on origin DNA leads to
the decondensation step in 1/ that triggers initiation.

Encouragingly, it was realised that this mechanism might also underlie a
related phenomenon in E. coli, that of growth rate control in which there is reg-
ulation of the proportion of the bacterial mass in the form of the transcriptional
and translational apparatus. The group also realised that ion condensation and
water structures might play important roles in the separation of the chromo-
somes and in membrane domain formation at the start of cell division.

4 Experimental advances

4.1 DNA replication and glycolysis

The replication of DNA and the central metabolism of carbon have recently
been shown to be related in Bacillus subtilis where the chain elongation step of
replication can be modulated by the flux of carbon through the bottom part of
the glycolytic pathway [14]. Our expectation is that hyperstructure dynamics
would underpin this coupling. How might DNA replication hyperstructures
and glycolytic hyperstructures communicate? The alarmone ppGpp is over-
produced when translating ribosomes meet uncharged tRNAs or when carbon
sources are depleted. Over-production of ppGpp is strongly implicated in the
coupling between replication and translation when there is a dramatic shortage
of amino acids [34]. Is ppGpp produced at different basal level in steady state
cells grown in different media also involved in this coupling? Our preliminary
results indicate that it is not involved.

4.2 Membrane cartography

A collaboration between microbiologists and chemists in Rouen is intended to
provide information on the lipid preferences of abundant membrane proteins
as a way to study those hyperstructures that affect the dynamics and compo-
sition of the E. coli membrane. Initial work has focussed on a thorough mass
spectometry-based analysis of the lipids making up this membrane [26, 27].
This is the basis for future experiments designed to reveal the changes in lipid
composition that accompany overproduction of particular membrane proteins.

5 Discussion

Extending the concept of functioning-dependent structures to hyperstructures
raises some interesting questions. The synthesis of macromolecules (DNA,
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RNA, proteins, glycans, polyphosphates) is an important part of what makes
a cell a cell. There is now ample evidence that such synthesis occurs in hy-
perstructures such as the lac hyperstructure where 30 or so RNA polymerases
work together to generate the nascent mRNAs that are translated by 300 or so
ribosomes [16]. Perhaps the most important one, again in E. coli, would be
the putative ribosomal hyperstructure bringing together rRNA genes, rprotein
genes and their products in a giant assembly plant (like the eukaryotic nucle-
olus) [5] although this is controversial [17]. The question we should ask is
’what do our FDS studies tell us about the dynamics of hyperstructures’? But
first, what do our studies tell us about the signalling properties inherent in the
synthesis of macromolecules by a single RNA polymerase or ribosome?

At the level of the synthesis of an individual protein, there is a set of
individual reactions that add amino acids to the growing peptide. An individual
reaction is between the amino acid and the nascent peptide as catalysed by
the codon and the tRNA. The separate reactions that must be linked to make
a protein require the channelling that is provided by the ribosome. So we
might suppose the synthesis of an individual protein is an extreme example
of an FDS. In terms of signalling, we can ask about what happens when
protein synthesis is interrupted. Are peptide fragments released as signals
(for references see [11])? Are ribosomes released (perhaps post-translationally
modified)? And what about GTP/GDP and alarmones such as ppGpp and
Ap4A? Note that at certain times in bacteria, many proteins are made only
to be degraded. We might ask similar questions about RNA synthesis ...

So how is the functioning-dependent lac hyperstructure different from the
FDS for synthesizing a single protein? In terms of complete assembly and
disassembly of the FDH, specific lipids normally bound to nascent proteins
in the FDH might be released by disassembly (with accompanying changes
in viscosity of the membrane). Assembly and disassembly might affect water
structures, DNA supercoiling and ion condensation. So topological signals are
probably greater for an FDH than for an FDS. More usefully for our modelling,
when a ribosome meets an uncharged tRNA, what happens to the following
ribosomes (and what would be the equivalent for RNA polymerases?) - maybe
they are all released? In other words, is there an amplification of effects in an
FDH?

Finally, the insight that the hyperstructure hypothesis offers into bacterial
physiology via hyperstructures extends to pathogenesis. The degradosome
plays a key role in the virulence of bacteria such as Yersinia pestis [36]. This
virulence is extremely sensitive to levels of calcium and to temperature, fac-
tors that are important in ion condensation. As mentioned about, it may be
significant that the degradosome exists in the form of the linear filaments on
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which, conceivably, ions might condense to regulate virulence. In which case,
targetting such hyperstructures via hybrid metabolites or hybolites may prove
of value [22].
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Abstract

Motivated by the idea that one day, probably far in the future, the computers
and robots will be architectureless, made of collections of numerous ’intelli-
gent’ subsystems or nanomachines able to self-organize each other into com-
putational morphologies with perhaps more computational power than classi-
cal electronic-based computers, many studies are burgeoning in different fields
(chemistry, biology, condensed matter, quantum physics, . . . ). Several systems
inspired from Nature have indeed been proposed yet for designing unconven-
tional computer architectures using processing modes of various nature and at
different scales.

The heterogeneous set of natural or artificially designed systems called
trail systems, commonly associated to self-driven particles (agents1) with tro-
pistic activity (through a communication based on traces let in the environ-
ment), is a soft matter with self-organizing properties sufficiently robust and
fine for designing biocomputing structures. In this context, individual trails
systems could be viewed as single wires and logical gates in a self-organized
bio-processor, in the same manner axons are connecting the neural nodes in a
neuro-processor. Their efficiency as wires depends on their specific properties
which are often related to their scale. The robustness of their self-organization
at the microscopic scale level occurring in a noisy environment, can be stud-
ied by a model based on effective computing systems (i.e. Turing machines)
programmed to behave first as deterministic and perfect trail systems, then as
stochastic-working trailing agents subject to randomness.

Keywords: Trail systems, Self-organization, Ant-based model, Robustness,
Biocomputing, Bio-wires

1 Introduction
It is obvious for most scientists that natural systems possess indeed that po-
tentiality to compute things. Nevertheless biocomputing approaches are often

1In order to differentiate them from any multi-agent system, the agents of a trail system will
be called ’TS-agents’ in the article
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very difficult since the researchers block in implementing effective computa-
tional calculi with their system of interest. In other terms, it is easy to imag-
ine the possible computational power of a biological system but one can not
calculate easily ’1 plus 1’ by using molecules, living cells or other natural sys-
tems, unless applying to those system a strong control at the expense of the
real potential of these systems (self-organization capabilities notably). More-
over, in comparison to electronic based processors that have a deterministic
behavior and whose structure is well defined, natural systems are on the con-
trary very subject to noise, show stochastic fluctuations to dramatic changes in
their behavior, and are poorly structured. In addition, their structuring is non-
permanent compared to silicon based hardwares. These two point were largely
analyzed by M. Conrad – died in 2002 –, one of the most prolific fathers of the
notion of ’molecular computing’ [1, 2].

In this article we bring close together a class of self-organizing natural
systems, the trail systems, and effective programmable systems such as Turing
machines whose behaviors are well known.

Natural systems are in general noisy and tend to the extend of their en-
tropy. However some of them self-organize either by static mechanisms (e.g.
liquid crystals) or by dynamic dissipative processes as it is the case in almost
all biological systems, e.g. the organization of cells from tissues to organ-
isms, population dynamics, or trail systems. By a permanent consumption of
energy (or matter, such as reactive compounds), the latter self-organize over
space and time and maintain their order to low entropy levels (compared to the
entropy corresponding to a total disordered distribution of their constituents)
[3, 4]. Self-organization of the so-called dynamical systems, or collective sys-
tems, always occurs at a macroscopic level compared to the microscopic level
at which their components act. It is due to the combination of the numerous in-
dividual actions of the microscopic constituents, or agents (e.g. animals, cells,
molecules), and the communication between them that synchronizes those in-
dividual actions. In that, they get closer to effective programmable processors
than other natural systems like disordered solutions of molecules.

Processors are arrangements of wires and elementary signal integrators
such as logical gates in electronic processors or neural nodes in neuro-proces-
sors. Specialized processors are programmed structurally. This means that
one architecture computes a given input signal according to only one program.
This is the case for the neuro-processors once their organization is fixed, or for
some electronic chips dedicated to one computational task. Moreover, some
processors, like those we use in our computers, can be also programmed dy-
namically. Their architecture is designed for a general use. Applying on the
architecture a set of instructions as the computing process goes along (in other
terms a program) corresponds to its refinement (and a dynamic adaptation).
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Among bioprocessors, neural networks are not the only natural or bio-inspired
processors that are able to learn or change a configuration and to self-adapt to
a given context so as to process the information differently.
Biological regulatory networks are very often subject to changes of external
(environmental) or internal (intracellular) conditions, so they have to adapt so
as the cells or organisms can survive. Biological feedbacks and feed forwards
act as activators or inhibitors of biological pathways (e.g. sequential cascades
of reactions), respectively in the past or in the future of the biochemical process
trajectory. A learning bio-processor based on microtubules and motors self-
organization has also been proposed by Pfaffmann and Conrad [5]. In this
model, microtubules are assumed to be able to transport the signal in an electric
form (nb. it is important indeed to highlight the importance of the difference
of nature between the constituents of the processor and that of the signals that
travel through its wires and gates for being treated). Starting from a solution
of microtubules and linker molecules (such as molecular motors), a reticulated
morphology forms and constitutes the architecture of a certain processor. Used
for processing a certain input, it returns an output. The latter is compared to
a reference (calculated differently) and adjust progressively the architecture of
the microtubule-based processor by changing the level of reticulation. If the
processor computes well, the architecture freezes; if not, the architecture is
warmed and changes. Such microtubule-based processors are plausible given
the subsequent results that concern the control of their self-organization with
linkers or motors [6, 7] and by admitting the concept of information transfer
and processing inside – or at the surface of – microtubules, largely defended
by several authors such as Hameroff [8, 9, 10], Tuszinsky [11, 12] (who also
made recently calculations of ionic waves propagation along actin fibers), or
other authors more recently [13, 14].

The plasticity of a neuro-processor compared to an electronic one is an-
other important point to keep in mind. If the latter can be dynamically pro-
grammed (after being designed and structured by engineers over several years
of successive ameliorations), the structure of the former can be reconfigured
both by physical changes in the set of connections and by adaptations of its
weights and thresholds (which in real neural networks found an equivalence
in the increase or decrease of the number of available receptors to neurotrans-
miters or in the increase or decrease of the number, shape and volume of sens-
ing areas, i.e. dendritic spines). That way, by a learning process that com-
pares for a given set of entries the result with a reference (professor), neural
networks can reconfigure into different neural-processors. Since all neurons
can potentially connect to all the others in the network, including themselves
(in particular in formal networks), and given their high reconfigurability, their
structural combinatory is largely higher than that of electronic programmable
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processors. Plasticity is a advantageous feature of formal neural networks, but
this also occurs within the brains when we learn a better or different manner
to proceed for doing something. After an accident that destroyed a part of
the brain or after some surgical resections, other parts can also reconfigure to
reestablish the function lost. On the other hand, one must accept that such a
processor is not optimal, in particular when the number of neurons implied is
very important.

Neural networks are not the only natural or bio-inspired processors that
are able to learn or change a configuration and to self-adapt to a given context
so as to process the information differently. Biological regulatory networks
are very often subject to changes of external (environmental) or internal (in-
tracellular) conditions, so they have to adapt so as the cells or organisms can
survive. Biological feedbacks and feed forwards act as activators or inhibitors
of biological pathways (e.g. sequential cascades of reactions), respectively in
the past or in the future of the biochemical process trajectory. A learning bio-
processor based on microtubules and motors self-organization has also been
proposed by Pfaffmann and Conrad [5]. In this model, microtubules are as-
sumed to be able to transport the signal in an electric form. Starting from a
solution of microtubules and linker molecules (such as molecular motors), a
reticulated morphology forms and constitutes the architecture of a certain pro-
cessor. Used for processing a certain input, it returns an output. The latter is
compared to a reference (calculated differently) and adjust progressively the
architecture of the microtubule-based processor by changing the level of retic-
ulation. If the processor computes well, the architecture freezes; if not, the
architecture is warmed and changes.

We think that self-organized trail systems can be considered for structuring
bioprocessor fine architectures and can work as neural networks do. Although
they are less robust than electronic circuits or even neurones, they are however
able to reconfigure more rapidly. Moreover, they sometimes make some errors.
Errors confer a great advantage to collective systems : when some individuals
behave differently to the mass, one would say they make errors, others would
say they explore other potentialities. The well known example is the determi-
nation of the best pathway among several paths that join together two points
(e.g. the nest and a food source) by a population of ants [15, 16]. By collective
dynamics based on the release and the sensing of pheromone trails by individ-
ual ants, the ant colony determines progressively the best pathway, but some of
the ants – that we will call ’explorers’ – fail in following the principal track and
use another pathway. If the better one is blocked by an experimentalist (or by
an environmental accident such as a rockfall or due to flooding) the secondary
options that has already been found by some ants are rapidly used. In the case
of ants, the exploratory trajectory is mostly random but can be enhanced by
other external factors (smells, geometry constrains of the landscape ...). Then,
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moving to other pathways is something easy for the colony since the explorers
have found yet these new pathways. The rest of the colony just has to follow
their tracks (i.e. pheromone trails). By this way, the colony can also discover
other sources of food (resources in general) or new territories for settlement.

Very few – but successful – attempts were done that showed that NP com-
plex problems such as network routing problems are perfectly and more ef-
ficiently resolved when based on trail processes (as shown with the use of
virtual ants by Bonabeau et al [15]). The different systems that belong to this
heterogeneous set are well studied independently now. Nevertheless they have
surprisingly never really been viewed more theoretically as a unique family of
systems sharing the same properties and studied as it is, as a generic model
described by a unique set of parameters for each TS-agent and its trail. Neither
have they really been studied for their computational properties. In the best
case, they are considered in a simplified manner as multi-agent systems [17],
but this does not take unfair advantage of all their characteristics.

Trail systems possess however very interesting characteristics in terms of
computational efficiency and control. Their ability to produce preferential
tracks and to follow – or be influenced by – them results in the emergence of
temporal and/or spatial order and forms. That way, the whole system behaves
naturally as a self-organizing dynamical network (a sort of circuitry where ca-
bles are defined dynamically) that can – when perturbed by external factors
acting globally on the whole system or locally in the form of perturbing nodes
(e.g. food sources, poison, walls) – re-adapt to take into account the new geom-
etry and features of the system in its environment. Moreover the structurability
of such systems is intrinsically high due to their structural aspect and to their
self-organizing properties, and it can be enhanced by a direct control of the
dynamics and the orientation of the TS-agents. The majority of biocomputing
researches based on multi-agents use them directly as processors so that their
concerted actions in a given context (inputs) directly gives a morphological re-
sult. This biocomputing approach is very interesting for solving optimization
and organization based problems. This is for example what is done in collec-
tive robotics [17] or internet routing problems [15]. Another manner to proceed
is indirect : this time, the agents are used to construct a – very reconfigurable
– processor architecture that is used afterwards for computing classical calculi
(and whatever problem a classical electronic processor can compute). As for a
neural network, such a trail system based network would then be able to learn
a configuration that, stimulated by some signal of different nature (e.g. light,
electricity ...), would process it such as it corresponds to the expected compu-
tation. This would be facilitated and enhanced by using TS-agents of fibrillar
nature, i.e. the orientation of cytoskeletal supramolecular assemblies under the
action of electric or magnetic fields [18, 19, 20, 21].
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The properties of trail systems allow us to better identify them to structurally
programmable processors compared to classical reaction-diffusion systems (e.g.
see [22] or [23] for BZ-based computing which needs either a strong control
of the BZ reaction by local light inhibiting stimuli or by using a fixed geom-
etry for the gel in which the reaction is realized), particularly in the case of
fibrillar trail systems. We propose here to browse through those properties and
computational interests that depend on the nature and the scale of those sys-
tems, and on the influence of their environment. In this article we also present
the first step of a research agenda, i.e. a model based on an analogy between
individual trail systems and wires or connections of an electronic processor
or a neural processor. The model is an automaton very similar on its form to
a Turing machine where the TS-agent is programmed to release traces of its
trajectory in the environment, and for using them, but subject to intrinsic error
or stochasticity coming from the environment. In that very simplified model
of trail system, we identify clearly all sources of stochasticity that can affect
the behavior of TS-agents, thus allowing us to study the robustness of their
spatial self-organizing ability due to their microscopic –individual – proper-
ties. We also discuss of what ensures the robustness of self-organization at the
level of a population. In particular, we are interested in the manner informa-
tion is shared between TS-agents, and discuss on how such transfer entropy
can be measured in our model or how it could be done is real systems. Finally,
we describe how a learning process similar to that used for configuring formal
neural networks will allow to obtain well structurally programmed trail-system
based processors. It is interesting to note that an evolutionary process unifies
the couple engineer-processor in a feedback loop : the engineer (that is also
able to use feed forward decisions), creates a processing chip and tests it un-
til it realizes the expected task or calculus. Evolution played the role of the
engineer in natural systems (this point has been largely highlighted in several
papers [24, 25]). Actually, the properties of the natural trail systems (as those
cited above) have been selected – in a Darwinian sense – so as the robustness
of the self-organization depending function is ensured in respect to the features
of the natural environment.

2 Characteristics of the trail systems

Trail systems are constituted of numerous active elements in interaction in their
environment. These elements are composed of two distinct parts: an active
agent (TS-agent) and a trail.

The TS-agent is an object perceived as a unique physical entity. It has its
own rules of behavior: internal rules that describe the changes intrinsic to this
entity (independently to external actions), and rules that allow it interacting
with other TS-agents, with its surrounding environment or with external fields.
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Compared to the TS-agents, the trails are not precisely defined and are not
really limited physically until a molecular description. They are made of local
variations of the environment. Those variations have a maximal intensity at
their sources, the TS-agents, and spread out or are progressively degraded from
the instant they are generated. Their description is very related to level of
abstraction used for describing the matter that constitutes the environment: a
discrete manner or a continuous one. Viewed from a macroscopic point of
view, one can mark a trail out with a certain accuracy, but the precision of their
frontier is limited by the sensitivity of the experimentalist to the variations
observed. Moreover when the scene is magnified, the observer can distinguish
the different components of the trail, showing that the trail is not in the form of
a unique coherent entity. Nevertheless the latter can drive the self-organization
of the agents at the macroscopic level.

Figure 1: Traces let by natural trail systems. (Left) A cairn in the pyrénées in
France (used by permission of P.-H. Muller, http://www.boreally.org/). One cairn con-
stitutes an isolated element of the human trail signal clearly visible by humans over
the landscapes. (Center) Model of disassembling microtubule (see [26]). Here, the
microtubule shrinks at the unrealistic rate of 2000 µm.min−1 so as we are able to ob-
serve the formation of a tubulin-GDP trail (red molecules; blue ones are tubulin-GTP).
At realistic rates (¡20 µm.min−1) no anisotropic trail forms and the heterogeneity ob-
served is very weak as shown on the diagram to the right. (Right) Measurement from
a simulation of the amount of tubulin-GDP released by disassembling microtubules
in solution. Data correspond to the density profile of tubulin-GDP around the tips of
disassembling microtubules, measured from the center of an array of 5 motionless mi-
crotubules (see the inset showing a transverse cross section of the x axis and of 5 MTs),
each of them respectively separated by 30 nm (one microtubular diameter). All mi-
crotubules disassemble simultaneously at 20 µm.min−1 (1.85 ms.heterodimer−1)
which is a quite fast disassembling rate. The macroscopic diffusion rate of individual
tubulin dimers corresponds to that measured in the cytoplasm (5.9 10−12 m2.s−1)[27].
The quantity of tubulin-GDP molecules liberated is very low and needs to be inte-
grated in time for obtaining average profiles. The graphic has been reconstructed by
integration of the density maps of 6 independent simulations, during 1.8 ms (i.e. the
average time separating the liberation of 2 tubulin-GDP molecules by a disassembling
microtubule), between the simulation times 9.2 ms and 11 ms, along the 3 axis (a total
of 6642 profiles)
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The trails can be of various nature (chemical traces, physical tracks, hydro-
dynamic trajectories...) and have different effects (causing activating or in-
hibitory behaviors). Animals like social insects [28, 16, 29], marine snails [30],
birds or flying drones [31], or human pedestrians [32, 33] or mountaineers (fig.
1 left) take advantage of this process for self-ordering and optimizing tasks,
particularly path finding, hunting or foraging, thus saving energy. Other, such
as harbor seals (for fishing activities)[34], ’know‘ how to use the trails pro-
duced by other systems for profiting from the same properties. All are macro-
scopic very efficient trail systems. Their efficiency is important in the sense
that this mode of communication has a real influence on the synchronizing ac-
tivity or the self-organizing behavior of the TS-agents that compose the system.
Microscopic ones exist such as chemotactic cells [35] or bacteria such as actin
comet systems (e.g. actin comets produced by TS-agents such as the Listeria
or Shigella bacteria, or Arp2/3-coated latex beads [36, 37]), but also molecular
ones such as the self-assembled biological fibers (e.g. microtubules or actin
filaments) (fig. 1 right) or artificial DNA-designed programmable nanotubes
[38] and carbon nanotubes [39]. In simulated systems such as the Conway’s
game of life or the Langton’s ants [40], they are often called ’puffers‘, i.e.
self-maintained gliders that produce persistent trails of numerical nature (e.g.
a trajectory composed of cellular automata cells filled by active states).

For example a chemical trail, such as those made of pheromones that drive
ant colony dynamics, is composed of numerous individual molecules that one
could distinguish individually by a accurate observation at the ’nanoscopic‘
level. The same observed without or only at low amplification would be viewed
as a macroscopic object, correctly defined along a certain area emerging from
the source, and becoming progressively fuzzy at its undefined border. The
quality of the frontiers observed depends on what the observer can perceive, as
to say on its sensitivity to the signal that constitutes the trail. If the molecules
that compose the trail are stained by a fluorescent marker, it will depend on
the sensitivity of the experimentalist’s camera to the light emitted. However
evident it may be, that remark is the same for the TS-agent which is sensible
to the trail signal only beyond a certain threshold.

Actually, numerous factors condition the efficiency of the trail-driven in-
teractions between TS-agents, and thereby that of the resulting self-organizing
processes. Considered aside, the system has a certain efficiency in processing
information and self-ordering that can be inferred from the parameters enu-
merated below. What is the most important is nevertheless that the information
generated and processed by such TS-agent – trail elements must be discrimi-
nated from the other interactions and processes (e.g. mechanical interactions,
noise and thermal agitation, convection or flows, other concurrent reactions ...)
that occur in the same time in their direct neighborhood. The importance of
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a hierarchy in information processing systems and in particular in natural sys-
tems has been largely described by Conrad [2] : all interactions are processing
events but all occur at different time and space scales, some of them being neg-
ligible in comparison to others that exist at the time and space scale level we
are interested in. In our case, we are interested in trail system based processing
and not in the possible different processing modes that could exist at a molec-
ular level between some of the molecules or atoms that compose the system
(as it is used in the hypothesis of information processing inside microtubules
or actin [8, 9, 10, 11, 12, 13, 14]). An enumeration of the common parame-
ters sufficient to describe whatever trail system and necessary for trail-based
processing is given below.

TS-agents:

l Panel of actions (rules) available. All TS-agents are random walk-
ers since they generally can’t ’see‘ directly the trail they follow (except
perhaps in the particular case of animal pathways that can be directly
viewed by the TS-agent before it encounters physically the trail). Once
a trail is encountered, the internal state of the TS-agent is modified. Its
internal rules take this new state into account so as the individual behav-
ior of the TS-agent is now modified. In particular those changes induce
an ’active searching’ of the trail pathway by the TS-agent. Such ’in-
telligent‘ actively searching TS-agent are considered usually as active
walkers but that notion is very imprecise: we can perfectly understand
this meaning in the case of animals for example. It is more fuzzy in the
case of cells or bacteria, and worth for pure molecular systems like bio-
logical fibers. The moving biological fibers encounter on their trajectory
variations of composition and concentration in the medium, formed by
the accumulation of numerous fuzzy, weak and extended trails (in this
case, one may better say ’molecular clouds’ instead of ’trails’). This af-
fects the reactivity at their ends. When growing in favorable regions of
the solution their growth is statistically enhanced and, on the contrary,
when encountering unfavorable chemical compositions they can start to
shrink or pause. They however can’t reorient for following chemical
trails as ants do. Nevertheless, a progressive process of selection – by a
succession of growth, shrinkage and nucleation of new fibers – can lead
to the selection of preferential orientation of the fibers. Despite a clear
difference of efficiency, this process can be also assimilated to an active
searching when considered from an upper level of observation.

l Sensitivity to the trail. The most important point is the efficiency of
the TS-agent – trail recognition (or the attention of the TS-agent to the
signals let by others in the environment). As evoked before, the TS-
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agent – an animal, a cell, a supramolecular self-assembly – reacts to the
signal contained in the trail structure only beyond a certain threshold.
All TS-agents possess a sensing zone or a preferential region for physi-
cal interactions with the environment or for chemical ligand dependent
reactions that can be assimilated to sensors (e.g. sense organs for ani-
mals, chemical receptors on a cell, reacting ends of biological fibers).
The threshold is a combination of both the surface of recognition (re-
active surface of the agent), the density of the sensing elements present
on this surface (e.g. individual molecular receptors) and their individual
affinity or sensitivity. Actually, it is the size of the surface of recog-
nition on the TS-agent compared to the size of the trails encountered
that is important. For better efficiency, and at least a better directional
symmetry breaking, the trail must be thiner or of the same order of this
region (i.e. of the TS-agent if the region is more or less confounded with
the entire individual). For example, let us consider two cases: (i) the
ant and (ii) the microtubular systems. In (i) the trail is thin and long,
and the TS-agents are approximately as large as the width of the trail
(about 1-5 mm). Such an anisotropy leads to a strong local symme-
try breaking along the trajectory of the TS-agents and although the ants
walk randomly, they are permanently biased in a preferential direction,
often crossing the trail they follow and aiming to come back to it. This
behavior is not unreminiscent to what occurs in human pathways and
’cairns’ where those traces are very visible by the mountaineers, often
over large distances, that way drawing kind of discrete tracks (fig. 1
left). On the contrary, in (ii) the trail produced by a microtubule is very
extended (over microns) much more larger than the size of the ’sensor‘
of the fiber (30 nanometers) (see [26] and fig. 1 center & right). In that
condition, this actions of the agent can not be biased in a preferential
direction since the agent is included in the trail and can not cross it. The
only possible effect of microtubule trails (and consequently of actin fil-
ament trails also) occurs at the level of huge populations of fibers at the
millimeter scale, when macroscopic variations (compared to the size of
the agents) of tubulin composition appear and cause massive synchro-
nized reactions of the fibers, that are transmitted by diffusion. This is
observed in solutions of microtubules in highly reactive conditions, as
spatio-temporal variations (propagating waves) of the concentration of
microtubules [41].

l Moving rate of the TS-agent. The motion of an agent has two origins: a
motion that it controls due to its own dynamics, and a motion induced by
external factors such as external fields, flows and diffusive motion. Their
displacement relative to the environment will affect the manner the TS-
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agent will sense the fluctuations of the medium. It depends actually on
the ratio between the rate (efficiency) of recognition of the fluctuations
by the TS-agent, and its moving rate. Moreover, the effect of the external
factors on the TS-agents will strongly condition the success of specific
trail-based processes, particularly when they are of the same order of
the characteristic motion of the TS-agents. If animals are very weakly
sensible to normal external factors (ex: wind) that’s different for cells
subject to flow or convective motions, and worth for biological fibers
subject to strong mechanical effects and thermal agitation.

l Internal memory. When TS-agents evolve in their environment they
are stimulated by the trail signals and other external factors. This mod-
ifies their internal state at least for a certain duration after stimulation.
Animals have their neurons activated for an active searching of trails;
particular pathways of the metabolic-genetic network of the chemotac-
tic cells or bacteria are activated; the biological fibers store a part of the
history of their reactive events in their composition and structure (e.g.
There’s a certain inertia in their dynamics, particularly for microtubules,
stored in the form of chemical and conformational states at their reacting
ends). In addition, some of them possess a sort of stack that memorizes a
part of their trajectory. There are of course neuron-based memories, but
also molecular assembly-based memories. Biological fibers and actin
comets store chemical information in their fibrillar structure and restore
it to the medium when disassembling in the form of the trail.

trails:

l Moving rate of the source. The source is the TS-agent. Its characteris-
tic moving rate condition partially the shape of the trail.

l Persistence, diffusion and degradation. The moving rate of the source
has to be compared to the factors that tend to degrade and spread out
the trail, such as molecular diffusion. Ants move quick compared to
the diffusion of pheromones, thus leading to persistent trails. On the
contrary, the trails formed by small molecules such as tubulin or actin
diffuse very quickly compared to the growing or the shrinking rate of
the microtubules or the actin filaments. In this case, the trails are not
elongated as comets behind their source, but symmetric, diffusing all
around their source.

l Intensity (at the source). The examples of trail systems cited above pro-
duce trails of various shapes but also of various intensity. As social
insects release high concentrated trails of pheromones, biological fibers
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on the contrary release individually very low amounts of protein bricks
during disassembly. In addition to the fact their trails spread rapidly and
far away from the source, they can not be considered as good ’molec-
ular ants‘. However, populations of N grouped and aligned fibers as
microtubule bundles and most of all actin comet systems can release
subunit amounts N times more important. Viewed from the TS-agents,
this feature corresponds to its level of persuasion or to its efficiency of
communication to other TS-agents.

It is then evidence that the relative scale and intensity of the agent-trail related
processes compared to that of the interfering processes is critical as well as the
relative size of the agents compared to that of the trail signals. The table below
(Table. 1) gives different examples of trail systems observed in nature or of
artificial (hardware or simulated) ones.

Nature O(N) O(Scale) O(Rt) Shape Efficiency
(in O(m)) m/s ., o, -, –, — (– to ++)

Agent Trail System Agent Trail Sig. Ns. Mn.
Pedestrians 1 to 4 0 1 to 2 1 to 2 0 . — ++ - - ++
Drones 0 to 2 -1 to 1 0 to 1 1 1 to 2 . - ++ - ++
Birds 0 to 2 -1 0 0 to 2 1 . - ++ - ++
Fishes 1 to 4 -1 to 0 0 to 1 0 to 2 0 to 1 . – ++ - ++
Snails 0 to 1 -2 -1 to 0 -1 -3 . — ++ - ++
Ants 2 to 6 -3 -1 -1 to 3 -3 . — ++ - ++
BZ wave 1 to 2 -4 to -3 -3 -4 -4 . - ++ + +
Lymphocytes 1 to 6 -5 -4 to 0 -3 to 0 -5 . o to - + + -
Dictyostelium 2 to 6 -6 -4 to -1 -2 -6 . o to - + + -
Bacteria 3 to 9 -6 -5 to -1 -3 -6 . o to - + + -
Actin comets 1 to 2 -6 -5 -5 - 7 . to – – + + +
Microtubules 3 to 9 -8 -6 -3 - 7 — o - - ++ - -
Actin F 3 to 9 -9 -6 -2 - 7 — o - - ++ - -
Carbon NT > 6 -9 (?) -6 (?) – o - - ++ - -

Table 1: The table indicates the nature and the number of elements in a typical sys-
tem. Semi-quantitative values (orders of magnitude expressed as exponents of ten) are
given for their scales (agents, trails and the whole collective system) and the charac-
teristic moving rates of the elements. Their shapes (agent and trail) can be assimilated
as points ’.‘, round symmetric spread areas ’o‘ , or fibers weakly to strongly orientable
(’-‘ to ’—‘)). An arbitrary notation between ’–‘ and ’++‘ characterizes the intensity of
the trail signals. It is compared with the relative importance of the surrounding pro-
cesses that interfere and perturb their behavior, thus giving an idea of the concurrence
of the trail generation and trail degradation/spreading dynamics.

The table shows that very small and highly dynamic energy dependent ele-
ments behave potentially as trail systems: from the smaller to the bigger ones,
actin filaments, microtubules, and actin comet systems. Due to the fact they
are very small and numerous in a tiny volume of solution, and because they are
fiber-shaped and consequently sensible to the action of weak external orienting
fields like magnetic fields [18, 20, 21], they appear as excellent candidates for
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realizing programmable chemical processors based on this principle. Unfor-
tunately, the table also shows that their scale is very close or the same to the
microscopic level where intense molecular diffusion and transports of matter
rapidly delete all useful information.

Actin comet systems such as bacteria-actin comets or those formed by la-
tex coated beads are probably the most efficient trail systems at the micro-
scopic scale because they produce highly concentrated, thin (order of 1 - 3
µm) and long (10 - 20 µm) trails, because the size of their agent (about 2 µm)
is comparable to the width of the trails, and because on the contrary to single
biological fibers, they are able to reorient rapidly in the preferential direction
of the trails followed by reorganizing their fibrillar network. Movies of actin-
beads or actin-bacteria comets realized by several teams perfectly show this
behavior. Regrettably, the interactions between actin comet agents and trails
still have not been studied. It would however be of great interest.

3 Modeling a single TS-agent

As mentioned in the introduction, in its deterministic form, our model uses the
formalism of a Turing machine. Such an automaton is composed of a tape that
contains informations and a head that reads the informations of the tape at its
current position, that applies internal rules (or transitions) such as moving or
changing its current state, and that can write new informations on the tape, all
of this conditioned by the set of instructions defined by the rules. Each Turing
machine can be described as a sextuplet (Q,Σ,Γ, E, q0, F, #,), where Q is the
finite set of control states {q0, .., qn}, Σ is the entry alphabet used for writing
the values on the tape (it does not include the blank character # that separate
to values or instructions), Γ is the alphabet of the tape and includes Σ and #,
q0 (q0 ∈ Q) is the initial internal state of the Turing machine, F is the set of
final states that can reach the Turing machine, and E is a finite set of transi-
tions (or rules) written in the form of a quintuplet of symbols {c, r, n, w,m}.
The transition parameters are the following: the current state of the Turing
machine c, the current read state r, the new state of the Turing machine n, the
new state to write on the tape w, and a move m. Such rules can also be noted
c, r −→ n, w,m which means that if the Turing machine has the internal state
c and reads r, its internal states changes to n, it replaces the symbol r by the
symbol w in the tape and moves as indicated by m. All these symbols can be
expressed into a unary, binary (or extended binary) or more compressed and
symbolic (e.g. hexadecimal ...) codes. If it is of no importance for a Turing
machine, we will see that the question of the encoding and the compression is
really determining in the case of autonomous agents subject to stochasticity.
For realizing any operation on values, the information tape has to contain at
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least these numerical or symbolic values, but can also contain the rules (sets
of instructions encoded within the same tape) necessary for realizing this op-
eration. In the latter case, the Turing machine is called universal. All values
or instructions are delimited between specific separators (or blanks) also en-
coded in a certain format. In our case, we are not interested in universal Turing
machines since we want our agent to be very distinct to the environment.

Here, in our model, we will not use a complicated formalism. We will limit
the notation of the values in the tape (Σ) to the unary format where decimal
number (d) 1 is the unary (u) 1, d2 = u11, d3 = u111 ..., so as the set of decimal
values {0, 1, 2, 3...} corresponds to the unary values {0, 1, 11, 111...}. We dif-
ferentiate the decimal number d0 (value u0) to the spacers used between these
values by using the character star as a blank symbol (# = {∗}). The tapes and
the sets of transitions are given separately (we are not in the case of universal
Turing machines). The moves are elements of {S, L, R, P, T} for respectively
Stay, go Left and go Right, Pause, and the stopping signal T (as Terminated),
and are of length 0 (for stay, pause or stop) to 1 step relative to their current
position. In the model, we make a distinction between Stay and Pause. Stay
implies that the state of the agent has changed during this step so as the agent is
not stopped. This move instruction can exist in both deterministic or stochastic
systems. The move instruction Pause does not concern deterministic systems.
Real systems can maintain themselves in a stationary state during a certain
time (depending on their available amount of energy and on their energy con-
sumption rate) when they are blocked. For example, we can immobilize an
ant during a certain – short – time and it continues to live. Once freed, the
ant can continue to move. Although it does not include the notion of energy,
the instruction Pause mimics this possibility. In our model, only an stochastic
change in the machine state, in the environment or of decision (transition) can
unjam the agent. Another analogy with a living agent is when the agent faces
to an impossibility to decide what to do because of an unknown situation. A
certain time pass until the agent has an idea of how to do. This corresponds in
our model to a stochastic change of the current used instruction.
The agents will always start at the extreme left of the tape and end their com-
putation at the position of the last rightest symbol of the result with a stopping
signal. Their internal states are represented by the symbols of the latin lower-
case alphabet {a, b, c, ..., z}. All agents begin with the initial state a.

Below is shown, as an example, a simple Turing machine (highlighted in
gray) that computes N plus one (here 3 + 1).

Transitions:
(1) 0,a −→ 1,a,T ;
(2) 1,a −→ 1,b,R ;
(3) ∗,a −→ ∗,a,R ;
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(4) 1,b −→ 1,b,R ;
(5) ∗,b −→ 1,b,T ;

Tape before computation: * **111*** 3 + 1
Tape after computation : ***111 1 ** = 4

In our case, we want the agent to behave as a TS-agent would do. Our agent
realizes a more interesting simple task, i.e. transporting values from one part
of the tape to another. This mimics the manner ants transport food or mate-
rials from one part of their environment to another (for example, [28] show
the aggregation dynamics of dead ants transported by living ants that release
preferentially their loads when encountering an existing accumulation of ant
corpses). The most simple TS-agent that simulates a deterministic – and very
simplified – ant in a 1D environment can be written as described below:

Blanks and zeros are not equivalent. We aim to represent an environment
that contains (1) or not (0) values that correspond to amounts of matter (e.g.
food or dead ants), but we also want to include the notion of explored or unex-
plored environment. When explored by TS-agents the environment is modified
and shows specific paths (trails) that other TS-agents or the same TS-agents
that created these paths can use preferentially. In the following, the environ-
ment is first considered as unexplored and is filled by blank characters ∗ except
in two areas that correspond to a source (e.g. the food) and a destination (e.g.
the nest) that are heterogeneities in the environment susceptible to be sensed
and modified by an agent. Both source and destination areas can initially con-
tain quantities of matter equal or more than 0. The TS-agent is conceived to
transport all the N symbols 1 from the right heap (source), if its initial value is
more than 0, by copying them to the left heap (the destination which contains
0 (e.g empty nest) to M symbols 1 at the beginning). Firstly, the TS-agent is
looking for a food source by traveling through its nest and then through the
unexplored area that separate the destination and the source areas. Then, when
it finds some food, it comes back to the nest and let behind it a ’trail’ of 0. The
character 0 represents here (in this very simplified model) both amount values
equal to 0 and the presence of pheromones. Then, it adds the carried value to
the heap and goes again to the food source, this time by ’following’ the traces
of pheromones (succession of characters 0) between the two heaps. For doing
that it needs the use of specific rules. At the end, the source disappears com-
pletely. This correspond to a calculus equivalent to N + M . Here N = 8 and
M = 1. Of course much more simple models of Turing machines could do
the same (i.e. transporting values from one heap to the other), but we aimed
to be able to do a certain analogy with a trail system (with the notion of trail
released by a TS-agent).
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As described in table 2, the model contains 25 programmed transitions and
2 others – number 24 and 25 – (highlighted in gray) that where automatically
added by the program so as to complete the table of relations between the TS-
agent states and the environment values. The completion of the table is very
important as is authorizes simulating stochastic systems. In such systems, .
The two added instructions force the TS-agent to pause. As said before, only
an accident let the TS-agent move again. Roughly, transitions 0-2 and 4-5 are
used for reaching the left heap and crossing it, transitions 10-11 and 15-17
are used for realizing the first travel of 1 symbol 1 from the right to the left,
transitions 3, 6-7 and 12-14 are used for transporting the N-1 symbols 1 from
the right to the left, and finally the last transitions (8-9, 18-23 and 26) are used
for reaching the left heap for the last time and finally stopping. The transitions
that are characteristic to a trail system are those that imply the release and the
use of a pheromone trail as a guiding rail, i.e. transitions 3, 6-10, 12, 17-18
and 21.

0 1 *
a (0) a, 0 −→ b, 0, R (1) a, 1 −→ b, 1, R (2) a, ∗ −→ a, ∗, R
b (3) b, 0 −→ c, 0, R (4) b, 1 −→ b, 1, R (5) b, ∗ −→ d, ∗, R
c (6) c, 0 −→ c, 0, R (7) c, 1 −→ p, 0, L (8) c, ∗ −→ x, ∗, L
d (9) d, 0 −→ x, ∗, L (10) d, 1 −→ q, 0, L (11) d, ∗ −→ d, ∗, R
p (12) p, 0 −→ p, 0, L (13) p, 1 −→ p, 1, L (14) p, ∗ −→ b, 1, R
q (15) q, 0 −→ b, 1, R (16) q, 1 −→ p, 1, L (17) q, ∗ −→ q, 0, L
x (18) x, 0 −→ y, ∗, L (19) x, 1 −→ x, 1, T (20) x, ∗ −→ x, ∗, L
y (21) y, 0 −→ y, ∗, L (22) y, 1 −→ y, 1, T (23) y, ∗ −→ z, ∗, R
z (24) z, 0 −→ z, 0, P (25) z, 1 −→ z, 1, P (26) z, ∗ −→ z, 0, T

Table 2: Transitions. The table gives the possible actions of the TS-agent modelized
here, depending on its current state (first column) and on the symbols read in the
environment (first row). To a given TS-agent state and a symbol read each transition
associates a new state, a symbol newly written at the current place of the TS-agent and
a move.

3.1 Deterministic simulations

The principal steps of a deterministic simulation are given below in table 3. Is
this simulation, the TS-agent transports 5 symbols 1 (at the right of the environ-
ment) to its nest (close to the left end of the environment) already containing a
symbol 1.

Such a TS-agent behaves, in a simplified manner, as a deterministic for-
aging ant in a 1D environment (see fig. 2). In this example, if the right heap
is absent, the deterministic TS-agent will never stop (and is invalid). The TS-
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agent would explore permanently its environment to the right until infinity.
One could imagine by using different rules to place the food at the left and
the nest to the right. In this case, if the nest was absent, it would be as if a
unique dead ant or a very limited source of food was present in a box with a
living deterministic one: the carrier ant would never release its load (until it
dies in its turn). The only way for such a deterministic TS-agent to release the
carried material is to include stochasticity in its perception of the environment,
in its rules, or in the environment itself. Of course, more efficient rules could
also be used that would ensure the deterministic TS-agent to stop such a set
rules that would count the number of steps during when nothing has happened
but our model is interesting in the sense that it is very simple and because its
robustness is only due to the fact that there is no noise or errors and everything
needs to be well planned before, until the presence of both a nest and a food
source. Below is shown a complete simulation.

Environment Transitions used
* **1***11111*** starts from there

*******1 * **11111*** 2,2,2,1
*******1*** 1 1111*** 5,11,11,11
*******1*** 0 1111*** 10
*******1 0 0001111*** 17,17,17
******* 0 100001111*** 16
******1 1 00001111*** 14
******11 0 0001111*** 4
******11000 0 1111*** 3,6,6
******11000 0 0111*** 7
******1 1 00000111*** 12,12,12,12
*****11 1 00000111*** 13,13,14,4
... round trips
**11111 1 00000000*** ...4,4
**11111100000000 * ** ...4,4,3,6,6,...,6
**1111110000000 0 *** 8
**11111 1 *********** 18,21,21,...,21,22

Table 3: Example of deterministic simulation. In the left column of the table, we
show the principal steps of the evolution of the environment due to the action of the
TS-agent. The position of the TS-agent is highlighted in gray. It becomes a TS-agent
when it starts to release a trail of 0 (rules 10 and 17) on the return to its nest once it
finds food (right heap of symbols 1), and when it uses it to come back from the nest
(left heap of symbols 1) to the food. In the right column of the table, we give the
respective transitions used for obtaining the environments at each step.
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Figure 2: Trajectory of a 1D-ant. The TS-agent starts as indicated at the down left
corner and moves vertically. The two heaps are shown in black: a big one (the food
source which value = 6) at the top left corner and the smaller one (the nest which value
= 0) below. They are separated initially by a blank space. Its trajectory during time
corresponds to the zigzag that finishes to halt on the top of the nest. When moving,
after it finds ’food’, it releases a trail that appears in gray between the two heaps. At
the end, the trail is removed by the TS-agent and the environment contains only one
heap which value = 6, i.e. the sum of the two heaps.

Of course, this deterministic automaton realize its task perfectly and will
serve as a reference. Let us consider now the introduction of stochasticity in
both the environment and the behavior of the TS-agent.

3.2 Imperfect TS-agents in a changing environment

In real life, stochasticity is everywhere but living systems spend a lot of energy
to counter entropy and maintain coherent self-organized forms and behaviors.
Every living agent exists in a given environment. Both can be sources of errors
that can affect the behavior of agents. A living agent makes 4 different things
in its life: the agent can sense its environment, the agent can modify the envi-
ronment, it moves through the environment, and finally it possesses its internal
life, as to say it can think, make decisions, dream, change its internal states, etc,
all of this independently to the environment. Mistakes of the agents can appear
at these 4 levels. Problems of attention or sensing are related to the sensitivity
of agents to their environment, e.g. our hearing or the sensitivity of a chemo-
tactic cell (density and quality of the membrane receptors). Difficulties in the
persuasion, talking or writing (communication) are due to a limited intensity
of the signals emitted by agents towards other agents through the environment,
compared with the ambient noise already present in the environment. Here,
we distinguish between the errors of moving and the errors of decision. An
agent can choose to move somewhere, i.e. to the left, and finally does some-
thing else like moving backwards or pausing. Stochastic changes of decision
or, said differently, of use of behavioral rules always occur in our life when we
feel uncertain about something to do before any choice of action (communi-
cating or moving). Smaller living systems such as cells show most of the time
coherent behaviors but sometimes, due to stochastic small molecular changes
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(e.g. a small excess or lack at one moment of a transcription factor in a cell
compared to another very similar cell will cause a small difference of behav-
ior between them during a certain time. In this example, the brain that makes
decisions is the cell internal machinery), they don’t do what is expected. We
are familiar to coherent behaviors of populations of cells, but when one look
at all individual behaviors of each cells in the population, one find them not so
coherent between each others.

In the environment, many events can also occur independently to living
agents but all come down to transport of matter and transformation of matter.
Transport of matter includes diffusion and flows but not the active transport of
matter by living agents. Transformation of matter concerns chemical reactions,
mutations, and disintegrations. All these phenomena are critical for the trails
to be maintained. If weak trails are subject to a strong diffusion, the signal is
rapidly diluted and the environment to become uniform again. On the contrary
very intense trails produced by TS-agents in a noiseless environment will be
maintained over a long time.

In our model, the representation of both the environment and the level of
functioning of TS-agents are microscopic. At this level, one can consider that
errors, noise and transport phenomena are rare events. Moreover, we consider
distance matrices between the symbols of a given set (i.e. the set of rules, the
set of moves, the set of TS-agent states, or the set of read symbols). Each
distance value gives the relative proximity between two symbols (e.g. ’99’
is close to ’100’ but far from ’3’ as well as moving symbol ’L’, ’R’ and ’P’
are very close together, but far from the halting signal ’T’). Then every event,
whatever its type, behaves as a microscopic diffusion event in our model since
the errors or mutations are just stochastic jumps from one given value (e.g.
a TS-agent state, a given move or an environment symbol) to another of the
same set. These jumps are only authorized as imposed and limited by the
distance matrices. In addition, as in diffusion phenomena anisotropy can also
be applied to the diffusion phenomena in our sets of symbols so as to force the
system to evolve in one direction. As an example, one can consider a set of
integer symbols comprised between 0 and 100 that represent the local number
of molecules in a small volume. Due to chemical events called disintegration
or mutation, these molecules will be degraded into others that are not perceived
by our TS-agent; in other terms, for us, they disappear. Mutations events are
then described as diffusion events of 1 step only from higher values to lower
values of symbols.
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Below is given the sequence of procedures followed during any simulation:

l Environmental events

– Calculate the mutations (Diffusion at a given location within the
set of environment symbols)

– Calculate the axial diffusion along the 1D environment

– Calculate the lateral diffusion between neighboring environments
(in case of several parallel arrays of 1D environments)

l Individual action and events of the TS-agent

– Perception: the TS-agent reads the environment. A possible error
occurs during reading: the TS-agent reads something else, close to
the good value as defined by the matrix of environmental symbols.

– Decision: a rule is chosen given the environmental symbol read
and the current state of the TS-agent. An error can occur that force
the TS-agent to follow another transition close to the good one as
indicated by the distance matrix of transitions. The state of the
TS-agent takes a new value given by the transition that has been
chosen.

– Communication: the TS-agent writes into the environment the sym-
bol given by the transition that has been chosen before. A possible
error occurs during writing: the TS-agent writes something else,
close to the good value as defined by the matrix of environmental
symbols.

– Moving: the TS-agent moves as described in the chosen rule. A
possible error occurs during moving: the TS-agent moves in an-
other direction or pauses or stops depending on the distance of the
move states indicated by the matrix of move symbols.

At each time step, for one TS-agent, only one event of each type of event
can occur. However, several events of mutation, and diffusion can occur in the
environment during the same time because it is composed of several ’indepen-
dent’ volumes. Then, at each time step, a Poisson distribution law is used to
determine the number of diffusion events of each type (axial diffusion, lateral
diffusion and mutations).

Because errors can cause the TS-agent move out of the limits of the first
defined environment, the 1D environment can extend in the two directions ore
we can decide that its geometry is toric. When the environment extends, we
generate a blank space and we fill it with the default symbols that characterize
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the basic level of the environment (full of molecules or empty, or undefined...).
During the simulation time many diffusion events and mutations occurred in
the visible environment but many other should also have occurred in the unde-
fined regions that we create for the TS-agent to continue moving. Because of
this, when we extend the environment in a direction, we add a certain number
(typically 5 or 10) of spatial elements, we determine the number of each type
of diffusion events that should have occurred during all the simulation and we
generate them.

As illustrated by figure 3, where we applied a mutation rate λPoisson =
0.005 (it is a quite small rate) on the environment with a strong anisotropy
towards the smaller values (0 → 1 → ∗), some mutations occur and the tra-
jectory of the TS-agent is punctuated by accidents. At the end, the result is
not so different to the reference. Here, the resulting nest heap has the value 5
when the reference was 6. The execution of the simulations several thousand
or million times will give an average result and its standard deviation. With
these parameters, among 100000 simulations 90.2% had at least one error and
we obtained an average result of 5.43 ± 1.76. Other comparisons could be
made on other values such as the average Hamming distance between the final
environments and the reference (here 0.092 ± 0.128), the computational time
(number of steps) (here 220±129 compared to the 225 steps of the reference),
. . . This constitutes a vector result that allows us measuring the efficiency of the
considered trail system. This is a manner to quantify its robustness depending
on its parameters.

Figure 3: Trajectory of a 1D-ant in a changing environment. The simulations is
identical to that described in figure 2 except that a mutation rate λP oisson = 0.003
is applied on the environment with a strong anisotropy towards the smaller values
(0 → 1 → ∗). Only one mutation occurred as indicated by the arrow, and forced the
TS-agent to follow a different trajectory during a certain time.
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4 Increasing scales and degeneracy for robustness

For isolated TS-agents, in addition to the role of distance matrices that avoid
dramatic changes when a perturbation occurs, two features ensure the robust-
ness of TS-agent behaviors compared to a deterministic reference: the scale-
depending accuracy of the agent in the perception of its environment, and the
degeneracy of the values, internal states and rules in the system.

First, we mentioned that in the present model, TS-agents have a sight dis-
tance over the environment of only one element. Of course, we could decide
that our TS-agents could look at several elementary regions of the environment
at the same time and that the environment effectively perceived is an average
value or a maximum, or values superiors to a certain threshold. In our model,
one can consider the case of a TS-agent looking at 3 contiguous elements of
the environment centered on the central one. If its actions need at least one
value different to ’0’ or ’*’ among the set of values read, the agent will be very
robust in an environment where the trail signals degrade rapidly (conversions
of ’1’ into ’0’ and of ’0’ into ’*’). The same phenomenon would have dramatic
consequences on a TS-agent looking at only one element of space. The change
of only one ’1’ into a ’0’ in that environment would change completely its com-
putational trajectory. As evident they are, these remarks take sense when we
think at biological systems such as cells that often perceive different regions
of space at the same time due to a certain distribution of receptors on their sur-
face. They are macroscopic agents that sense microscopic signals (individual
molecules) with microscopic receptors. Microtubules on the contrary are mi-
croscopic agents that can only perceive very small regions which size are com-
parable to the dimensions of their sensing ends. In the first case (robust agent),
the agent can ignore the fluctuation that exist at a scale level largely small than
the agent itself; i.e. even if some of its receptors are not activated because of
the local absence of molecules, a cell moving in a environment concentrated in
activating molecules possess numerous other receptors that will perceive the
signal. The cell feels globally concentrations instead of individual molecules
and due to the integration of the whole concentration signal, the cell will adopt
a certain behavior. On the contrary, when the size of agents is very limited
compared to the size of the elements that compose the trail signal and to the
trail itself, the agent will be very sensible to microscopic fluctuation.

Multivaluation on the symbols or values that describe the environment (e.g.
∗, 0, 1, 2, ... 106 ...) can be used for representing environments in a more
macroscopic (and compact) form where elements of space can contain this
time more than one ’molecule’. The two environments compared in table 4
contain the same values but shown at two different zoom levels: a microscopi-
cal one at which the components are individualized (the environment contains
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0 or 1 molecule in each element of space), whereas the elements of space of the
more macroscopic one can contain up to 4 molecules. It can also be useful to
represent environments that can contains several equivalent kinds of molecules
that can be used by agents. An example is described in table 5. Of course, in

Microscopic view ... 0000 0011 1111 1011 1000 0000 ...
Macroscopic view ... 0 2 4 3 1 0 ...

Table 4: Scaling of the perception of environments. Both show the same but at
two different zoom levels. Each macroscopic element of space corresponds to
4 microscopic elements.

the latter, the TS-agent has to know what to do when values up to 4 are en-
countered. This implies a degeneracy of their rules. For example, rule 7 of
the model that corresponds for the agent to the action of picking a ’1’ and re-
placing it by a ’0’ – that means at the same time presence of pheromone and
absence of food –, could be rewritten for a 6-valued environment (*, 0, 1, 2, 3,
4) as follows:

Rule 7.1: c, 1 −→ p, 0, L
Rule 7.2: c, 2 −→ p, 1, L
Rule 7.3: c, 3 −→ p, 2, L
Rule 7.4: c, 4 −→ p, 3, L

Finally, another manner to introduce robustness is to multiply the number
of redundant internal states (i.e. that are related to the same function). Such
an increase of similar rules prevents the system from errors of decision or of
fluctuations of the internal state.

5 Populations of TS-agents

Until now, we focused on the microscopic behavior of individual TS-agents in
their environment. Of course TS-agents become interesting when they partic-
ipate to the collective behavior of a colony. TS-agents communicate between
each others via signals released to and get from their environment. In our
model, this functionality is present. Diffusion can occur between neighbor-
ing 1D-environments. In real systems indeed, exchange of information helps
maintaining a certain coherence of the whole system. This point is very well
described in the recent article of Lizier et al [42]. The question is to quantify
the information transfer as a dependence of the future states of the receiving
agent on the past states that were emitted by the source. As said in that article,
very logically, the predictive information transfer is the “average information
contained in the source about the next state of the destination that was not
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Environment λ Result Computational Hamming % modified
time (steps) distance environments

A or B 0.0 6.0 225 0.0 0
A 0.003 5.79±1.11 220±42 0.035±0.078 57
B 0.003 6.009±0.93 222±35 0.024±0.067 57
A 0.006 5.17±2.04 229±209 0.13±0.16 96
B 0.006 6.03±1.88 221±132 0.10±0.22 96
A 0.009 4.0±2.63 0.27±0.25 321±495 99.9
B 0.009 5.82±2.96 259±338 0.27±0.57 99.9

Table 5: Effect of redundancy in the environment. We defined two very similar
environments A and B. Environment A is as previously defined in the article. Envi-
ronment B contains 2 symbols (’1’ and ’—’) that are equivalent to symbol ’1’ and
is initiated with symbols ’—’ instead of the ’1’ in environment A. The distance ma-
trix for mutations is defined such as a mutation of ’—’ gives ’1’ that can give in its
turn ’0’ due to another mutation. The rules of the corresponding agent are adapted
so as the actions are equivalent when symbols ’1’ and ’—’ are encountered. Result
data are given as a vector of 3 values: the resulting heap, the computational time, the
Hamming distance between the resulting environment and its reference (λ = 0). They
where obtained for each value of λ and for each environment by realizing 105 inde-
pendent simulations. The average and standard deviations are given. We also indicate
the percentage of modified environments among the 105 ones. Standard deviations
are often large, but we still conserve well defined Gaussian distributions. Agent B is
clearly more robust in its environment compared to agent A in environment A even if
we only add a very low redundancy.

already contained in the destination’s past.” This can be easily measured in
our model of trail system by labeling with the ID label (unique identification
number) of each agent, the environmental symbols that they manipulate. For
example, a pheromone trail released by TS-agent N ˚ 1 will be marked as ID-1
while that released by TS-agent N ˚ 2 will be marked as ID-2. If TS-agent N ˚ 1
uses the pheromones marked ID-2 (or reciprocally) it will be considered as an
information transfer and scored. Then, from this individual measurements we
obtain an average measure called ’transfer entropy’ that quantifies “the statis-
tical coherence between systems evolving in time in a directional and dynamic
manner”.

In real systems, such measurements are not always so easy to realize. First,
it is difficult to know if for a given signal, a receiving agent has been able to
effectively increase its information. Concerning human trails, the pedestrians
can be asked on what they perceived and on how much they found useful the
informations (e.g. cairns) available in the environment. For other systems, in
particular small biological systems (cells, biological assemblies ...) fluores-
cent staining experiments could be realized in which groups of TS-agents (or
individual ones) would be stained with a fluorophore of a first type (e.g. in
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green) and would emit trail signals of the same type, while other TS-agents
would be marked by another sort of fluorophore (e.g. a red one). Matter ex-
changes could then be followed. As an example one could consider two actin
comets one stained in red and the other in green. Both are constituted by actin
monomers (red or green, depending on their origin). When disassembling, the
red actin comet releases red stained actin monomers that can be assembled an-
other time. If they are assembled into the green actin comet, an exchange of
matter occurred between the red and the green comets. This means that the
red monomers participated to the behavior of the green comet and modified
it. Realistic simulations of real systems are also a good way to evaluate such
transfer entropy by following matter exchanges (simulations shown in fig. 4
aims to follow the individual trajectory of tubulin-GDP proteins).

Figure 4: (left) On the left side, we show a simulation of microtubule disassembly,
where 15 microtubules are marked by different colors. The tubulin-GDP they release
is marked by the same color. This allows following the exchanges of matter between
microtubules. (right) A detail is shown on the right side of the figure: A transversal
projection of the 3D trajectory of 2 microtubules and 3 tubulin molecules is followed.
As tubulin is quasi-spheric, its diffusion is isotropic. On the contrary, microtubules are
rod like shaped and, depending on their size, their rotational and translational diffusion
along their 3 axes is not equivalent, that way resulting in an anisotropic diffusion.

The study of the communication between trail systems and of how its ef-
ficiency is crucial for the TS-agents to self-organize locally, needs a separate
paper. Nevertheless, we would like to mention two important points: the first
one concerns the robustness of the process and its relations with the level of
description of the environment, the second one the synchronism of agents.

l (A) As mentioned in the previous section, the same environment can be
described at different scale levels. At the most microscopical one, each
event of mutation or transport of matter appears clearly as a dramatic
change. If our TS-agents work at such microscopic levels, then they
will be very sensible to such changes. On the contrary, if their sensing
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surface is extended to a more macroscopic area, small changes have no
consequences because they are compensated by the presence of numer-
ous other ’normal’ events. Another manner to increase the robustness
of the individual behaviors of agents (and to represent large views of
the environment in a limited number of areas) is to use multivaluation
of the symbols that describe the environment and the degeneracy of the
transitions in whose these symbols will be involved. For example, one
can decide that our TS-agent covers a surface that can contain up to 1000
molecules and that our TS-agent has three different behaviors depending
on two thresholds: less than 10 molecules, more than 10 and less than
100 (a zone of transition), and more than 100 molecules. We will use
a representation of the environment in which each subvolume contains
up to 1000 values (or symbols) but our TS-agent will need only 3 rules
(and not 1000) to know what to do in such an environment. Before,
we considered only one TS-agent moving in its own 1D environment.
The addition of lateral diffusion in our model (between the neighboring
1D environments) can cause dramatic accidents in the behavior of the
agents, depending notably on that point.

l (B) The other criterion that will affect the local robustness of individ-
ual behaviors and the local information transfer is of temporal nature.
The synchronism of the functioning of the agents (and the correlation
of their activities), or on the contrary their asynchrony will affect con-
siderably the information transfer during all their lifetime. If the agents
are synchronous, like perfect robots, no information transfer will occur
until the machines come back on their own steps. By lateral diffusion,
the environment modified by TS-agent N ˚ 1 can diffuse to environment
N ˚ 2 (and reciprocally), but even if it was the case, TS-agent N ˚ 2 would
be yet at its next state and would move before sensing the change in en-
vironment N ˚ 2 (and reciprocally for TS-agent N ˚ 1). If they come back
on their own trajectory, they will be able, that time, to sense the changes
that occurred in their past. Such ’machines’ are not very interesting be-
cause they do not communicate easily (and locally in a spatio-temporal
sense). Moreover, agents in real systems never work synchronously,
even when we think they do. There is always one agent in the popu-
lations that is more advanced in its – computational – trajectory and in
its decisions than the others. One of our students tall us a very good
example, that happened to him, which illustrate exactly that point: he
was walking with a friend in our city of Grenoble. Both aimed to go to a
precise point in the town, but none of them knew where it was, and both
thought that the other knew. So they walked while talking to each other
of other things, each of them being sure that the other was going in the
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good direction. They walked during at least half and hour before ask-
ing them the question of yes or no the other knew. In a very theoretical
system, if these two agents were synchronous, this situation could never
occur. In reality, although they looked to walk together in a synchronous
manner, their trajectory was decided because at each time, the decision
to walk forward in a specific direction was made before by one of them,
and the other followed this one. In our model, the individual action steps
of the TS-agents are clocked (1 action per 1 time step), but for allowing
asynchrony, we introduce random waiting steps. In consequence, if a
population of individual was realizing the computation showed in figs.
2 & 3, with several environments linked together by a certain relation
of neighborhood, the most advanced TS-agent (in its own environment)
would modify its environment and this should affect the behavior of the
late ones, especially if they are not robust to such changes (see point A).

6 Programming a bioprocessor whom fine architecture is made
of trail systems self-organized structures

As in neural networks, ’programming’ means ’learning’ in such systems.
The conception of classical electronic-based computers took several dozen
years to physicists and engineers. They started from very simple circuits that
they tried to assemble logically so as to realized controlled calculii. They do
not based their conceptions on any theoretical concepts such as Turing ma-
chines (a very interesting and puzzling history of the birth of computing ma-
chines was given by Burks [43, 44]. After that, a kind of evolutionary process
occurred and is still active where engineers try new architectures and complex-
ifications that are then tested successively by them, by benchmarkers and by
the consumers (fig. 5 left). There are two types of selection processes: one is
purely functional and the other is related to the current preferences of a society
in terms of technology. Only the functional architectures persist, but among
them, only the most adapted to the needs and preferences of the consuming
society survive. Our electronic processors must be able to compute and they
must be able to be programmed easily and used by consumers or program-
mers. That coupling between all protagonists and the process of selection is
very long.

The same process is used in a much more shortest time for ’programming’
neural networks. The term ’programming’ is nevertheless not used for them
because indeed we don’t conceive that structuring a processor is a kind of
programming. However it is ! It needs each time a complete restructuring
of the network for obtaining a different processor. It is structural program-
ming. Another time, an evolutionary process (or genetic-type algorithm) is
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Figure 5: The process of creation of effective processing architectures is always
a feedback loop of engineering design or set-up of the parameters implied in self-
organization, then structuring of the architecture, and then test of the architecture for
a given computation against a reference. Three architectures are shown: a classical
electronic processor (left), a neural network (center) and a trail system (here an ant
nest photographed in French Guyana) (right)

used: changes of parameters or of structuring (connectivity) are applied to
the neural network. Given a set of inputs, it returns a certain output which is
compared to the known result (a reference called ’professor’). The parameters
are changed until its structure converges to a neuro-processor that effectively
computes well the inputs into the expected result. This can be done by con-
sidering a population of ’neural networks’ and by applying on them different
changes. Only the best ones are selected (fig. 5 center). As mentioned be-
fore, Pfaffmann and Conrad [5] also applied a similar learning process to their
model of self-organized microtubular processor.

Populations of self-organizing trail systems look very close to neural net-
works, except they are more labile. There are no reasons for not using a learn-
ing process on them so as to configure a trail system based processor (fig. 5
right). The only question concerns the nature of the signal injected in the bio-
processor: it could be electricity (interfaced by an array of electrodes as for
the neurons of Demarse’s animats [45]) or light. Concerning the learning pro-
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cess itself, three options are available: First one can imagine modifying the
parameters that describe the individual behaviors of the agents. In this case,
(i) a possibility is for the unconventional computer scientist to design an ar-
tificial trail system, for example by synthesizing self-assembling bricks with
amino acid sequences or DNA/RNA sequences. Several teams over the world
are now expert in realizing incredible structures made of DNA bricks [46, 47].
They are also able now to design quasi-programmable nanotubes [38, 48]. Al-
though their assembly is not yet energy dependent (it occurs at thermodynamic
equilibrium) the manner they assemble into tiled planes or tubes is decided by
the ’programmer’. His work is to designs specific DNA structures that only
can assemble in a certain manner. Once done, DNA nanotubes form. If they
could work far from thermodynamic equilibrium like microtubules or actin fil-
aments, such supramolecular assemblies could behave as TS-agents. (ii) The
second option is to use an existing trail system and to modify chemically or
physically the composition or structure of the TS-agents so as they behave dif-
ferently. For example, one could use drugs that interact with the cytoskeleton.
(iii) Finally, one could use directly an existing trail system and apply on it ex-
ternal factors that will bias their self-organization. For example, microtubules
or actin filaments are very sensible to magnetic or electric fields (these fields
create a torque that re-orient the fibers, depending on their size and on the
density of reticulation of the solution of fibers) [18, 20, 21]. This effect can be
strongly enhanced by using magnetic nanoparticle functionalized microtubules
[19]. Other external factors such as flows, temperature gradients, vibrations,
light (ex: UV light brakes the microtubules into several independent micro-
tubules) can also be used.

In any case, these modifications on TS-agents or bias of the self-organizing
conditions necessary to configure correctly the processing architecture has to
be determined before engineering our systems. They could be determined by
using models such as ours but in at least 2 dimensions for a better correspond-
ing with real systems. We propose as a next step in our work to work with a
set of self-organizing population of trail systems. On each population, genetic-
type modifications of the parameters (for example addition, deletion, mutations
of rules) will be applied and the population to self-organize until reaching a
morphological steady state. The morphology constitutes a processor through
which we send a – electric or luminous – signal (the set of inputs) via an inter-
face. The returned result (e.g. a figure of diffraction or a set of spots of guided
light if we use light) is compared to what we expect as a result. And the loop
to be applied again and again until it is well structured.
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7 Conclusion

The model presented in this paper represents a formalization of trail systems.
It constitutes a good tool for studying the robustness of these natural systems
not only for biological studies but also for biocomputing developments. In
the latter, trail systems are viewed as bio-wires in a soft architecture: the bio-
processor.

The development of a trail system based computer can be divided into 3
steps: first, we must understand how work the elements of the system. That
is what we did here. Secondly, one must study how a population of elements
behave i.e. self-organize in space and time. That study can be realized with
– macroscopic or microscopic – natural systems such as chemotactic cells,
actin comets and cytoskeleton fibers. Third, since we want to design a pro-
cessor that can effectively compute something expected, we have to work on
the control of its structuring and on the nature of the signals we will use as in-
puts and outputs, and to design artificial trail systems based on well-controlled
elements such as the programmable nanotubes designed by Rothemund et al
[38]. This approach has been successfully used for designing logical circuits
with Belouzov-Zhabotinskii reactions [22, 23]. In our case, researching well
organized processing architectures would correspond to applying a genetic al-
gorithm to a population of TS-agents in a given environment (2D or 3D) and to
select the architectures that provide a good correspondence between the output
and its inputs. The fitness in this context is the expected result. In other terms,
we are talking about learning in trail systems.

In the present article, we described several sources of errors. It is important
to note that if the changes that affect the environment are definitive, this is not
the case for the errors of the agent. They just temporary modify the determin-
istic choices and are applied by the program during the process. They do not
modify the rule, symbol, state and move tables. Neither they modify the dis-
tance matrices. Of course, in parallel to that, an evolutionary process (as in the
learning process evoked before) could be applied that would cause different
modifications of the deterministic rule, move ... tables and matrices associated
to the agents of a population. A heterogeneous population would form that
should compute differently their environment, sometimes more efficiently or
more robustly. The better agents would then be selected. In the same manner,
evolutionary-based algorithms need to be applied on the populations of homo-
geneous or heterogeneous agents that would constitute a bio-processor so as
they self-organize as expected into a given processing architecture [5]. When
related to real systems, a learning process applied on the TS-agent parameters
corresponds to designing artificial TS-agents. The second case (learning at the
level of the population) corresponds to obtaining the expected control of either
a natural trail system or an artificial one.
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Such researches are often viewed as ambitious and not really profitable in the
short term. Nevertheless, one can make analogies between information pro-
cessing at different scale and time levels in processors and the manner of bi-
ological systems function [1, 2]. One can estimate how much information is
processed by self-organized biological systems or by artificial systems inspired
from nature (such as neural networks, collective robots ...) [2, 5, 42]. As the
design of natural computers needs a good understanding of the manner their
components behave, this field of research is a good way for increasing our
knowledge on self-organizing biological systems, in particular to understand
what ensures the coherence of biological systems in their environment.
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Abstract

Modelling frameworks for biological networks are used to reason on the mod-
els and their properties. One of the main problems with such modelling frame-
works is to determine the dynamics of gene regulatory networks (GRN). Re-
cently, it has been observed inin vivo experiments and in genomic and tran-
scriptomic studies, that spatial information is useful to better understand both
the mechanisms and the dynamics of GRN. In this paper we propose to extend
the modelling framework of R. Thomas in order to introduce such spatial
information between genes, and we will show how these further informations
allow us to restrict the number of dynamics to consider.

Keywords: Genetic Regulatory Networks, Spatial Information, Multivalued
Dynamics, Discrete Mathematical Modelling.

1 Introduction

To understand Genetic Regulatory Networks (GRN), modelling frameworks
and simulation techniques are often useful since the complexity of the interac-
tions between constituents of the network (mainly genes andproteins) makes
intuitive reasoning difficult. Most of the time, parametersof the model have
to be inferred from a set of biological experiments. Formal methods, such
as model checking or symbolic execution ([1, 12]), have beenproved useful
to determine values of parameters leading to valid dynamicsof GRN, that is
dynamics consistent with biological properties expressedusing temporal logic.
Nevertheless, these techniques are in practice difficult tomanage because bio-
logical systems are either large, complex or incompletely known, resulting in a
huge number of parameters to consider. Hence, in order to reduce this number,
it seems relevant to embed within the model some biological knowledge such
as spatial relation between genes.

Recent experiments have shown that both in eukaryotes [6] and in bacteria
[2] gene transcription occurs in discrete foci where several RNA polymerases

1This work is performed within the European project GENNETEC(STREP 34952).
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(the transcribing elements) are co-localized. This suggests that genes also
tend to co-localize in space in order to optimize transcription rates. Such a
scenario is supported by genomic and transcriptomic analysis [7, 3]. These
have revealed that the genes which are regulated by a given transcription fac-
tor and the gene which codes for the transcription factor tend to be located
periodically along the DNA [7]. In this way, the genes can be easily co-
localized in the three-dimensional space according to a solenoidal structure
of the DNA/chromatin, even in the presence of several kinds of transcription
factors [8]. As a result, the effect of a transcription factor is enhanced due
to the spatial proximity of the targets. This phenomenon is reminiscent of
the local concentration effect that has been uncovered by M¨uller-Hill [13] a
decade ago. Local concentration simply means that the interaction between
molecules that are able to interact with each other is all themore efficient when
molecules are close to each other. This straightforward statement is crucial to
understand genome organization because genomes seem to have evolved in
order to optimize the spatial proximity of reactive groups [8, 13, 9].

In this article, we propose to include spatial information into GRN and
to study its effect upon the dynamics of the network. Our approach is based
on the discrete modelling of GRN that has been introduced by René Thomas
[14]. The spatial information concerns the gene proximity that results from a
specific organization of DNA/chromatin. This proximity is modelled through
two notions. The notion ofclusterexpresses the notion of co-regulation, that
is a set of spatially closed genes that are expressed at the same time due
to the expression of a single regulating gene (i.e. the presence of a single
transcription factor). The notion ofprivileged interactionbetween genes is an
ubiquitous concept in biology; for instance, specific interactions (e.g. between
a transcription factor and DNA) in contrast to non-specific interactions, or local
concentration phenomena are examples of privileged interactions. The use of
privileged interaction is mainly based on the idea that if two interactions lead
to contradictory effects, then the privileged interactionis preferred to the non
privileged one.

This paper is an extension to multivalued dynamics of our previous work
in [10] on Boolean dynamics. Main results of this work are recall, and we will
see that whereas it is possible, in a Boolean approach, to determine constraints
on the model of GRN to drastically reduce the number of dynamics to consider,
this is usually not possible with a multivalued approach.

The paper is structured as follows. Section 2 presents our model of GRN
including privileged interactions and clusters. In Section 3, we are interested
in the multivalued dynamics of classical GRN. The dynamics is governed
by a set of so called threshold and logical parameters, and wepresent how
the structure of the GRN determines the possible values of these parameters.
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Nevertheless, the possible dynamics still remain too numerous, and so, Section
4 presents how to use privileged interactions and clusters to reduce the number
of dynamics to consider. Section 5 presents a illustrative example, and some
numerical simulations. Finally, Section 6 gives some concluding remarks.

2 GRN with Privileged Interactions and Clusters (PCGRN)

Genetic Regulatory Networks are usually represented by an oriented graph,
called interaction graph, whose nodes abstract the proteins or genes which
play a role in the system and edges abstract the known interactions of the GRN.
The model of this article is based on Multivalued GRN, that isGRN where
gene have a finite set ofexpression levelswhich discretise their continuous
concentration in the cell (see Section 3). An interaction (a → b) can be either
an activation or an inhibition: in anactivation, the increase of the expression
level of a leads to an increase of the expression level ofb, the edge is labelled
by the sign+ anda is an activator ofb; in an inhibition, the increase ofa leads
to a decrease ofb, the edge is labelled by the sign− anda is an inhibitor ofb.
To this classic representation, we add the notion ofprivileged interactionsas a
subset of the interactions of the GRN. The notion ofclustersdefines groups of
genes which are simultaneously activated or inhibited by a same gene.

Definition 1 PCGRN: GRN with privileged interactions and clusters
A genetic regulatory network with privileged interactions and clusters(PC-
GRN) is a labelled directed graphG = (V,E, S, P,C) where

• (V,E, S) is an interaction graphthat is

– V is a finite set whose elements are calledvariables

– E ⊆ V × V is the set ofinteractions

– S : E → {+,−} associates to each interaction itssign (” +” for
activationand ”−” for inhibition)

• P ⊆ E is the set ofprivileged interactions

• C represents the clusters ofG, that is for each gene a partition of its
target genes: for eachi in V , C(i) = {C1

i , . . . , C
pi

i } where

– ∪pi

k=1C
k
i = {j|j ∈ V, (i, j) ∈ E}

– for all k, k′: k 6= k′ ⇒ Ck
i ∩ Ck′

i = ∅

For anyi ∈ V , V −(i) (resp.V +(i)) denotes the set of predecessors (resp.
successors) ofi, that is elements ofV which have an action oni (resp. on
which i has an action):V −(i) = {j|j ∈ V, (j, i) ∈ E}, V +(i) = {j|j ∈
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Figure 1: Example of interaction graph

V, (i, j) ∈ E}; P (i) denotes the set of privileged predecessors ofi: P (i) =
{j|j ∈ V −(i), (j, i) ∈ P}.

Definition 2 (Activators and inhibitors) Let(V,E, S, P,C) be a PCGRN, and
let i ∈ V be a gene. We denote byA(i) (resp.I(i)) the set ofactivators(resp.
inhibitors) of i: A(i) = {j|j ∈ V −(i), S(j, i) = +} and I(i) = {j|j ∈
V −(i), S(j, i) = −}.

In the following, a PCGRN will be represented as a graph wherenodes are
variables, arrows are interactions (dashed arrows for the privileged ones) and
signs label arrows (see Fig. 3).

Example 1 (Interaction Graph) Let us exemplify Definition 1 with the toy
interaction graph (that is without any information on privileged interactions
nor clusters) from Fig. 1 where a genei is inhibited byj1 andj2 and activated
byk, and activates genesj1 andk.

Section 3 will present the dynamics of classical interaction graphs (that is
PCGRN without privileged interactions nor clusters); the influence of privi-
leged interactions and clusters is presented in Section 4.

3 Multivalued Dynamics of Interaction Graphs

The dynamics of an interaction graphconsists in the evolution of each gene
expression level step by step. Several dynamics can be associated to an in-
teraction graph, and the main problem is to reduce the numberof dynamics
we have to consider [1]. In reality, the evolution of a given gene’s expression
level does not depend on all the genes of the interaction graph, but only on
the genes which have an action on the given gene, that is its predecessors.
More precisely, not all the predecessors of a given gene havean effect on its
expression level, but only the predecessorswith a sufficient expression level,
the interaction is then said to beeffective.

3.1 Threshold Function and Multivalued Dynamic States

When a genei acts on several targets, onj andk for example, it is often known
that the level ofi mandatory for an action onj to be is higher than the level
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necessary for the action ofi on k. This knowledge is modelled through the
notion of thresholds.

Definition 3 (Thresholds function) LetG = (V,E, S, P,C) be a PCGRN. A
threshold functionTG : E → N

∗ associates to each interaction of a GRN its
thresholdthresholds parameters. TG is such that such that

∀(i, j) ∈ E,T (i, j) 6= 1 ⇔ ∃k ∈ E : T (i, k) = T (i, j) − 1

In other word, if an interaction outgoing from a variablei is labelled by a
thresholdα greater than 2, then there exist interactions outgoing fromi labelled
by 1, . . . , α − 1. This well represents the qualitative nature of thresholds
in interaction graph, and an interaction(j, i) will be effective if and only if
the expression level ofj is above the threshold of(j, i). Obviously, several
threshold parameters can be associated to a single interaction graph.

Example 2 (Threshold Functions) In Fig. 1, becausej1, j2 andk have only
one successor, then the threshold of their unique outgoing interaction is1.
Becausei has two successors, there are three possible threshold functions:
T 1 : (i, k) 7→ 1, (i, j2) 7→ 2; T 2 : (i, k) 7→ 2, (i, j2) 7→ 1; and T 3 : (i, k) 7→
1, (i, j2) 7→ 1.

In multivalued dynamics, genes can attain several levels, calledexpression
levelswhich depend in both the interaction graph, and the associated threshold
functions. Indeed, a gene can take as many values as the greatest outgoing
threshold. The knowledge of the expression levels of all thegenes define a
multivalued dynamic state.

Definition 4 (Multivalued dynamic states) LetG = (V,E, S, P,C) be a PC-
GRN, and letTG be an associated threshold function. We denote for alli ∈ V :
bi = max{TG(i, j)|j ∈ V +(i)}). The set of possible level of expression for a
genei is Xi(G,TG) = {0, 1, ..., bi}.

We denote2 by X(G,TG) the set of multivalued dynamic states ofG, asso-
ciated toTG: X(G,TG) =

∏
i∈V Xi(G,TG).

For x = (x1, ..., x|V |) ∈ X(G,TG), xi is theexpression levelof genei

in x.

Example 3 (Multivalued dynamic states) In Fig. 1, becausej1, j2 and k

have only one successor, then they have only two expression levels. Becausei
has two successors, there are three possible threshold parametersT 1, T 2 and
T 3 (see example 2) leading to either two expression levels fori (with T 3) or
three expression levels (withT 1 or T 2).

2Let us recall that|V | denotes the number of elements in the setV .
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3.2 Effective predecessors and Logical Parameters

Thedynamics of an interaction graphconsists in the evolution of each gene’s
expression level step by step. This evolution for a given gene does not depend
on all the genes of the PGRN, but only on the genes which have anaction on
the given gene, that is itseffective predecessors.

Definition 5 (Effective predecessors)LetG = (V,E, S, P,C) be a PCGRN,
and letTG be an associated threshold function. Leti ∈ V be a gene and
let x ∈ X(G,TG) be a dynamic state. We denote byA∗(i, x) (resp. I∗(i, x),
w∗(i, x)) the set ofeffective activators(resp. effective inhibitors, effective
predecessors) of i in the statex:

A∗(i, x) = {j|j ∈ V −(i), S(j, i) = +, xj ≥ TG(j, i)}

I∗(i, x) = {j|j ∈ V −(i), S(j, i) = −, xj ≥ TG(j, i)}

w∗(i, x) = A∗(i, x) ∪ I∗(i, x)

Several dynamics can be associated to a given PGRN. These dynamics are
described by a set oflogical parameterswhich associates the future expression
level of a given gene according to its effective predecessors.

Definition 6 (Logical parameters) Let G = (V,E, S, P,C) be a PCGRN,
and let TG be an associated threshold function. Fori ∈ V , we denote by
K

TG

i : 2V −(i) → {0, . . . , bi} (with bi = max{TG(i, j)|j ∈ V +(i)}) the set of
logical parametersassociated toi, consideringTG.

For anyi in V, if the system is in the dynamic statex ∈ X(G,TG), theni’s
next expression level is given byK

TG

i (w∗(i, x)).

Example 4 (Logical parameters) In Fig. 1, genei has three predecessors.
Thus, there is8 logical parametersKi to consider for anyT in T 1, T 2 or
T 3: KT

i (∅), KT
i ({j1}), KT

i ({j2}), KT
i ({k}), KT

i ({j1, j2}), KT
i ({j1, k}),

KT
i ({j2, k}) andKT

i ({j1, j2, k}). We also have to considerKT
j2

(∅), KT
j2

({i}),
KT

k (∅) andKT
k ({i}). Sincej1 has no predecessor, it remains stable anytime.

Let us now consider a dynamic state such thatxi = 1, xj1 = 0, xj2 = 1
and xk = 1. Thus, because for any threshold parametersT in T 1, T 2 or
T 3 we haveT (j1, i) = T (j2, i) = T (k, i) = 1, we can state thati evolves
towardKT

i ({j2, k}). The evolution ofj2 andk depends on the thresholds of
(i, j2) and(i, k). For example, if we consider the threshold functionT 1, then,
becauseT 1(i, j2) = 2 andT 1(i, k) = 1, j2’s next expression level is given by
KT 1

j2
(∅) andk’s next expression level is given byKT 1

i ({i}).
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Determining the dynamics of an interaction graph consists in the selec-
tion of possible threshold parameters, and then the attribution of values to
the different logical parameters. The number of the possible attributions is
huge: given a genei with at least one predecessor, there are2|V

−(i)| logical
parametersKi, and each parameter can take at least two values. Thus, we

have to consider
∏

i∈V 22|V
−(i)|

possible attributions. For example, just for
the interaction graph from Fig. 1, there are three possible set of threshold
parameters, one leading to223

× 221
× 221

= 4096 attributions for logical
parameters (ifi has two expressions levels), the two others leading to323

×
221

× 221
= 26244 attribution (for i with three predecessors). Nevertheless,

the structure of the interaction graph restricts the possible values of logical
parameters.

3.3 Valid Logical Parameters

The values of logical parameters of an interaction graph must satisfy some
constraints, linked to the graph structure and to the type ofinteraction. Logical
parameters respecting the following constraints are said to bevalid.

TheDefinition constraintis based on the definition of activation and inhi-
bition. If a genej which activates a genei becomes effective, then we cannot
be sure thati becomes itself effective (it may be inhibited by other genes), but
the expression level ofi cannot decrease.

Constraint 1 (Definition) LetG = (V,E, S, P,C) be a PGRN, and letTG be
an associated set of threshold function. Leti, j in V be two genes such that
j ∈ V −(i). If S(j, i) = + then∀ω ⊆ V −(i),KTG

i (ω) ≤ K
TG

i (ω ∪ {j}). If
S(j, i) = − then∀ω ⊆ V −(i),KTG

i (ω) ≥ K
TG

i (ω ∪ {j}).

TheObservation constraintexpresses how we identify that a predecessor
is an activator or an inhibitor. Ifj is an activator ofi, then it exists at least
one dynamic state where the effectiveness ofj leads to an increase of the
expression level ofi. In other word, at least one of the previous inequalities is
strict.

Constraint 2 (Observation) LetG = (V,E, S, P,C) be a PGRN, and letTG

be an associated threshold function. Leti, j in V be two genes such that
j ∈ V −(i). If S(j, i) = + then∃ω ⊆ V −(i),KTG

i (ω) < K
TG

i (ω ∪ {j}). If
S(j, i) = − then∃ω ⊆ V −(i),KTG

i (ω) > K
TG

i (ω ∪ {j}).

Finally, theMaximum constraintexpresses that in a dynamic state where
all the activators of a gene are effective and simultaneously none of the in-
hibitors is effective, then the gene’s expression level is maximum. Conversely,
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KT
i ({k}) = 1

KT
i ({j1, k}) KT

i (∅) KT
i ({j2, k})

KT
i ({j1}) KT

i ({j1, j2, k}) KT
i ({j2})

KT
i ({j1, j2}) = 0

Figure 2: Relation among logical parameters of the interaction graph from
Fig. 1 for anyT in T 1, T 2 or T 3.

if none of the activators is effective, and all inhibitors are, then the logical
parameter is minimum, that is equal to0.

Constraint 3 (Maximum) Let G = (V,E, S, P,C) be a PGRN, and letTG

be an associated threshold function. Leti in V be a gene. By denotingbi =
max{TG(i, j)|(i, j) ∈ E}, we have:KTG

i (A(i)) = bi, andK
TG

i (I(i)) = 0.

Example 5 (Valid parameters) Let us consider the interaction graph from
Fig. 1. The considerations are done for any threshold function T in T 1, T 2 or
T 3. The Maximum constraint imposes thatKT

i ({k}) = 1 andKT
i ({j1, j2}) =

0. Other relations between parameters are resumed in Fig. 2, where an arrow
from a nodeK to a nodeK ′ meansK ≥ K ′ (Definition constraint), and this
inequality is strict (Observation constraint) for at leastone arrow of each type
(plain, dashed or doted arrows). All three constraints taking into account,
there are only9 valid sets of parameters.

4 Toward a reduction of valid dynamics

PCGRN include two new notions within the definition of interaction graph.
Clusters help us to reduce the number of threshold functionsto consider where-
as privileged interactions reduce the number of valid logical parameters.

4.1 Clusters: Reduce the Number of Threshold Functions

The notion of clusters expresses the co-regulation of a set of genes, that is a
set of spatially closed genes that are expressed at the same time due to the ex-
pression of a single regulating gene (i.e. the presence of a single transcription
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factor). Thus by definition, clusters allow us to reduce the set of threshold
function to consider. Indeed, if two genesj andk are influenced by a genei,
and belonged to a same cluster ofi, then the two interactions(i, j) and(i, k)
have the same threshold.

Constraint 4 (Clusters and thresholds) Let G = (V,E, S, P,C) be a PC-
GRN. Then the threshold functionsTG to consider are such that: for alli in
V , for all k, k′ in V +(i)

∃p ∈ N, k ∈ C
p
i , k′ ∈ C

p
i ⇒ TG(i, k) = TG(i, k′)

Example 6 (Clusters and thresholds)Let us consider the interaction graph
from Fig. 1. If j2 and k belong to a same cluster ofi, then there is only
one threshold function to consider:T 3 such thatT 3(i, j2) = T 3(i, k) = 1.
Otherwise, the three possible threshold functions must be considered.

4.2 Conflicts and Dilemma

Despite the above constraints, valid dynamics of PGRN stillremain too nu-
merous. The different dynamics exist due to some dynamics states where the
three constraints do not allow us to determine unique valuesfor logical param-
eters:Conflictsoccur when a gene is simultaneously activated and inhibited,
Dilemmaoccur when all the activators (resp. inhibitors) of a gene are not
effective.

Definition 7 (Conflicts and dilemma) LetG = (V,E, S, P,C) be a PCGRN,
and letTG be an associated threshold function. Leti ∈ V be a gene and let
x ∈ X(G,TG) be a dynamic state.

• x is asituation of conflictfor genei iff A∗(i, x) 6= ∅ andI∗(i, x) 6= ∅

• x is a situation of dilemmafor genei iff (A∗(i, x) 6= ∅ andA∗(i, x) 6=
A(i)) or (I∗(i, x) 6= ∅ andI∗(i, x) 6= I(i))

In the following, we will focus on the determination of logical parameters.
Thus, conflicts and dilemma will refer to parameters, that isKi(w

∗(i, x)) is
a conflict (resp. a dilemma) if and only ifx is a situation of conflict (resp.
dilemma) for genei. In other words, ifw∗(i, x) = ω, thenKi(ω) is a conflict
iff ω ∩ A(i) 6= ∅ andω ∩ I(i) 6= ∅; Ki(ω) is a dilemma iffA(i) 6⊆ ω 6⊆ I(i)
or I(i) 6⊆ ω 6⊆ A(i).

Note that, in this model,Ki(∅) is neither a conflict nor a dilemma, but
corresponds to the basal situation, where a genei is not activated or inhibited.
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j i k
- +

Conflict forKi({j, k})

j i k
- +

Inhibition is stronger than activation
Ki({j, k}) = 0

j i k
- +

Activation is stronger than inhibition
Ki({j, k}) = 1

j i k
- +

The conflict cannot be solved

k’ i k
+ +

Dilemma forKi({k}) andKi({k′})

k’ i k
+ +

Ki({k
′}) = 1

Dilemma forKi({k})

Figure 3: Solving conflicts and dilemma with privileged interactions

Example 7 (Conflicts and dilemma) Let us consider the8 possible dynamic
states and the associated logical parameters for genei for the interaction
graph from fig. 1: Ki({j1}) and Ki({j2}) are dilemma;Ki({j1, j2, k}) is
a conflict;Ki({j1, k}), Ki({j2, k}) are both conflicts and dilemma.Ki({k})
andKi({j1, j2}) are neither conflict nor dilemma: the former correspond to a
situation wherei is fully activated and is not inhibited, the latter corresponds
to the reverse situation.

4.3 Privileged Interactions: Reduce values of Logical Para meters

By definition, privileged interactions are such that their force is higher than the
force of non privileged interactions. Figure 3 illustrateshow to solve conflicts
and dilemma using the privileged interactions: for conflicts, if two interactions
occur simultaneously, then the privileged one is preferred; a dilemma is solved
if one of the present gene is a privileged one.

This idea is captured through two constraints on logical parameters. The
first constraint, calledDirect influenceindicates that if none of privileged acti-
vators (resp. inhibitors) is effective, and some privileged inhibitors (resp. ac-
tivators) of the considered gene are effective, then the expression level cannot
be maximum (resp. minimum).

Constraint 5 (Direct influence) Let G = (V,E, S, P,C) be a PCGRN, and
let TG be an associated threshold function. Leti ∈ V be a gene andx ∈
X(G,TG) be a dynamic state. By denotingbi = max{TG(i, j)|(i, j) ∈ E},
we have:

• if A∗(i, x)∩P (i) 6= ∅ andI∗(i, x)∩P (i) = ∅ thenK
TG

i (w∗(i, x)) > 0

• if I∗(i, x)∩P (i) 6= ∅ andA∗(i, x)∩P (i) = ∅ thenK
TG

i (w∗(i, x)) < bi
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The second constraint, calledRelative influence, states that expression
levels of non privileged predecessors is not important compared to the presence
or absence of privileged ones. In other words, the value of a logical parameter
for a set of effective genes, whose at least one is a privileged predecessor,
remains the same whatever non privileged predecessors becoming effective.

Constraint 6 (Relative influence) Let G = (V,E, S, P,C) be a PCGRN,
and letTG be an associated threshold function. Leti ∈ V be a gene and let
ω ⊆ V −(i) be a set of predecessors ofi such thatω∩P (i) 6= ∅. Letj ∈ V −(i)
be a gene such thatj 6∈ P (i). By denotingbi = max{TG(i, j)|(i, j) ∈ E},
we have:

• if K
TG

i (ω) < bi thenK
TG

i (ω ∪ {j}) < bi

• if K
TG

i (ω) > 0 thenK
TG

i (ω ∪ {j}) > 0

Example 8 (Influence of privileged interactions) Let us suppose thatj1 is
the only privileged predecessor in Fig. 1. Then, as soon asj1 is ineffective,
conflict and dilemma appears between other genes, but whenj1 is effective,
they are solved. The9 valid sets of parameters are reduced to2. If we now
suppose thatk is the only privileged predecessor, there is no conflict, butsome
dilemma remains, which reduced the number of dynamics to consider to2. If
j1 andk are privileged predecessors, there are still conflict and dilemma, but
the number of dynamics to consider is to reduced to2. Finally, if we suppose
that bothj1 and j2 are privileged predecessors, then there is neither conflict
nor dilemma, and the dynamics is unique.

In [10], we study the case of Boolean dynamics, that is interaction graphs
where genes have only two levels of expression. In that case,constraints on di-
rect or relative influences are far more restrictive than in multivalued approach.
Indeed, for the direct influence, the statementKi(w

∗(i, x)) > 0 is equivalent
to Ki(w

∗(i, x)) = 1 (andKi(w
∗(i, x)) < bi equivalent toKi(w

∗(i, x)) = 0);
and the formulation of relative influence becomesKi(ω) = Ki(ω∪{j}). But,
even if these constraints are not constructive in a multivalued approach, they
reduce the number of dynamics to consider, and can be added toother systems
of constraints, such as the ones we developed in [11] to search GRN with a
dynamics verifying a given temporal property.

4.4 Unique Boolean Dynamics

We present here conditions to obtain, given a PCGRN, a uniqueset of param-
eters leading to a unique dynamics. We reduce the considereddynamics to
Boolean dynamics and recall the result we present in [10]. Such a situation
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is obtain when every threshold is equal to1, which correspond to situations
where any gene has only one cluster among its target. For thatreason, we do
not precise the chosen threshold function in this section. The theoretical results
for any threshold function are more difficult to obtain, since we cannot control
values of parameters with the constraints on direct or relative influence.

Obviously, if some genes have no predecessor, we cannot determine their
expression levels, which in fact do not evolve along the time. A necessary and
sufficient condition to haveno conflictis that the set of privileged predecessors
is either equal to activators or inhibitors.

Theorem 1 (No conflict) LetG = (V,E, S, P,C) be a Boolean PCGRN. The
conflict situations ofG can be solved iff for alli ∈ V , P (i) = A(i) or P (i) =
I(i)

Proof 1 Sufficient. Let x be a situation of conflict for genei: A∗(i, x) 6= ∅
and I∗(i, x) 6= ∅. Let us suppose thatP (i) = A(i) (the proof is similar for
P (i) = I(i)). Then we haveI∗(i, x) ∩ P (i) = ∅ and A∗(i, x) ∩ P (i) =
A∗(i, x). Thus, due to the constraint of direct influence,Ki(w

∗(i, x)) = 1 and
the conflict is solved.

Necessary.Let us suppose that the condition is not verified for a given
genei, that isP (i) 6= A(i) andP (i) 6= I(i). P (i) 6= A(i) iff either it exists
k ∈ A(i) \ P (i) or it existsj ∈ I(i) ∩ P (i); P (i) 6= I(i) iff either it exists
j′ ∈ I(i) \ P (i) or it existsk′ ∈ A(i) ∩ P (i). If it existsk ∈ A(i) \ P (i) and
it existsj′ ∈ I(i) \ P (i), then the situationx where the only effective genes
are k andj′ is a situation of conflict. If it existsk ∈ A(i) \ P (i) and it exists
k′ ∈ A(i) ∩ P (i), then two cases must be considered: ifI(i) ∩ P (i) = ∅
then, withj′′ ∈ I(i), the situationx where the only effective genes arek and
j′′ is a situation of conflict; ifI(i) ∩ P (i) 6= ∅ then, withj′′ ∈ I(i) ∩ P (i),
the situationx where the only effective genes arek′ and j′′ is a situation of
conflict.

Nevertheless, if all privileged predecessors are ineffective, then a situation
of dilemma may occur. Dilemmas occur when two genes having the same
action (either activation or inhibition) are not effectivesimultaneously. Thus,
a necessary and sufficient condition to haveno dilemmais that either there is
only one gene for a given action, or each predecessor having this type of action
is a privileged predecessor of the target.

Theorem 2 (No dilemma) Let G = (V,E, S, P,C) be a Boolean PCGRN.
The dilemma situations ofG can be solved iff for alli ∈ V , (A(i) ⊆ P (i) or
|A(i)| = 1) and (I(i) ⊆ P (i) or |I(i)| = 1).
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Figure 4: Interaction graph for the mucus production system inP. aeruginosa

Proof 2 Sufficient.Let us consider the case of activation (the proof is similar
for inhibition). Obviously, if|A(i)| = 1, then there is no dilemma. IfA(i) ⊆
P (i), then: for allω ⊆ A(i), if ω 6= ∅ thenKi(w) = 1 due to the constraint
of direct influence; for allωa ⊆ A(i), for all ωi ⊆ I(i) \ P (i), if ωa 6=
∅ then Ki(ωa ∪ ωi) = 1, due to the constraint of relative influence; the
remaining cases correspond to situations of conflict where both activators and
predecessors are privileged predecessors ofi.

Necessary.Let us suppose that the condition is not verified. Let us suppose
we have|A(i)| > 1 andA(i) 6⊆ P (i) (the proof is similar for the inhibition).
Then it existsa ∈ A(i) \ P (i), and the situationx wherea is the only effective
predecessor ofi is a situation of dilemma.

Theorem 3 (No conflict nor dilemma) Conflict and dilemma situations of a
Boolean PCGRN(V,E, S, P,C) can be solved iff for alli ∈ V , (A(i) = P (i)
and |I(i)| = 1) or (|A(i)| = 1 andI(i) = P (i))

Proof 3 The theorem is a direct consequence of theorems 1 and 2.

Under the conditions of this theorem, only one dynamics is consistent with
all constraints. Obviously, these conditions are difficultto state in practice.
Section 5 will nevertheless illustrate that in any case, theconsideration of
privileged interactions allows us to reduce the set of consistent dynamics.

5 Influence of Clusters and Privileged Interactions on Dynam ics

5.1 From a Biological Case Study

Pseudomonas aeruginosaare bacteria that secrete mucus (alginate) in lungs
affected by cystic fibrosis, but not in common environment. As this mucus
increases respiratory defficiency, this phenomenon is a major cause of mortal-
ity. Details of the regulatory network associated with the mucus production by
Pseudomas aeruginosaare described by Govan and Deretic [4] but a simplified
genetic regulatory network has been proposed by Guespin andKaufman [5],
see Fig.4.

It has been observed that mucoidP. aeruginosacan continue to produce
mucus isolated from infected lungs. It is commonly thought that the mucoid
state ofP. aeruginosais due to a mutation which cancels the inhibition of gene
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x. An alternative hypothesis has been made: this mucoid statecan occur by
reason of an epigenetic modification,i.e. without mutation [5]. The models
compatible with this hypothesis are constructed in [1].

5.1.1 Boolean Dynamics

The logical parameters to consider areKy(∅) andKy({x}) for the geney and
Kx(∅), Kx({x}), Kx({y}) andKx({x, y}) for genex, which leads without
further consideration, to22×24 = 64 possible dynamics. Obviously, this num-
ber is decreased considering the constraints previously presented.Ky(∅) = 0
andKy({x}) = 1 due to the observation rule. The maximum rule leads to
Kx({x}) = 1 andKx({y}) = 0, and then the observation rule leads to two
possible dynamics: either (Kx(∅) = 1 andKx({x, y}) = 1) or (Kx(∅) = 0
andKx({x, y}) = 0).

The two possible dynamics are due to the conflict betweenx andy, and
then the knowledge of privileged interactions among the activation of x by
itself or the inhibition ofx by y would lead to the determination of a unique dy-
namics. If both the interactions are privileged ones (or conversely are not priv-
ileged ones) then the two dynamics remain valid. If the inhibition is privileged
and not the activation, thenKx(∅) = 0 andKx({x, y}) = 0. If the activation
is privileged and not the inhibition, thenKx(∅) = 1 andKx({x, y}) = 1.

5.1.2 Multivalued Dynamics

Given thatx has two predecessors, andy only one, there are three threshold
functions to consider. Obviously, for each oneT (y, x) = 1. The first threshold
function is such thatT 1(x, y) = T 1(x, x) = 1, and may seems similar to the
Boolean situation, but in fact because the constraints on direct and relative
influence are not constructive in multivalued approach, they do not allow us to
choose between the different model. The two others are such thatT 2(x, y) =
2, T 2(x, x) = 1 and T 3(x, y) = 1, T 3(x, x) = 2. The known logical
parameters are given in the following table:

x y KT 2

x KT 2

y KT 3

x KT 3

y

0 0 KT 2

x (∅) 0 KT 2

x (∅) 0
0 1 0 0 0 0
1 0 2 0 KT 2

x (∅) 1
1 1 KT 2

x ({x, y}) 0 0 1
2 0 2 1 2 1
2 1 KT 2

x ({x, y}) 1 KT 2

x ({x, y}) 1

Because of the observation constraint, we cannot have (KT
x ({x, y}) = 2

andKT 2

x (∅) = 0) or (KT
x ({x, y}) = 0 andKT 2

x (∅) = 2), which leads to seven
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valid dynamics.

5.2 From Artificial PGRN

In order to estimate the reduction in number of models induced by the intro-
duction of privileged interactions, we have randomly generated PGRN, that is
PCGRN without any cluster information. The generation is parameterized by
three values:n the number of genes,p the number of predecessors of a gene
andr a ratio to determine which interactions are privileged. We first generate
n genes; for each gene we then randomly selectp predecessors among the
n genes, each one being a privileged predecessor with a probability r. For
each gene, we finally randomly select a maximum threshold (that is a random
number between1 and its number of successors), and define for each outgoing
interaction its threshold between1 and this maximum threshold, verifying that
every value between1 and the maximum threshold is selected at least one time.

Fig. 5 presents some results on artificial PCGRN composed ofn = 10, 25,
50 and100 genes. We give one table by hypothesis on the considered number
of predecessors: the first two tables correspond to situations where each gene
has exactlyp = 2 or 3 predecessors, and the last table to a situation where each
gene has a random number of predecessors between1 and3. We chose these
rather small values for the number of predecessors per gene to fit a realistic
ratio between number of genes and number of interactions.

For each PCGRN we evaluate the number of dynamics without anycon-
straint (row named ”Total” in each table). We then compute the number of
dynamics when all the constraints (definition, observation, maximum, direct
and relative influence) are applied, for several ratios of privileged interactions:
when there is no privileged interaction (row ”0”), when one interaction out of
ten is privileged (row ”1/10”), one out of five (row ”1/5”), one out of two (row
”1/2”) and when all interactions are privileged ones (row ”1”). Let us note
that results between row ”1” and row ”0” may be largely different, since when
all predecessors are privileged (row ”1”), then the effectiveness of only one of
them allows us to solve dilemma unsolved in row ”0”. All the values in the
different tables given in Fig. 5 are the result of an arithmetic mean over100
tests. The column ”100 genes” for the hypothesis ”3 predecessors per gene” is
left empty, due to the excessive required computation time.

Obviously, the number of dynamics we have to deal with is huge(at least
1016, see row ”Total”), When considering the constraints of definition, obser-
vation and maximum, the number of dynamics is already significantly reduced
(see row ”0” where none of the interactions is privileged). With the constraints
induced by the introduction of privileged interactions (direct and relative influ-
ence), the number of dynamics still decreases and the best results are obtained
when half of interactions are privileged ones (row ”1/2”). Nevertheless, let
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Privileged Number of genesn
ratio r 10 25 50 100

0 106 1015 1031 1060

1/10 105 1014 1028 1053

1/5 105 1013 1025 1050

1/2 104 1010 1021 1040

1 104 1011 .1022 1042

Total 1016 1042 1082 10162

Each gene hasp = 2 predecessors

Privileged Number of genesn
ratio r 10 25 50 100

0 1021 1051 1098 −
1/10 1019 1048 1082 −
1/5 1019 1042 1070 −
1/2 1015 1038 1048 −
1 1017 1044 .1065 −

Total 1041 10100 10182 −

Each gene hasp = 3 predecessors

Privileged Number of genesn
ratio r 10 25 50 100

0 1011 1030 1048 1082

1/10 109 1022 1039 1074

1/5 109 1022 1037 1067

1/2 108 1018 1026 1057

1 1010 1019 1032 1066

Total 1027 1063 10110 10211

Each gene has between1 and3 predecessors

Figure 5: Number of Dynamics for Artificial PCGRN

us point out that the improvement is clearly observed even with small infor-
mation. For example, when only one interaction out of ten is privileged (row
”1/10”). we can observe that in the third table, the number ofdynamics is
divided by100 for a ten genes network, by108 for 25 genes, and by108 for
100 genes.

These few simulations illustrate that as soon as spatial information is known,
the set of all possible dynamics is really restricted. To go further in this
restriction, one can express temporal properties to characterise some knowl-
edge about the behaviour of the GRN. Formal techniques, mostof them based
on model checking [1], have been applied to select valid dynamics, that is
dynamics consistent with biological experiments expressed by temporal prop-
erties. The problem is that these formal techniques rapidlybecome intractable
because dynamics associated to the GRN are most of the time very numerous.
Thus, from a general point of view, the set of PCGRN dynamics is all the more
reduced than all biological knowledge, including spatial information, is taken
into account.

136 MODELLING COMPLEX BIOLOGICAL SYSTEMS



9/4/2009- page #137

6 Concluding Remarks

In this article we have presented a simple way to include spatial information
within the René Thomas’ framework of GRN. This supplementary information
is described as a property of interactions: an interaction is privileged when the
source and target genes are known to be spatially close. In the framework of
Boolean dynamics, values of logical parameters are weakly constrained, lead-
ing to situations of conflicts or dilemmas where several dynamics are possible.
With the notion of privileged interactions, we have determined conditions to
solve some of these situations.

The spatial oriented framework we have defined is based on René Tho-
mas’ Boolean dynamics and presents the two following advantages. Firstly,
since the dynamics for our spatial framework are chosen among classical René
Thomas’ Boolean dynamics associated to the underlying GRN without privi-
leged interaction, then our dynamics are clearly included in the usual dynamics
of GRN. Secondly, since spatial information allows us to solve some conflicts
and dilemmas, and thus to determine some logical parameters, the number of
dynamics is in practice considerably reduced.

In the goal of validating our approach, we are facing to the fact that,
although spatial information seams to be central in order toapprehend the com-
plexity of biological networks, experimental data are rare. Indeed, available
data mainly concern large GRN, which are for the moment hardly attainable
with our approach due to the high number of parameters to consider. Never-
theless our approach seems particularly adapted, since thefirst results appear
even with few information on spatial relation.
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Abstract

When modelling gene regulatory networks, the cornerstone of the modelling
process is the search of parameter values which are consistent with the known
properties of the system. These parameters drive the dynamics of the system.
In this article, we give a formal definition of a slight extension of the R.
Thomas’ modelling framework, with explicit information about cooperative,
concurrent or more complex molecular interactions. It considerably decreases
the number of parameters and determining parameter values becomes less time
consuming, making possible the study of larger systems.

1 Introduction

To study complex biological systems, formal modelling is often mandatory
since the complexity of the interleaved interactions between constituents makes
intuitive reasoning error prone. Numerous mathematical modelling frame-
works have been proposed to model gene regulatory networks,see for example
[7, 13, 20, 8]. Common approaches are quantitative, based ondifferential or
stochastic equations, providing numerical simulations ofthe system. Nerver-
theless actual predictions often remain only qualitative because the parameter
values of these systems are not precisely known. Several other modelling
frameworks are based on a qualitative view, see for example boolean networks
and their generalizations [16, 19], Petri nets [4, 6], hybrid modellings [12, 1],
and stochasticπ-calculus [5]. Each modelling framework highlights some
views of models and allows one to detail or to abstract different biological
aspects.

We focus here on Thomas’ modelling, in which the gene regulatory system
is represented by an interaction graph and a set of parameters. The interaction
graph is composed, on the one hand, of nodes which abstract genes and their
proteins, and on the other hand, of edges which represent theinteractions
between the genes. The values assigned to the parameters permit one to deduce
the dynamics of the system from the interaction graph. Even in a qualitative
perspective, the lack of reliable data about the system leads to a typical diffi-
culty of the modelling approach : How to select the parametervalues of the
model?
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For determining values of parameters, we proposed in [3] to test the set
of all possible parameterizations against temporal properties. It is finite in
the case of Thomas’ modelling. This approach can be computeraided [3]
using formal temporal logics and systematic model checking. Even if the set
of possible parameterizations is finite, it exponentially grows with the size of
the interaction graph. Several theorems established in theThomas’ framework
considerably reduce the number of generated parameter sets, nevertheless, an
entire exploration is not conceivable for large networks.

In order to reduce the time required by this exploration step, it becomes
crucial to introduce in the modelling framework more biological information
(when available). In this chapter, we propose to take into account informa-
tion about how constituents of the system act on their targets. For example
(Figure 1), if two genes act positively on a common targetvia the formation
of a complex (e.g. the transcription factor of the common target contains the
complex), then it is obvious that the common target has in fact a unique prede-
cessor (the complex instead of two genes separately) and only two possibilities
(instead of four) can occur: The complex is present and the transcription can
take place or the complex is not present. Indeed this idea is far from being new
but it has never been formalized up to now. R. Thomas remarkedthat this kind
of information can be taken into account in its modelling framework through
the valuation of parameters, but he did not explicitely include such information
in the interaction graph [18].

   2   +   +  1

     2                    1

d

cplx
c2 ∧ d1

e

c d

e

c

Figure 1: Example of cooperative action

Here, we propose a modelling framework in which the interaction graph
makes such cooperative or concurrent biological phenomenon explicit. The
decreasing of the number of parameters coupled with the methodology devel-
oped in [3], will make possible the study of larger systems.

The chapter is organized as follows. We firstly define our new interaction
graph: Multiplexesare formally defined to take into account available bio-
logical information describing the cooperation or concurrency between con-
stituents acting on a common target. Then we define when a multiplex has
an effective action on its targets, and we construct the associated dynamics.
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We show that Thomas’ and multiplex frameworks have the same power of
expression but we illustrate, through the classical example of the lac operon,
how multiplexes allow us to be more legible and terse. Lastlywe present the
benefits of this multiplex modelling.

2 Gene regulatory graphs with multiplexes

Formal modelling frameworks for gene regulatory networks represent interac-
tions between entities (genes, proteins,etc.) viaastatic graph. Then, dynamics
focus on the evolution of entity expression levels and ask for more elaborated
mathematical stuff with many parameters.

In our framework, we represent the static part by a directed graph com-
posed of two types of vertices: Variables which correspond to genes and their
products, and multiplexes which correspond to interactions between variables.
Multiplexes abstract biological phenomena like complex forming or more elab-
orated phenomena. The predecessors of a multiplex are either variables or
other multiplexes brought into play in the interaction; thesuccessors are called
the targets of the interaction.

2.1 Formal Definition

The following notation will be useful.

Notation 1 Given a directed graphG and a nodev ofG,G−1(v) is the set of
all nodesv′ ofG such that(v′, v) is an edge ofG (set of predecessors ofv).

A multiplex is provided with a formula in a propositional logic which
encodes the situations in which the interaction occurs. Forexample, if a com-
plex formed with proteinsa andb is required in cooperative action and if the
complex (a-b) is inactive in the presence of a proteinc, then the corresponding
formula looks like “a ∧ b ∧ ¬c,” where the symbols “∧” and “¬” stand for
“and” and “not” respectively.

Definition 1 A gene regulatory graph with multiplexes, RG for short, is a tuple
G = (V,M,EV , EM ) such that:

1. (V ∪M,EV ∪EM ) constitutes a (labelled) directed graph whose set of
nodes isV ∪M and set of edges isEV ∪EM , withEV ⊂ V × IN ×M
andEM ⊂M × (V ∪M).

2. V andM are disjoint finite sets. Nodes ofV are calledvariablesand
nodes ofM are calledmultiplexes. An edge(v, s,m) ofEV is denoted
(v

s
→ m) wheres is called the threshold.
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3. Each variablev of V is labelled with a positive integerbv called the
bound ofv.

4. Each multiplexm of M is labelled with a formula belonging to the
languageLm inductively defined by:

• If (v
s
→ m) ∈ EV , thenvs is an atom ofLm, and if (m′ → m) ∈

EM thenm′ is an atom ofLm.

• If φ andψ belong toLm then¬φ, (φ ∧ ψ), (φ ∨ ψ) and(φ⇒ Ψ)
belong toLm.

5. All cycles of the underlying graph(V ∪M,EV ∪ EM ) contain at least
one node belonging toV .

Note: Condition 5 is necessary for the definition of dynamics(see Defini-
tion 3).

1 3 52

a b

¬(a1 ∧ b3)
m

c2 ∧ ¬c5 ∧ m
m
′

c

d

Figure 2: Graphical conventions

Figure 2 provides graphical conventions. In this figure,a, b, c, d are vari-
ables;m,m′ are multiplexes;m andc are the inputs ofm′ andb andd are its
outputs; the cycleb,m,m′ contains the variableb.

In addition to these standard graphical conventions, we allow “light” addi-
tional graphical notation abuse:

• If a variable is an input of a multiplex with only one threshold, we then
allow to omit the threshold in the formula. For example, in Figure 2, the
formula of multiplexm can be simply written as “¬(a ∧ b).” Of course,
this light form is not possible form′.

• Multiplexes with a formula reduced to a unique atom can be removed
from the diagram. In figure 3a, removing the multiplexm allows us to
retrieve the usual diagrammatic convention of R. Thomas foractivations.
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(a) Activation.
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¬ a
− ⇐⇒

(b) Inhibition.

Figure 3: Light graphical convention for activation and inhibition.

• Similarly, in figure 3b, we retrieve usual inhibitions, either by adding the
minus sign, or by using the “inhibition arrow” usual in biology.

In figure 2, we also see that in multiplex formulas the variables are indexed
by their thresholds. This is useful when a given variable acts on a multiplex at
several thresholds. The multiplexm′ means that the expression level ofcmust
be both greater than2 and lower than5 in order to participate to the induction
of d.

2.2 States and resources

A gene regulatory graph with multiplexes constitutes the static representation
of the system. We have now to focus on the dynamics of the system, abstracted
by the evolutions of expression levels of variables. Let us first define the states
of a system.

Definition 2 A stateof a RGG = (V,M,EV , EM ) is a mapη : V → IN such
that for each variablev belonging toV , η(v) ≤ bv.
η(v) is called the expression level ofv.

A multiplex does not have any expression level because it is alogical
composition of variables at a given time. So, we consider only the expression
level of all the variables at that time and from this current state it is possible to
deduce if the multiplex is active or notvia the interpretation of its propositional
formula.

According to a current state, the set of resources of a variable a is the set of
multiplexes which can helpa to express its product. More precisely a resource
r of a variablea is a multiplex belonging toG−1(a) whose formula is satisfied.
So graphically, edges of interaction graphs have no sign butnegative actions
are taken into account through multiplexes with the operator ¬. For example,
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in Figure 2 the multiplexm represents an inhibition (the complexa-b inhibits
b andd viam′).

Definition 3 Given aRG G = (V,M,EV , EM ) and a stateη of G, the set
of resources of a variablev ∈ V for the stateη is the set of multiplexes
m of G−1(v) such that the formulaϕm of the multiplexm is satisfied. The
interpretation ofϕm in m is inductively defined by:

• If ϕm is reduced to an atomvs ofG−1(m) thenϕm is satisfied iffη(v) ≥
s.

• If ϕm is reduced to an atomm′ ∈M ofG−1(m) thenϕm is satisfied iff
ϕm′ ofm′ is satisfied.

• If ϕm ≡ ψ1 ∧ ψ2 thenϕm is satisfied ifψ1 andψ2 are satisfied; and we
proceed similarly for all other connectives.

We noteρ(v, η) the set of resources ofv for the stateη.

This definition is actually inductive becauseRG never contain a cycle of
multiplex (item 5 of Definition 1). If cycle of multiplexes were allowed then
indeterminations or contradictions would be possible. Forinstance, consider
the graph in figure 4. Suppose that the expression level ofa is greater or equal
to the thresholds:

• If the formula ofm′ is assumed to be satisfied, then the formula ofm

must be satisfied and so the formula ofm′ cannot be satisfied. So, we
get an inconstency.

• If the formula ofm′ is assumed to be unsatisfied, then the formula of
m must be unsatisfied and so the formula ofm′ must be satisfied. So,
whatever we assume, we always get an inconsistency.

Let us consider now, the graph in figure 4 where the formula associated
with m′ is m instead of¬m. Suppose again that the expression level ofa is
greater or equal to the thresholds. Then, the two interpretations ofm′ are
consistent and compatible with the current state. There is an indetermination
which is similar to the notion of schizophrenic cycles of [15].

s
a

a ∧ m
′

m

¬m

m
′

Figure 4: Cycle of multiplexes

To avoid these inconsistencies and indeterminations, cycles of multiplexes
are not allowed. This motivates the item 5 of Definition 1.
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3 Gene networks with multiplexes

We call network a graph associated with the parameters whichdetermine the
dynamics.

Definition 4 A gene regulatory network with multiplexes(RN) is a couple
(G,K) where

• G = (V,M,EV , EM ) is a RG.

• K = {kv,ω} is a family of parameters indexed byv ∈ V and ω ⊂
G−1(v) such that allkv,ω are integers and0 ≤ kv,ω ≤ bv.

Notice that each variablev admits2n parameters of the formkv,ω wheren is
the in-degree ofv in G.

Additional restrictions for the choice of parameters can beconsidered.
The Snoussi’s hypotheses [14] which ensure the consistencyof qualitative be-
haviours with some underlying differential equation system, are well-known:
If ω ⊂ ω′ then kv,ω ≤ kv,ω′ . These hypotheses signify that an effective
resource cannot induce the decrease of the expression levelof v. Moreover,
we can always ignore the parameterskv,ω such that the conjunction of the
formulas associated with the multiplexes inω is unsatisfied for all states.

3.1 Dynamics

The value of the parameterkv,ρ(v,η) (whereρ is defined in definition 3 above),
indicates how the expression level ofv can evolve from the stateη. It can
increase (respectively decrease) if the parameter value isgreater (respectively
less) thanη(v). The expression level must stay constant if both values are
equal. The tendency (increasing, decreasing, unchanging)of variables are
given by the directional map associated with each state:

Notation 2 Given aRN N = (G,K) and a stateη ofG = (V,M,EV , EM ),
thedirectional mapd : V → {−1, 0, 1} is defined by:

∀v ∈ V, d(v) =







−1 if η(v) > kv,ρ(v,η)

0 if η(v) = kv,ρ(v,η)

1 if η(v) < kv,ρ(v,η)

The probability that two variables change their expressionlevel at the same
time is negligiblein vivo; following the Thomas’ approach a state transition of
the model modifies only one of the involved variables at a time.

Definition 5 LetN = (G,K) be aRN, and letη be a state ofG. A stateη′ of
G is asuccessorof the stateη if and only if :
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• There exists a variableu such thatη′(u) = η(u) + d(u) andd(u) 6= 0

• For any other variablev 6= u we haveη′(v) = η(v)

In each state transition, at most one variable is modified; this procedure is
calledasynchronous updatein Thomas’ framework.

Definition 6 Theasynchronous state graphof a RN N = (G,K) is the graph
S defined by:

• The set of vertices ofS is the set of possible states ofG (isomorphic to
the Cartesian product

∏

v∈V

[0, bv ]).

• The set of edges ofS is the set of couples(η, η′) such thatη′ is a
successor ofη.

4 Relative terseness with respect to the classical framewor k

Obviously our framework with multiplexes embeds the classical Thomas’
framework [17] as it is sufficient to translate an activation(resp. an inhibition)
with a multiplex whose formula is reduced to the input variable (resp. its
negation), see Figure 3. Conversely, a non atomic formula ina multiplex
obviously corresponds to a constraint on the parameters [18] following an
induction similar to the one of Definition 3.

Our conviction is that this kind of knowledge is a static knowledge and
consequently it should be present in the interaction graph (formulas in mul-
tiplexes). When we know, for biological reasons, the natureof combined
influences, this information should be included in the modelas soon as possible
because it considerably reduces the number of possible parameters, as shown
in the example below. Of course, the nature of combined influences is not
alwaysa priori known and, in this case, according to our formalism, variables
have then several inputs in the regulatory graph.

4.1 Example of lactose operon.

The cell needs carbon. Carbon is preferably obtained from glucosevia a given
catalytic pathway. When glucose is absent, lactose is usedvia an alternative
catalytic pathway.

Lactose operon in E.coli is the first genetic regulatory system elucidated,
by François Jacob and Jacques Monod [9]. The induction of this system
requires two conditions: Absence of glucose and presence oflactose.

An operon is a set of contiguous genes whose transcription iscontrolled
simultaneously by a unique transcription factor. This transcription factor has
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an affinity with a DNA area at the beginning of the operon, called operator and
denoted O.
The lactose operon is formed by three genes denoted by Z, Y andA. The genes
Z, Y and A produce respectively the enzymesβ-galactosidase, permease and
thiogalactoside transacetylase.

When glucose is absent, the alternative pathway is controlled as follows:

• CAP (Catabolite gene Activator Protein) forms a complex with cAMP
(cyclic Adenosine MonoPhosphate), and binds to DNA to increase the
transcription of the operon. This is a positive regulation.

• The transcription of the operon is possible only if the DNA area O is
free. The regulatory protein lacI binds to O, this is a negative regulation.
However, when lactose is present, a lactose isomer binds to lacI and lacI
looses its affinity for O. So the operator O becomes free.

When glucose is present, the alternative pathway is inhibited as follows:
Glucose inhibits indirectly cAMP and leads to the absence ofcomplex CAP-
cAMP. Consequently, there is no transcription even if lacI is present.

CAP cAMP LacI Lactose

      −

acetylase
transpermease

cAMP LacI

      −

acetylase
trans

− − −

permease

CAP Lactose

glucose glucose

complexe

CAP ∧ cAMP

operon

complexe ∧ ¬lock operator site

β−lac

lock operator site

¬(lactose)∧ lacI

β−lac

Figure 5: Lactose operon metabolism graph with and without multiplexes.

In Figure 5, the interaction graph of the lactose operon is represented
in the multiplex framework (the left part of the figure) and inthe classical
Thomas’ framework (the right part of the figure). The first advantage of the
multiplex framework is its legibility: The left hand side ofthe figure is, to
some extent, more legible than the textual description given before. On the
contrary, the right hand side of the figure cannot be understood without the
textual description.

The second advantage of the multiplex framework is methodological. When
we try to elucidate a biological system using Thomas’ framework, we do not
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know the values of the parameters: Thekv,ω have to be inferred fromin vivo
behaviours. Consequently, models with a small number of parameters allow us
to rapidly converge towards the elucidation of the studied biological system.
On the contrary, models with large numbers of parameters canbe so heavy
to manipulate that they obstruct the discovery process. On this small lactose
operon example, the total number of parameters according tothe multiplex
approach is 12, while the total number of parameters according to the classical
approach is 54. Putting as much static information as possible explicitly in
the graph (instead of putting it later manually in the dynamics) considerably
reduces the complexity of the modelling methodology. Indeed, formalizing
cooperative actions of several variables on the same targetvia multiplexes
enables one to merge into a single multiplex the different acting resources.

The knowledge formalised into multiplexes can lead to reduce even more
the number of useful parameters. In figure 6, multiplexesm1 andm2 cannot
be satisfied for the same state:m1 is active only if expression level ofa is
strictly less than 2 whereasm2 is active when expression level ofa is greater or
equal to 2. Among the set of formal parametersK = {kc,{}, kc,{m1}, kc,{m2},
kc,{m1,m2}}, kc,{m1,m2} is never used. More generally, when two multiplexes
having the same targetv have twomutually exclusive formulasφ1 andφ2,
all parameters of the formKv,ω∪{m1 ,m2} can be ignored and the number of
relevant parameters is reduced.

a b

m1
¬a

m2
a ∧ b

c

2
2

1

Figure 6: Example ofRG which contains mutually exclusive formulas

5 Application

The software SMBionet-3.0 [11] has been designed to facilitate the modelling
process of genetic regulatory systems. It allows one to select models of given
RG according to their temporal properties. It takes as input aRG and a formula
in temporal logic expressing the known or hypothetical temporal properties of
the system. It gives as output all the models satisfying the formula.

In both modelling frameworks (with or without multiplexes), we have to
give a value to each parameter in order to deduce the dynamicsof the system.
Because parameter values are nota priori known this leads us to consider an
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enormous number of parameterizations. Indeed, each variable v admits2n

parameters of the formkv,ω wheren is the in-degree ofv in G (ω ⊂ G−1(v)).
Each of these parameters can takebv +1 different values wherebv is the bound
of v. The number of parameterizations is then given by

∏

v∈V

(bv + 1)2
n

where

n is the in-degree ofv. For the example of lactose operon in Thomas’ frame-
work, the number of parameterizations is on the order of2.27 × 108 whereas
in our multiplex framework, the number of parameterizations is 1296. For
instance, in Thomas’ framework, the variablepermease has24 parameters,
generating224

(65536) different parameter settings while in our framework,
permease has2 parameters, generating22(4) different parameter settings.
The difference resides in the addition of the multiplexes, which reduces the
number of inward edges topermease and so the number of possible parameter
settings. Consequently, taking into account information about cooperation
between variables (through multiplexes) leads to a significant decreasing of
the number of possible models: Here, the set of possible models is cut down
by a factor of175000.

We used SMBionet-3.0 to exhibit models which present characteristic al-
ternative catalytic pathway when glucose is absent. Under the Snoussi’s hy-
potheses (see section 3 Biological Regulatory Networks with multiplexes) and
for a given logical formula, all possible parameter settings in our framework
have been explored in27 seconds whereas all possible parameter settings in
Thomas’ framework have been explored in approximately1000 hours. Notice
that the ratio between both time is less than175000 because SMBionet-3.0
optimizes the exploration of the model set.

6 Conclusion

We rigorously introduced propositional logic elements in the R. Thomas’ frame-
work in order to take into account available information concerning the coop-
eration or concurrency between genes or genes products acting on the same
targets.

This idea is rather natural: R. Thomas introduced in [17] a notation that
allows the representation ofseveralactions of auniquegene on another one.
Moreover, dozens of articles can be cited which use similar ideas in different
frameworks:[2, 10],etc.Up to our knowledge, our contribution is the first one
which rigorouslyformalizesthis more elaborated framework.

The introduction of multiplexes makes models terser because this frame-
work allows the gathering of edges into a single multiplex.

The major advantage of multiplex modelling is methodological: It reduces
the number of parameters by formalizing additional biological information.
So, the step which searches parameter values consistent with known or hypo-
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thetical properties of the system is significantly improved. These advantages
open perspectives to study larger gene regulatory networks.

Another advantage of multiplexes is to facilitate manipulations of net-
works. For example, we may develop graph folding methods in order to reduce
the number of variables, at the price of possibly long formulas in multiplexes.
However the role of some variables in a path is essentially todelay the global
process. Consequently to improve the biological usefulness of such abstrac-
tions, it seems necessary to take delays into account. One ofour future works
will be to introduce delays in multiplexes.
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CLÉMENT Frédérique (Frederique.Clement@inria.fr)

COZE Fabien (fabien.coze@igmors.u-psud.fr)

DEL REAL Alejandro (hadeshell@gmail.com)

FICHERA Davide (fichera.davide@gmail.com)
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GOUZÉ Jean-luc (gouze@sophia.inria.fr)

LIVOLANT Françoise (livolant@lps.u-psud.fr)

LOBRY Claude (claude.lobry@inria.fr)

MAZAT Jean-Pierre (jpm@u-bordeaux2.fr)

NORRIS Vic (victor.norris@univ-rouen.fr)

OVADI Judit (ovadi@enzim.hu)

PARISEY Nicolas (parisey@labri.fr)

PROST Jacques (jacques.prost@espci.fr)

REICHL Udo (ureichl@mpi-magdeburg.mpg.de)

RIVAS German (grivas@cib.csic.es)

RUET Paul (ruet@iml.univ-mrs.fr)

SARDET Christian (christian.sardet@obs-vlfr.fr)
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