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Hommage à René Thomas

René Thomas est décédé le 9/01/2017 au soir. Nous avions été prévenus à la fin du Col-
loque de Luminy, par sa fille Isabelle, qu’il avait été mis sous oxygène à son domicile et que
ses enfants étaient tous rassemblés dans sa demeure de Rhode St Genèse, ce qui nous avait
beaucoup ému, tant il représentait pour beaucoup d’entre nous : selon les cas, un modèle,
un inspirateur, un directeur de thèse, un grand frère, un ami (de 40 ans dans mon cas, sans
ombrage, que du bonheur...). Nous avons été accueilli dans la pièce où reposait son cercueil
par une projection magnifique de la Dibona, son aiguille préférée du massif de la Meije, dans
l’Oisans, vue sous son profil le plus majestueux et tentateur. Les hommages se sont succédés,
avec des pleurs et des rires, et des sentiments très forts comme il avait su en susciter chez tous
ses parents et amis.

Sa belle fille Françoise Nyssen m’a demandé d’écrire un livre sur lui, je vous en livre la
première page et un poème écrit à chaud (ou plutôt à froid, à grand froid...) à l‘annonce de
son décès.

René Thomas, un bon génie du doute et de la création

Y rôde le saint de la genèse... C’est ainsi que m’avait été décrit, de façon alléchante et com-
plice, l’antre de René. Le saint était un joyeux génie sautillant, émerveillé permanent du
monde et de ses découvertes. Généticien astronome, il aurait plu à son idole Christophe, car
il avait des facettes du savant Cosinus et des facéties dignes du Sapeur. Sa muse Inga n’avait
rien de Madame Fenouillard et elle le stimulait en tant que premier public et première servie,
tant il avait besoin d’aimer, d’aider et d’apprendre. Nous allons, au cours de ces quelques
pages, découvrir un homme délicieux et un savant d’exception, ces deux qualités étant rares
et indépendantes, ce qui augmente la petitesse de leur occurrence chez un même individu.

Au travers de cette destinée individuelle, nous parlerons de son influence sur cinquante ans
de bruit et de fureur scientifique, et de sa marque indélébile sur le futur. Comme le disait
un grand ami commun, membre du même cercle des savants poètes disparus (mon maı̂tre
Jacques Besson, frère quasi-jumeau de Schützenberger, qui se présentait comme un fantôme
surgi du cinquecento italien par le miracle de la réincarnation et par la grâce de la toile
– cf. https://fr.wikipedia.org/wiki/Jacques\_Besson – né à Colombière,
hameau de la vallée d’Oulx, aujourd’hui en Italie, un peu à l’est de Briançon et voisin du Val
des Prés, très cher à René), les hommes sont fils de leurs oeuvres autant que l’inverse, et c’est
d’autant plus vrai qu’ils ont un sourire de soie devant la femme qu’ils aiment, des yeux qui
pétillent à l’approche d’un ami et une excitation de vieux bouc (disait René...) devant toute
nouveauté scientifique – cela augmentant avec l’âge, ce qu’il fait qu’ils ne vieillissent jamais.

C’est donc parti pour quelques aventures gourmandes, sans doute un peu imaginaires, mais re-
construites par un souvenir aimant de fidèle, de disciple complice et de compère compréhensif.

En 1980, à la demande de René, je devais rechercher un Grenoblois, avec un fort accent du
midi, qui disait indifféremment à ses ouailles étudiantes (filles et garçons) auxquelles il ap-
prenait à grimper : � A droite ton pied, grros con(gg) ! Plus à gauche la main, gror(rr)os
con(gg) ! �. Je mis rapidement la main (et le pied) sur (et chez) Louis Lliboutry, Grenoblois
mythique, fondateur de la glaciologie française, auteur des premiers relevés topo-géologiques
de Patagonie et co-équipier de notre autre Grenoblois célèbre, Lionel Terray, dans la conquête
du Fitz-Roy, un des sommets emblématiques (avec les pics Mermoz, Saint-Exupéry et Guillau-
met) des Andes australes. J’organisai ensuite la rencontre à Grenoble, l’année suivante. A peu
près de même taille, Louis (le pionnier de la glaciologie, féru de topographie et d’alpinisme)
et René (le pionnier des acides nucléiques, féru d’astronomie et d’alpinisme) se sont étreints
comme des frères... Aussi facétieux l’un que l’autre, ils ont évoqué leur première étreinte :
� Comment m’as-tu encordé pour me descendre de cette vire de la Dibona où j’étais tombé,
j’étais aux trois-quarts inconscient ? � � Facile, vieux frère, j’ai mis tes bras autour de mon
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cou, et en avant la descente en rappel ! � � Hélà, sans corde ? � � Qu’est-ce que tu crois ?
C’était plus facile de se débarrasser de toi en cas de problème ! � René blémit, Louis sourit :
� Rassure-toi, dans ces cas-là, ils te serrent plus fort que les noyés... et le secours en montagne
allait arriver en bas de la Dibona ! �, ce secours en montagne, que René, petit maillon d’une
longue chaı̂ne avait contribué, sans le savoir, à créer, en prêtant ses cordes à son ami François
Henry (Bruxellois de 22 ans à l’époque), qui, avec Jean Vincendon, allait écrire une grande
page de l’histoire de l’alpinisme au Mont-Blanc en 1956. René ne les avait pas accompagnés,
car il était à l’époque en pleine aventure du phage λ cf. Thomas R. ”Effects of chloramphe-
nicol on genetic replication in bacteriophage lambda”, Virology 9, (1959) 275–283), et il se
contentait alors de ses chers rochers de Freÿr...

Petite ode à René de Bruxelles

Adieu l’ami des bruines,
Adieu, Waterloo triomphant,
Sous ton rire, O René !
Evoquant d’une envolée magique,
La garde, les gènes, le Sapeur,
Que je voyais entrer souriants
Dans la même fournaise.
Naguère, dans les calanques,
J’ai mis mes pas dans les tiens
Et tous les vieux complices,
n’avaient que toi et ton sourire
dans leurs pensées muettes.
Le mistral tourmentait les pins
Et, remontés au col,
Un grand froid nous saisit,
Comme si une ombre passait
Devant notre soleil.
Revenus au Centre,
Dont tu aimais la bastide provençale,
Pleins de ton souvenir,
Nous avons parlé arabesques,
ARNs qu’on nature et dénature,
Depuis que tu l’as dit au monde,
Dans ta vie pastorienne,
Et qui se portent comme des charmes
Dans la nouvelle biologie de synthèse.
Chaque fois, tous tes concepts,
Revenaient comme une vieille antienne,
Eclairés par ton phare
Indiquant les nœuds, les réseaux, et le port :
La logique, les systèmes, les itérations de René,
Renaissant comme des mots neufs
Dans la bouche des jeunes savants :
René a dit, René a fait, René a ri,
Tu me fais pleurer, grand frère.

Jacques Demongeot, 10.01.2017, Boolean Day.

“The system will escape at 1001”
(René Thomas, Richard d’Ari, Biological Feedback, CRC Press : Boca Raton, 1989, p. 53)
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“But technology will ultimately and usefully be better served by following
the spirit of Eddington, by attempting to provide enough time and intellectual

space for those who want to invest themselves in exploration of levels
beyond the genome independently of any quick promises for still quicker

solutions to extremely complex problems.”

Strohman RC (1977) Nature Biotech 15:199

FOREWORD
Systems Biology includes the study of interaction networks and, in particular, their dy-
namic and spatiotemporal aspects. It typically requires the import of concepts from
across the disciplines and crosstalk between theory, benchwork, modelling and simu-
lation. The quintessence of Systems Biology is the discovery of the design principles of
Life. The logical next step is to apply these principles to synthesize biological systems.
This engineering of biology is the ultimate goal of Synthetic Biology: the rational concep-
tion and construction of complex systems based on, or inspired by, biology, and endowed
with functions that may be absent in Nature.

This annual School started in 2002. It was the first School dedicated to Systems
Biology in France, and perhaps in Europe. Since 2005, Synthetic Biology has played
an increasingly important role in the School. Generally, the topics covered by the School
have changed from year to year to accompany and sometimes precede a rapidly evolving
scientific landscape. Its title has evolved in 2004 and again in 2012 to reflect these
changes. The first School was held near Grenoble after which the School has been
held in various locations. It started under the auspices of Genopole R©, and has been
supported by the CNRS since 2003, as well as by several other sponsors over the years.

This book gathers overviews of the talks, original articles contributed by speakers
and students, tutorial material, and poster abstracts. We thank the sponsors of this
conference for making it possible for all the participants to share their enthusiasm and
ideas in such a constructive way.

Patrick Amar, Gilles Bernot, Marie Beurton-Aimar, Attila Csikasz-Nagy, Oliver Ebenhoeh, Ivan Junier,
Marcelline Kaufman, François Képès, Pascale Le Gall, Sheref Mansy, Jean-Pierre Mazat, Victor Norris,
El Houssine Snoussi, Ines Thiele, Birgit Wiltschi.
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We would also like to express our thanks to the sponsors of this conference for their
financial support allowing the participants to share their enthusiasm and ideas in such a
constructive way.

They were:

• Centre National de la Recherche Scientifique (CNRS):
http://www.cnrs.fr

• Genopole R© Évry:
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Noisy and dynamic gene regulation at the single cell level

James Locke1

1 Sainsbury Laboratory Cambridge, University of Cambridge, UK

Abstract

Our lab is focused on developing a quantitative understanding of signal integra-
tion and gene circuit dynamics at the single cell level. It is critical to observe
cellular behaviour at the single cell level as traditional approaches that take
an average from a population can obscure heterogeneous responses and novel
dynamics. We combine mathematical modelling and timelapse microscopy
to examine gene circuit dynamics in a variety of model organisms including
B. subtilis, Cyanobacteria and Arabidopsis. We are attempting to understand
how gene regulatory dynamics are generated, how dynamic gene regulatory
pathways are coupled together, and what role cellular noise can play in devel-
opment.

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 13



26/9/2017- page #14



26/9/2017- page #15

Dynamics and evolution of metabolic interactions in
microbial ecosystems

Daniel Segré1

1 Dynamics and evolution of biochemical networks,
Boston Univ., US

Abstract

Metabolism, in addition to being the “engine” of every living cell, plays a ma-
jor role in the cell-cell and cell-environment relations that shape the dynamics
and evolution of microbial communities, e.g. by mediating competition and
cross-feeding interactions between different species. Despite the increasing
availability of metagenomic sequencing data for numerous microbial ecosys-
tems, fundamental aspects of these communities, such as the unculturability
of many isolates, and the conditions necessary for taxonomic or functional
stability, are still poorly understood. We are developing mechanistic compu-
tational approaches for studying the dynamics and evolution of interactions
between different organisms based on the knowledge of their entire metabolic
networks. In particular, our open source platform for the Computation of
Microbial Ecosystems in Time and Space (COMETS) combines metabolic
models with convection-diffusion equations to simulate the spatio-temporal
dynamics of metabolism in microbial communities. COMETS has been ex-
perimentally tested on small artificial communities, and is scalable to hundreds
of species in complex environments. I will discuss recent developments and
challenges in the study of natural and synthetic microbial communities.

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 15
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Synthetic cell-cell communications mimicking multicellular
development

Miki Ebisuya1

1 Lab. for Reconstitutive Developmental Biology, RIKEN Quantitative Biology
Center, Kobe, Japan

Abstract

Cell-cell communication plays crucial roles in multicellular development. One
way to understand how cell-cell communication works is to recreate or re-
constitute the communication mechanisms in vitro. In our lab, we create
synthetic gene circuits in mammalian cell culture that make neighboring cells
communicate with each other, leading to self-organized behaviors of the cells,
such as intercellular symmetry breaking and cellular patterning. I will discuss
what we have learned from the reconstituted cell-cell communication systems.

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 17
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Synthetic Biology and Biofabrication for Conveyance of
Molecular Communication

William E. Bentley1

1 Fishell Institute of biomedical devices, U. Maryland, US

Abstract

The ability to interconvert information between electronic and biologic sys-
tems has already transformed our ability to record and actuate biological func-
tion (e.g., EEG, EKG, defibrillators). In parallel, we have begun to demand
biological connectivity from electronic consumer products (fitbit, cell phones,
etc.). There are significant gaps, however, that must be overcome before bio-
logical information can be seamlessly conveyed and before biological function
can be electronically “programmed”. A communication gap exists whereby the
common vectors for information flow in biology are ions and molecules; they
are electrons and photons in electronics. Since there are essentially no “free”
electrons in biological systems, there is essentially no direct “translator” of
electrons to molecules and vica versa. Gaining access to molecular commu-
nication is essential as molecules are the primary vector that drives biological
function. There is also a fabrication gap to overcome. It is difficult to construct
microelectronic devices that include labile biological components. We are
developing tools of “biofabrication” that enable facile assembly of biological
components within devices that preserve their native biological function. By
recognizing that biological redox active molecules are a biological equiva-
lent of an electron-carrying wire, we have developed biological surrogates
for electronic devices, including a biological redox capacitor. We have also
turned to synthetic biology to provide a means to sample, interpret and report
on biological information contained in molecular communications circuitry.
Finally, we have developed synthetic genetic circuits that enable electronic
actuation of gene expression. This presentation will introduce the concepts
of molecular communication that are enabled by integrating relatively simple
concepts in synthetic biology with biofabrication. Our presentation will show
how engineered cells represent a versatile means for mediating the molecular
“signatures” commonly found in complex environments, or in other words,
they are conveyors of molecular communication.

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 19



26/9/2017- page #20



26/9/2017- page #21

In silico and in vitro analysis of resource allocation in
biofilm consortia

Ross P. Carlson1

1 Dept. of Chemical and Biological Engineering, Center for Biofilm Engineering,
Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA

Abstract

Biofilms are ubiquitous in medical, environmental, and engineered microbial
systems. The majority of naturally occurring microbes grow as mixed species
biofilms. These complicated consortia are comprised of a large number of cell
phenotypes with complex interactions and self-organize into three-dimensional
structures. While foundational to the vast majority of microbial life on the
planet, the basic design principles including resource allocation strategies of
consortia biofilms are still poorly understood.

The overarching goal of this research is to develop an experimentally driven,
predictive multiscale modeling framework that generates quantitatively accu-
rate predictions of biofilm dynamics, species distributions and responses to
perturbations. The biofilm models are formulated by combining genome-scale
metabolic reconstructions of individual microorganism species with reaction-
transport equations for nutrient and metabolic byproducts. The biofilm models
are multiscale with respect to both time and length scales, with the metabolic
models linking genes and proteins to cellular dynamics and the consortia mod-
els linking individual cells to community dynamics. The in silico research is
complemented with in vitro studies of spatially resolved biofilm measurements
to quantify the physiologies of consortia microorganisms.

The research is being developed using two experimental consortia includ-
ing an Archaeal extremophile consortium from a Yellowstone National Park
hot spring and a medically-relevant, three species, bacterial chronic wound
system. These distinct, yet tractable, systems are providing insight into basic
consortia structure-function relationships and the competitive partitioning of
limiting resources between interacting microbial cells. The studied ecological
theories and design principles, including the maximum power principle, are
believed relevant to many naturally occurring and engineered consortia.

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 21
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Understanding functions and interactions of plant
microbiomes

Gabriele Berg1

1 Institute of Environmental Biotechnology, Graz University of Technology,
8010 Graz, Austria

Abstract

The plant microbiome is a crucial factor for plant growth and health [2]. Al-
though this fact is known more than 100 years, multi-omics technologies rev-
olutionized this field of research. Studies revealed deep insights into micro-
biome functions. Surprisingly, the functions show high cross-kingdom similar-
ities in general but significant differences in detail. In addition, a high propor-
tion of signatures were identified that was assigned to cell-cell communication
and interaction. Exemplarily, analyses of moss, lichen and plant microbiomes
by multi-omics will be explained [1, 3]. All insights can be transferred in
specific applications in biotechnology. For example, the new perspectives
influence plant protection approaches such as biocontrol in agriculture [4]. The
development of new tools may impact i) the detection of new bio-resources for
biocontrol and plant growth promotion, ii) the optimization of fermentation
and formulation processes for biologicals, iii) stabilization of the biocontrol
effect under field conditions and iv) risk assessment studies for biocontrol
agents. Finally, plant microbiomes are an important reservoir for bioactive
molecules; therefore omics technologies can be used to discover new bioactive
metabolites, e.g. antibiotics, enzymes and volatiles [5]. Moreover, the central
role of the plant microbiome and their beneficial inhabitants for human and
environmental health will be analyzed.

References

[1] Aschenbrenner et al. 2016. Frontiers in Microbiology 7:180.

[2] Berg et al. 2014. Frontiers in Microbiology 5:491.

[3] Berg et al. 2015. Frontiers in Microbiology 6:1311.

[4] Berg 2015. Microbial Biotechnology 8:5-7.

[5] Müller et al. 2016. J Biotechnology 235:171-80.
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Kinetic Modeling of Liver Metabolism

Hermann-Georg Holzhütter1

1 Inst. of Biochemistry, Charité-Universitätsmedizin, Berlin, DE

Abstract

In my presentation I will explain the design, implementation, numerical sim-
ulation and predictive value of physiology-based kinetic models of the hepa-
tocyte metabolism. The first part is devoted to a kinetic models of the hepatic
glucose metabolism that allows to assess the relative importance of different
modes of enzyme regulation and their mutual interdependencies in the hepatic
control of plasma glucose homeostasis. In the second part I will present a
tissue-scale model of the smallest functional liver subunit which takes into ac-
count metabolic communication among liver cells by concentration gradients
of metabolites and hormones in the blood stream and interstitial space and
differential expression of metabolic enzymes depending on the relative spatial
position of hepatocytes with respect to the arterial and venous termini of the
capillary (metabolic zonation). Finally, I will report on our recent attempts to
establish a large-scale metabolic model that encompasses all main pathways
of the central carbohydrate and lipid metabolism.

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 25
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Petri nets for modeling biochemical systems

Ina Koch1

1 Molecular Bioinformatics, Goethe U. Frankfurt, DE

Abstract

The lecture introduces the foundations of Petri nets with a focus on the invari-
ant analysis. New developments for modeling signal transduction pathways
will be presented. Limits, advantages and challenges will be discussed.

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 27
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New Mediums of Life

Orkan Telhan1

1 School of Design, U. of Pennsylvania, Philadelphia, US

Abstract

Orkan Telhan’s research focuses on bridging theories of design and computa-
tion with artificial life and synthetic biology research. His work investigates
the epistemic origins of making and manipulating life with a focus on the
artistic, cultural, and ethical implications of living, semi-living, and life-like
artifacts.

In this talk, Telhan will discuss a series of design experiments that in-
terrogate life sciences at different levels from the biosynthesis of endangered
molecules to microbial prosthetics, and alternative design tools that network
algorithms, organisms, and people.

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 29
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Metabolic flexibility of pancreatic cancer

Sophie Vasseur1

1 Centre de recherche en Cancérologie de Marseille, FR

Abstract

Among cancers in critical clinical needs, pancreatic ductal adenocarcinoma
(PDAC) is the most intractable with a 5-year survival below 5% and therefore
represents one of the most fatal disease among solid cancer (based on the
ratio “Cases/Death”). As a silent killer, its symptoms are so insidious that
most people are not diagnosed until the disease has advanced beyond the stage
where surgical resection is possible. The presence of a prominent non-tumoral
cell compartment within the tumor (a main characteristic of PDAC) directly
impacts on patient clinical outcomes. In PDAC, cancer cells are “isolated”
by a fortress of stromal cells, composed of very few blood vessels, which
distorts the normal architecture of pancreas and limits the oxygen and nutrient
diffusion within the tissue. This severe hypoxic environment provides a strong
metabolic pressure able to regulate tumor cell growth and favors survival of
the most aggressive malignant cells. Therefore, during its development this
tumor must harbor metabolic pathways which are probably tied in a complex
dialogue with highly metabolic host tissues as muscle, liver and adipose tissue,
illustrating PDAC as a real metabolic disease. Hence, a comprehensive picture
of the metabolic reprogramming of PDAC is needed in order to develop the
most appropriate metabolic therapeutic approach to impede pancreatic cancer
progression.

Using PDAC genetic engineered mouse models (Pdx1-Cre; LSL-KrasG12D;
Ink4afl/fl mice), we revealed the transcriptomic metabolic signature of PDAC.
In combination with un-/targeted metabolomic approaches, we also highlighted
the dynamic of the metabolic pathways preferentially activated in PDAC. Based
on these data, our group is now establishing a more comprehensive stratifica-
tion of the metabolic processes occurring at aggressive adenocarcinoma stage
in order to fundamentally advance our understanding of the metabolic demand
of PDAC and to select the best metabolic targets for therapy.
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Classifying tumours by RNA expression patterns:
Hallmarks, signalling pathways and metabolic pathways

across cancers

Elke K. Markert1

1 Integrative Cancer Metabolism, Inst. of Cancer Sciences,
U. Glasgow, UK

Abstract

With the curation of substantial databases containing high-throughput data
from human cancer samples, systems approaches in cancer research are gain-
ing traction. There are two main lines of comparative analysis: “integrative”
approaches usually refer to combining data from different high-throughput
platforms within the same cohort, while “pan-cancer” approaches aim to un-
derstand common and distinct features of the disease across tissues. Here we
will focus on the latter, studying molecular features of tumours through their
mRNA expression profiles. Our aim is to establish a very basic classification
system that would reflect the most dominant expression patterns. The resulting
classes can then be analysed for finer structures that might be instrumental in
creating the overall effect, for instance the activity of distinct signalling and
metabolic pathways.
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Reaction Splitting and Minimum Sets of Elementary Flux
Modes

Annika Röhl1 and Alexander Bockmayr1

1 Department of Mathematics and Computer Science, Freie Universität Berlin,
Arnimallee 6, 14195 Berlin, Germany

Abstract

Genome-scale metabolic network reconstructions are widely used in systems
biology for in silico studies of cellular metabolism. A common approach to
analyse these models are so-called elementary flux modes (EFMs), which cor-
respond to minimal functional units in the network. Already for medium-sized
networks, it may be impossible to compute all the EFMs, due to their huge
number. From a practical point of view, this is also often not necessary, be-
cause a subset of EFMs may already be sufficient to answer the given biologi-
cal question. Here we present a method based on reaction splitting to compute
minimum sets of EFMs that generate the whole flux space and that can be used
to obtain additional EFMs in case these are needed.

1 Introduction

In systems biology, genome-scale metabolic network reconstructions are widely
used to develop in silico models of cellular metabolism. Typically the metabolic
network is assumed to be in steady-state, i.e., we analyse the so-called flux cone

ΓS =
{
v ∈ RR | Sv = 0, vIrr ≥ 0

}
.

Here, S ∈ RM×R denotes the stoichiometric matrix for a set of (internal)
metabolites M and a set of reactions R, see Fig. 1 for a small example. The
set Irr ⊆ R contains the irreversible and the set Rev = R \ Irr the reversible
reactions. The vectors v ∈ ΓS are called (feasible) flux vectors and can be
interpreted as steady-state flux distributions over the network.

To define the elementary flux modes we need the notion of support of a
flux vector v ∈ ΓS , which is the set supp(v) := {i ∈ R | vi 6= 0} of active
reactions in v. An elementary flux mode (EFM) [32] is a feasible flux vector
v ∈ ΓS\{0} of minimal support (with respect to set inclusion), i.e., there exists
no w ∈ ΓS \ {0} such that supp(w) ( supp(v). EFMs define minimal sets
of reactions that can operate together in steady-state. Minimality means that if
any of the reactions is deleted, then the whole flux cannot operate anymore in
steady-state.
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1 −1 0 0 0 0 0 0 0 0 0 0
0 1 −1 0 −1 0 0 0 0 0 0 0
0 1 0 −1 0 −1 0 0 0 0 0 0
0 0 0 0 1 0 0 1 −1 0 −1 0
0 0 0 0 0 1 −1 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0 1 −1 0 0




The corresponding stoichiometric matrix.

Figure 1: Metabolites M = {A,B, . . . , G}, reactions R = {1, 2, . . . , 11, 12}, irreversible
reactions Irr = {2, 6, 7, 8}.

In the example network of Fig. 1 there are 18 EFMs with the following sets
of active reactions: {1, 2, 3, 4}, {1, 2, 3, 5, 6, 8}, {1, 2, 3, 6, 7}, {1, 2, 3, 6, 8, 9,
10}, {1, 2, 3, 6, 8, 11, 12}, {1, 2, 4, 5, 9, 10}, {1, 2, 4, 5, 11, 12}, {1, 2, 5, 6, 7,
9, 10}, {1, 2, 5, 6, 7, 11, 12}, {1, 2, 5, 6, 8, 9, 10}, {1, 2, 5, 6, 8, 11, 12}, {3, 4,
5, 6, 8}, {3, 5, 9, 10}, {3, 5, 11, 12}, {4, 6, 7}, {4, 6, 8, 9, 10}, {4, 6, 8,
11, 12}, {9, 10, 11, 12}. The sets {3, 5, 9, 10}, {3, 5, 11, 12}, {9, 10, 11, 12}
are reversible EFMs, which can carry flux in both directions.

EFMs are a popular approach to analyse metabolic networks because ev-
ery steady-state behaviour of the network can be represented with help of the
EFMs [31, 32]. Formally speaking, the EFMs define a conic basis of the flux
cone ΓS , i.e., each flux vector w ∈ ΓS can be represented as a conical combi-
nation of the EFMs: w =

∑nEFMs
i=1 λiv

i, where vi are EFMs, λi ≥ 0 and nEFMs

is the total number of EFMs in the network. While the EFMs are of great the-
oretical and practical interest, already for medium-sized metabolic networks,
it is very difficult to enumerate all of them, due to their exponential number.
Thus, over the last 20 years various methods have been developed to compute
some or all EFMs in a given metabolic network.

One of the first approaches was the Double Description Method [6] and
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refinements thereof such as [1, 7, 23] or the nullspace algorithm in [34]. Other
approaches are based on graph theory like in [24, 33]. All these methods can
compute the whole set of EFMs. In practice, however, they often do not ter-
minate because the number of EFMs gets too large [15] and there is lack of
memory. Therefore, a natural idea is to compute a smaller set of EFMs that
can still represent the full flux space. In [21, 29], so-called extreme pathways
were proposed. They correspond to a smaller set of EFMs that generate the
whole flux cone, but they also include EFMs that are not needed. Some meth-
ods focus on the feasibility of EFMs regarding underlying regulatory rules [12]
or thermodynamics [8]. Another possibility is to compute a random subset of
EFMs by sampling [20]. The resulting set of EFMs does not generate the
whole flux space, but it can give some useful information about it. In [17],
a minimum description of the flux cone ΓS is introduced, based on so-called
minimal metabolic behaviours (MMBs). Each MMB corresponds to a subset
of EFMs with the same set of active irreversible reactions. It can be shown
that in order to obtain a minimal conic basis of ΓS , for each MMB one of the
corresponding EFMs has to be chosen [17], see also [11]. More recent ap-
proaches based on mixed-integer programming [5, 26] focus on generating a
limited number of shortest EFMs, i.e., EFMs having only a small number of
active reactions. Further extending this work, [4, 22] develop algorithms for
enumerating only those EFMs that involve a given set of target reactions. Prin-
cipal elementary mode analysis [35] is a method to identify a combination of
EFMs that best capture the patterns observed in a given set of flux data. For a
recent survey on EFMs and their applications, we refer to [37].

Our goal in this paper is to use reaction splitting to identify minimum sets
of EFMs sufficient to describe the whole flux space. We start in Sect. 2 by dis-
cussing different forms of reaction splitting and then introduce the new concept
of minimum set of elementary modes (MEMO). In Sect. 3, we describe an algo-
rithm to compute MEMOs and report on some computational results. Sect. 4
concludes and gives an outlook on further work.

2 Methods

2.1 Polyhedral cones

We start by some basic definitions and theorems related to polyhedral cones.
For further information we refer to [30]. A subset Γ ⊆ Rn is called a cone
if any conic combination of two elements x, y ∈ Γ belongs to Γ again, i.e.,
λx+µy ∈ Γ, for any non-negative λ, µ ∈ R≥0. A cone Γ is called polyhedral
if there exists a matrix A ∈ Rm×n such that

Γ = {x ∈ Rn | Ax ≥ 0} .
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A cone Γ is finitely generated if there exists a finite set of generators
{g1, . . . gt} ⊆ Γ such that every element x ∈ Γ can be written in the form
x =

∑t
k=1 λkg

k, for some non-negative λk ∈ R≥0. By a classical theorem
of Farkas-Minkowski-Weyl, a cone is polyhedral if and only if it is finitely
generated.

For a polyhedral cone Γ = {x ∈ Rn | Ax ≥ 0}, the linear subspace

Λ = {x ∈ Rn | Ax = 0} = Γ ∩ (−Γ)

is called the lineality space of Γ. The cone Γ is called pointed if Λ = {0}.
This means that whenever x ∈ Γ, x 6= 0, we have −x 6∈ Γ. In other words, Γ
does not contain any line {λx | λ ∈ R}, for x 6= 0. By basic linear algebra,
the cone Γ is pointed if and only if the matrix A has full column rank, i.e.,
rank(A) = n.

If Γ is pointed, there is a unique minimum set of generators {g1, . . . , gt} ⊆
Γ corresponding to the extreme rays of Γ. Two rays x, x′ ∈ Γ are considered
identical if x′ = λx for some λ > 0. A ray 0 6= x ∈ Γ is called an extreme ray
(ER) of Γ, if there exist no two linearly independent rays x1, x2 ∈ Γ such that
x = x1 + x2.

The set of feasible flux vectors in a metabolic network defines a polyhedral
cone

ΓS =



v ∈ RR | Av ≥ 0, A =




S
−S
EIrr





 ,

which is called the flux cone. Here EIrr denotes an identity matrix where the
rows corresponding to the reversible reactions have been deleted. Thus vi ≥ 0,
for all i ∈ Irr, and irreversible reactions can carry flux in only one direction.

If all reactions are irreversible, the flux cone ΓS is pointed and there exists
a one-to-one correspondence between the extreme rays of ΓS and the elemen-
tary flux modes [32]. In general, however, the metabolic network may con-
tain reversible reactions together with reversible flux vectors v 6= 0 for which
v,−v ∈ ΓS , and the flux cone is non-pointed.

2.2 Splitting variables

In many cases it is desirable to have a cone Γ = {x ∈ Rn | Ax ≥ 0}
which is pointed. If the system Ax ≥ 0 includes constraints xj ≥ 0, for
all j ∈ {1, . . . , n}, then the resulting cone will be pointed. In general, how-
ever, a variable xj ∈ R can take negative values, and we cannot simply add
the constraint xj ≥ 0. To overcome this problem, a well-known method
also used in linear programming is to split variables. Splitting a variable
xj ∈ R means replacing it by two non-negative variables x̄j , x̄n+j ≥ 0,
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such that xj = x̄j − x̄n+j . Note that this will change the structure of the
cone and increase the dimension of the underlying vector space by 1. To de-
scribe this transformation formally, we use a map πJ : Rn → Rn+|J |, where
J ⊆ {1, . . . , n} denotes the set of variables xj , j ∈ J, to be split. For x ∈ Rn

we get πJ(x) = x̄ with x̄j = xj , for all j /∈ J , and for each j ∈ J :

x̄j = xj and x̄n+j = 0 if xj ≥ 0,
x̄j = 0 and x̄n+j = −xj if xj < 0.

Applying the map πJ , a polyhedral cone Γ = {x ∈ Rn | Ax ≥ 0}, with
A ∈ Rm×n, is mapped to the polyhedral cone

Γ̄J = {x̄ ∈ Rn+|J | | Ā x̄ ≥ 0},

with the augmented matrix Ā ∈ R(m+2|J |)×(n+|J |), where Ā =

(
A −A∗,J

E

)

and A∗,J is the submatrix of A consisting of the columns A∗,j with j ∈ J . For
all j ∈ J , the matrix E contains as a row the j-th and (n+ j)-th unit vector.

The inverse transformation πrJ : Γ̄J → Γ maps each vector x̄ ∈ Γ̄J to
x = πrJ(x̄) such that xj = x̄j , for all j 6∈ J , and xj = x̄j − x̄n+j , for all
j ∈ J . If we apply πrJ , we say that we recombine the variables that were
split before. Next we look at the lineality space of Γ̄J . Generalising a result
from [16], we get:

Lemma 2.1. Let Γ ⊆ Rn be a polyhedral cone with lineality space Λ. For a
set of variables J ⊆ {1, . . . , n}, the lineality space Λ̄J of the augmented cone
Γ̄J is given by:

Λ̄J =

{(
x
0

)
∈ Rn+|J | | x ∈ Λ and xJ = 0}

}
,

where xJ = 0 means xj = 0, for all j ∈ J .

Proof. For the cone Γ = {x ∈ Rn | Ax ≥ 0} the lineality space is Λ = {x ∈
Rn | Ax = 0}. Splitting the variables in J delivers the cone Γ̄J = {

(
x
w

)
∈

Rn+|J | | (A, −A∗,J)

(
x
w

)
≥ 0, xJ ≥ 0, w ≥ 0}. For the lineality space we
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get:

Λ̄J =

{(
x
w

)
∈ Rn+|J | | (A, −A∗,J)

(
x
w

)
= 0, xJ = 0, w = 0

}

=

{(
x
0

)
∈ Rn+|J | | (A, −A∗,J)

(
x
0

)
= 0, xJ = 0

}

=

{(
x
0

)
∈ Rn+|J | | Ax = 0, xJ = 0

}

=

{(
x
0

)
∈ Rn+|J | | x ∈ Λ and xJ = 0

}
.

2.3 Splitting reversible reactions

In the case of metabolic networks, the variables corresponding to the irre-
versible reactions, by definition, can take only non-negative values. In order to
obtain a pointed cone, we can split all reversible reactions into two irreversible
ones, see Fig. 2 for an example. This leads to the pointed cone Γ̄Rev

S . The
uniquely determined extreme rays of this cone are called extreme currents [19].
It can be shown that after recombination, they correspond exactly to the EFMs
of the metabolic network [7]. In addition, for each split reaction j ∈ J , there
exists a 2-cycle v̄ ∈ Γ̄Rev

S with v̄j = −v̄n+j , and vj = 0 otherwise. These
cycles do not have a biological meaning and can be eliminated (they become
zero after applying πrRev).

Figure 2: Network where all reversible reactions are split. For example, reaction 3 is
split into 3− and 3+.
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Splitting all reversible reactions will highly increase the number of vari-
ables and thus the dimension of the vector space where the augmented cone
lives. Already for medium-sized networks, the number of extreme rays, which
corresponds to the number of EFMs (up to the 2-cycles), will be huge and
therefore computing the whole set may not be feasible or desirable. There ex-
ist methods that split only a subset of the reversible reactions and still allow
obtaining a pointed cone. The ERs of the augmented cone define a subset of
EFMs in the original cone. The remaining EFMs correspond to rays inside the
augmented pointed cone and can be obtained from the ERs by conic combina-
tions.

In the following we introduce a method to determine minimum sets of
reversible reactions that have to be split in order to obtain a pointed cone.
The resulting sets of ERs (after recombination) define minimum sets of EFMs
needed to represent the whole flux space.

2.4 Splitting fully reversible reactions

In [21, 29] it is shown that splitting only the reversible internal reactions de-
livers an augmented cone which is pointed (assuming that there is only one
exchange reaction per internal metabolite). This cone is unique and so are
its extreme rays. After recombination, these extreme rays are called extreme
pathways (EPs). In Fig. 3 an example is shown and the corresponding extreme
pathways are given.

11 extreme rays:
{1, 2, 3, 4}, {3, 4, 5−, 6, 8},
{3, 5+, 9+, 10}, {3, 5−, 9−, 10},
{3, 5+, 11−, 12}, {3, 5−, 11+, 12},
{4, 6, 7}, {4, 6, 8, 9−, 10}, {4, 6, 8, 11−, 12},
{9+, 10, 11−, 12}, {9−, 10, 11+, 12}
After recombination 3 · 2 of them are
reversible,
resulting in 8 extreme pathways in the
original space:
{1, 2, 3, 4}, {3, 4, 5, 6, 8},
{3, 5, 9, 10}, {3, 5, 11, 12},
{4, 6, 7}, {4, 6, 8, 9, 10}, {4, 6, 8, 11, 12},
{9, 10, 11, 12}

Figure 3: Network where only the reversible internal reactions are split.

To further develop our method we have to distinguish between two types
of reversibility [17]. A reversible reaction j ∈ Rev is called fully reversible if
there exists a flux vector v ∈ ΓS such that vj 6= 0 and vi = 0 for all i ∈ Irr.
Equivalently, j ∈ Rev is fully reversible if and only if there is a reversible
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flux vector v ∈ ΛS with vj 6= 0. Otherwise, reaction j is called pseudo-
irreversible. In our example of Fig. 1 the reactions 3, 5, 9, 10, 11, 12 are
fully reversible, whereas reactions 1 and 4 are pseudo-irreversible. Reaction 1
can work in only one direction although it is declared to be reversible in the
model. Reaction 4 can work in both directions, but it is not fully reversible.
We denote the set of fully reversible reactions with Frev ⊆ Rev.

Theorem 1. Let ΓS be the flux cone of the metabolic network represented by
the stoichiometric matrix S ∈ RM×R and the set of irreversible reactions Irr.
Splitting all fully reversible reactions delivers a pointed cone Γ̄Frev

S .

Proof. By Lemma 2.1 we have

Λ̄Frev
S =

{(
v
0

)
∈ R|R|+|Frev| | v ∈ ΛS and vFrev = 0}

}
. According to the

definition of fully reversible reactions, these are the only reactions carrying
flux in ΛS . In other words, vR\Frev = 0, for all v ∈ ΛS . Thus, if v ∈ ΛS and
vFrev = 0, then v = 0. Hence the augmented cone Γ̄Frev

S is pointed.

2.5 Splitting a minimum number of fully reversible reactions

We will show in this section that there exist subsets with a minimum number of
fully reversible reactions such that after splitting these reactions the augmented
cone becomes pointed. These subsets consist of t fully reversible reactions,
where t is the dimension of the lineality space of ΓS . We note that splitting
one reaction reduces the dimension of the lineality space by at most 1, see [16].
Therefore at least t fully reversible reactions have to be split in order to obtain
a pointed cone.

Before we start, we recall an important concept from matrix theory [9,
p.85]. A matrix Brcef ∈ Rm×n is in reduced column echelon form if the
following properties hold (see Fig. 4):

1. The first non-zero element in column k is a 1 in row jk, for k = 1, 2, . . . , r
(this 1 is called a pivot).

2. 1 ≤ j1 < j2 < · · · < jr ≤ m (i.e., for each change in columns from left
to right, the pivot appears in a lower row).

3. For k = 1, . . . , r, the pivot in column k is the only non-zero element in
row jk.

4. Each of the last n− r columns consists entirely of zeros.

Theorem 2. Let ΓS be the flux cone of a metabolic network. If t is the dimen-
sion of the lineality space ΛS , then splitting a certain subset minFrev ⊆ Frev
of t fully reversible reactions leads to a pointed cone Γ̄minFrev

S .
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Brcef =




1 0 0 0 0 0
∗ 0 0 0 0 0
0 1 0 0 0 0

0 0 1 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ 0 0 0
0 0 0 1 0 0
∗ ∗ ∗ ∗ 0 0




← j1

← j2

← j3
...

← jr

Figure 4: Brcef is a matrix in reduced column echelon form, where ∗ are appropriate
values in R.

Proof. We may assume that ΓS is not pointed, hence ΛS 6= {0}. Let B ∈
R|R|×t be a matrix whose columns (b̃1, . . . , b̃t) correspond to a basis of the
lineality space ΛS , where t ≥ 1 is the dimension of ΛS . By applying elemen-
tary column operations, we can obtain the reduced column echelon form Brcef

of B, see Fig. 4, which is uniquely determined by B [9, p.85]. The columns
(b1, . . . , bt) of Brcef define again a basis of ΛS . The row indices j1, . . . , jr
for the pivot 1’s in Brcef are exactly the indices of the fully reversible reac-
tions we are looking for. To see this, define minFrev = {j1, . . . , jr}. From
t = rankB = rankBrcef = r, we get r = t. Since bkjk = 1 6= 0, for
k = 1, . . . , r = t, we have minFrev ⊆ Frev.

After splitting the reactions in minFrev we get the augmented cone Γ̄minFrev
S

with lineality space

Λ̄minFrev
S =

{(
v
0

)
∈ R|R|+|minFrev| | v ∈ ΛS and vminFrev = 0

}
.

Since (b1, . . . , bt) defines a basis of ΛS , any v ∈ ΛS can be written as v =∑t
k=1 λkb

k, for some λk ∈ R. The matrix Brcef is in reduced column-echelon
form. This means that for each j ∈ minFrev there is exactly one bkj with

b
kj
j 6= 0, and for all k 6= kj , it holds bkj = 0. Since for

(
v
0

)
∈ Λ̄minFrev

S

we have vj =
∑t

k=1 λkb
k
j = λkjb

kj
j = λkj = 0, for all j ∈ minFrev, it

follows that λk = 0, for all k ∈ {1, . . . , t}. This implies v = 0 and thus
Λ̄minFrev
S = {0}, which proves that Γ̄minFrev

S is pointed.

2.6 Minimum sets of EFMs

After recombination the set of extreme rays of any pointed cone Γ̄minFrev
S ob-

tained by splitting t = dim(ΛS) fully reversible reactions will be called a
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minimum set of elementary modes (MEMO). As we will see in Sect. 3.1, split-
ting an arbitrary set of t fully reversible reactions does not necessarily lead to a
pointed cone. In addition, the minimum set of t fully reversible reactions that
have to be split is not unique. Hence the resulting MEMO is also not unique.

We do not further discuss here the minimality of MEMOs and their rela-
tionship to minimal metabolic behaviours [17] and the minimal generating set
in [11], which will be the topic of a follow-up paper.

3 Results and discussion

3.1 Illustrating example

The MEMOs of a metabolic network correspond to minimum sets of EFMs
needed to generate the full flux cone ΓS . These MEMOs need not be unique.
Depending on the reactions that are split, the MEMOs may consist of different
flux vectors.

In Fig. 5 we split the fully reversible reactions 3 and 9, which leads to a
pointed augmented cone. Thus we can compute a MEMO, which consists of 5
different EFMs. If we split reactions 10 and 12, the augmented cone is again
pointed and we obtain another MEMO containing 5 EFMs (see Fig. 6), which
is different from the first one.

Splitting arbitrary t = dim(ΛS) fully reversible reactions does not nec-
essarily deliver a pointed augmented cone. For example, in Fig. 7 the fully
reversible reactions 11 and 12 were split. The corresponding augmented cone
is not pointed. This can be easily seen because there still exist reversible flux
vectors in the transformed network.

The transformed network does not
contain any reversible flux vectors.
The corresponding cone is pointed,
with 7 extreme rays:
{1, 2, 4, 5, 11, 12},
{3+, 5, 11, 12}, {3−, 5, 11, 12},
{4, 6, 7}, {4, 6, 8, 11, 12},
{9+, 10, 11, 12}, {9−, 10, 11, 12}.
After recombination, 2 · 2 of them are
reversible, resulting in a MEMO of
size 5:
{1, 2, 4, 5, 11, 12},
{3, 5, 11, 12},
{4, 6, 7}, {4, 6, 8, 11, 12},
{9, 10, 11, 12}.

Figure 5: The fully reversible reactions 3 and 9 are split.
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The transformed network does not
contain any reversible flux vectors.
The corresponding cone is pointed,
with 7 extreme rays:
{1, 2, 3, 4}
{3, 4, 5, 6, 8},
{3, 5, 9, 10+}, {3, 5, 9, 10−},
{3, 5, 11, 12+}, {3, 5, 11, 12−},
{4, 6, 7}.
After recombination, 2 · 2 of them are
reversible, resulting in a MEMO of
size 5:
{1, 2, 3, 4}
{3, 4, 5, 6, 8},
{3, 5, 9, 10}, {3, 5, 11, 12},
{4, 6, 7}.

Figure 6: The fully reversible reactions 10 and 12 are split.

The transformed network does con-
tain reversible flux vectors. Thus the
corresponding cone is not pointed.
Reversible flux vector:
{3, 5, 9, 10}

Figure 7: The fully reversible reactions 11 and 12 are split.

3.2 Computational experiments

To compare the size of the MEMOs to the total number of EFMs we imple-
mented our method in MATLAB using POLCO [2] to compute the ERs of a
pointed cone. The metabolic network reconstructions were taken from BiGG
Models [14], KEGG [13] (together with KEGGtranslator [36]), and BioModels
Database [18]. Table 1 summarises the main characteristics of the metabolic
networks studied. Since it is usually not possible to enumerate all the EFMs
of a genome-scale reconstruction we used the method from [27] to reduce the
number of reactions while preserving basic functionalities of the metabolic
network. In Table 2, we compare the size of the MEMOs to the number of EPs
resp. EFMs, which were computed with POLCO [2] resp. EFMTOOL [1]. In the
case t = 0 the original flux cone is already pointed, i.e., there is no need to
split any reaction before computing a MEMO. However, there may still be re-
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versible (internal) reactions in the network, resulting in a possible much larger
number of EPs or EFMs.

rxns mets rev frev t
Escherichia coli carbon metabolism ( [3]) 34 18 34 34 16
Citrate cycle (TCA) [13] 36 22 32 30 12
Pentose phosphate pathway [13, 36] 57 34 38 27 8
Glycolysis / Gluconeogenesis [13, 36] 61 32 43 33 13
Pyruvate metabolism [13, 36] 81 28 41 24 16
Escherichia coli MG1655 [14] 95 72 46 0 0
Rhizobium etli iOR363 [25] 222 371 71 0 0
Blattabacterium cuenoti iCG238 [10] 323 364 73 5 2
Mus musculus reduced [14] 351 351 177 0 0
M. tuberculosis iNJ661 reduced [14] 427 425 131 0 0
Helicobacter pylori 26695 [28] 452 396 94 31 6
S. Typhimurium LT2 reduced [14] 458 455 142 0 0

Table 1: Characteristics of different metabolic networks.
rxns: number of unblocked reactions of the network
mets: number of metabolites of the network
revs: number of unblocked reversible reactions of the network
frev: number of unblocked fully reversible reactions of the network
t: dimension of the lineality space of the polyhedral cone

4 Conclusion and further work

Based on reaction splitting, we introduced the concept of a minimum set of el-
ementary modes (MEMO) necessary to generate the flux cone of a metabolic
network. Next we presented a method to compute these MEMOs. We im-
plemented our algorithm using MATLAB and showed that the size the of
MEMOs can be by several orders of magnitude smaller than the number of
EPs or EFMs.

One drawback is that the MEMOs are not unique because they depend on
the set of fully reversible reactions which have to be split. The biological rele-
vance of these different MEMOs has to be further investigated. One can show
that the set of irreversible reactions involved in the MEMOs is unique and that
they will always be part of the MEMOs independently from the reactions that
were split. This set of irreversible reactions is called a minimal metabolic be-
haviour (MMB) and Larhlimi/Bockmayr already showed in [17] that for each
minimal proper face of the flux cone there exists a corresponding MMB. In
future work we will further discuss the relationship of MEMOs to MMBs and
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rxns MEMO EPs EFMs
Escherichia coli carbon metabolism [3] 34 14 26 6,421
Citrate cycle (TCA) [13] 36 16 1,306 3,870
Pentose phosphate pathway [13] 57 27 1,582 5,155
Glycolysis / Gluconeogenesis [13] 61 29 1,670 19,464
Pyruvate metabolism [13] 81 45 27,215 47,708
Escherichia coli MG1655 [14] 95 2,572 100,274 N/A
Rhizobium etli iOR363 [25] 222 6,147 N/A N/A
Blattabacterium cuenoti iCG238 [10] 323 376 N/A N/A
Mus musculus reduced [14] 351 94,957 N/A N/A
M. tuberculosis iNJ661 reduced [14] 427 501 22,775 24,233
Helicobacter pylori 26695 [28] 452 150,138 N/A N/A
S. Typhimurium LT2 reduced [14] 458 97 1,225 1,225

Table 2: Size of MEMOs, number of EPs and EFMs for different networks.
For most organisms we used a reduced network such that we were able to
compute the MEMOs and EFMs.
rxns: number of unblocked reactions of the network
EPs: number of the extreme pathways
MEMO: size of a minimum set of elementary modes
EFMs: number of the elementary flux modes
N/A: The programs used here (POLCO [2] and EFMTOOL [1]) could not handle
the size of the models resp. the number of EPs or EFMs.

the minimal generating set in [11]. We can also show that certain EFMs will
never be part of the MEMOs, independently from the reactions which are split.
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Abstract

In this paper we show how Spiking Neural Networks can be formalised using
Timed Automata Networks. Neurons are modelled as timed automata waiting
for inputs on a number of different channels (synapses), for a given amount of
time (the accumulation period). When this period is over, the current potential
value is computed taking into account the current sum of weighted inputs,
and the previous decayed potential value. If the current potential overcomes a
given threshold, the automaton emits a broadcast signal over its output channel,
otherwise it restarts another accumulation period. After each emission, the
automaton is constrained to remain inactive for a fixed refractory period after
which the potential is reset. Spiking Neural Networks can be formalised as
sets of automata, one for each neuron, running in parallel and sharing channels
according to the structure of the network. The inputs needed to feed networks
are defined through timed automata as well: we provide a language (and its
encoding into timed automata) to model patterns of spikes and pauses and a
way of generating unpredictable sequences.

1 Introduction

The brain behaviour has been the object of intensive studies in the last decades:
on one side, researchers are interested in the inner functioning of neurons
— which are its elementary components — their interactions and how such
aspects participate to the ability to move, learn or remember, typical of living
beings; on the other side, they emulate nature trying to reproduce such capabil-
ities, e.g., within robot controllers, speech/text/face recognition applications,
etc.

In order to achieve a detailed understanding of the brain functioning, both
neurons behaviour and their interactions must be studied. Historically, in-
terconnected neurons, “Neural Networks”, have been naturally modelled as
directed weighted graphs where vertices are computational units receiving
inputs by a number of ingoing edges, called synapses, elaborating and possibly
propagating them over outgoing edges. Several inner models of the neuron
behaviour have been proposed: some of them make neurons behave as binary
threshold gates, other ones exploit a sigmoidal transfer function, while, in
many cases, differential equations are employed.
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According to [15, 17], three different and progressive generations of neural
networks can be recognised: (i) first generation models handle discrete in-
puts and outputs and their computational units are threshold-based transfer
functions; they include McCulloch and Pitt’s threshold gate model [16], the
perceptron model [8], Hopfield networks [11], and Boltzmann machines [2];
(ii) second generation models exploit real valued activation functions, e.g., the
sigmoid function, accepting and producing real values: a well known example
is the multi-layer perceptron [5,19]; (iii) third generation networks are known
as Spiking Neural Networks. They extend second generation models treating
time-dependent and real valued signals often composed by spike trains. Neu-
rons may fire output spikes according to threshold-based rules which take into
account input spikes magnitude and occurrence time [17].

The core of our analysis are Spiking Neural Networks. Because of the
introduction of timing aspects (in particular, observe that information is rep-
resented not only by spikes magnitudes but also by their frequency), they are
considered closer to the actual brain functioning than other generations mod-
els. Spiking Neural Networks are weighted directed graphs where edges rep-
resent synapses, weights serve as synaptic strengths, and vertices correspond
to Spiking Neurons. The latter ones are computational units that may emit
(or fire) output impulses (spikes) taking into account input impulses strength
and their occurrence instants. Models of this sort are of great interest not
only because they are closer to natural neural networks behaviour, but also
because the temporal dimension allows to represent information according to
various coding schemes [17, 18]: e.g., the amount of spikes occurred within
a given time window (rate coding), the reception/absence of spikes over dif-
ferent synapses (binary coding), the relative order of spikes occurrences (rate
rank coding) or the precise time difference between any two successive spikes
(timing code). Several spiking neuron models have been proposed in literature,
having different complexities and capabilities. In [13] spiking neuron models
are classified according to some behaviours (i.e., typical responses to an input
pattern) that they should exhibit in order to be considered biologically relevant.
The Leaky Integrate & Fire (LI&F) model [14], where past inputs relevance
exponentially decays with time, is one of the most studied neuron models
because it is basic and easy to use [13, 17]. On the other hand, the Hodgkin-
Huxley (H-H) model [10] is one of the most complete and important within
the scope of computational neuroscience, being composed by four differential
equations comparing neurons to electrical circuits. As one may expect, the
more complex the model, the more behaviours it can reproduce, at the price of
a greater computational cost for simulation and formal analysis; e.g., in [13],
the H-H model can reproduce all behaviours, but the simulation process is
really expensive even for just a few neurons being simulated for a small amount
of time.
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Our aim is to produce a neuron model being meaningful from a biological
point of view but also suitable to formal analysis and verification. We intend to
exploit model checking algorithms to automatically prove whether our system
verifies or not some desired properties. More precisely, this technique could
be used to detect non-active portions within some network (i.e., the subset of
neurons not contributing to the network outcome), to test whether a particular
output sequence can be produced or not, to prove that a network may never
be able to emit, to assess if a change to the network structure can alter its
behaviour, or to investigate (new) learning algorithms which take time into
account.

In this work, we take inspiration from the LI&F model introduced in [6],
which relies on the synchronous approach based on the notion of logical time:
time is considered as a sequence of logical discrete instants, and an instant
is a point in time where external input events can be observed, computations
can be done, and outputs can be emitted. The variant we introduce here takes
into account some new time-related aspects, such a lapse of time in which the
neuron is not active, i.e., it cannot receive and emit. We encode LI&F networks
into Timed Automata: we show how to define the behavior of a single neuron
and how to build a network of neurons.

Timed Automata [3] are Finite State Automata extended with timed be-
haviours: constraints are allowed limiting the amount of time an automaton can
remain within a particular state, or the time interval during which a particular
transition may be enabled. Timed Automata Networks are sets of automata
that can synchronise over channels communications.

Our modelling of Spiking Neural Networks consists of Timed Automata
Networks where each neuron is an automaton alternating between two states:
it accumulates the weighted sum of inputs, provided by a number of ingoing
weighted synapses, for a given amount of time, and then, if the potential accu-
mulated during the last and previous accumulation periods overcomes a given
threshold, the neuron fires an output over the outgoing synapse. Synapses are
channels shared between the timed automata representing neurons, while spike
emissions are represented by synchronisations occurring over such channels.
Timed Automata can be exploited to produce or recognise precisely defined
spike sequences, too.

The rest of the paper is organised as follows: in Section 2 we describe our
reference model, the Leaky Integrate & Fire one, in Section 3 we recall defi-
nitions of Timed Automata Networks, and in Section 4 we show how Spiking
Neural Networks can be encoded into Timed Automata Networks and how
inputs and outputs are handled by automata. Finally, Section 5 summarises
our approach and presents some future research directions.
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2 Leaky Integrate and Fire Model

Spiking Neural Networks [15] are modelled as directed weighted graphs where
vertices are computational units and edges represent synapses. The signals
propagating over synapses are trains of impulses: spikes. Synapses may mod-
ulate such signals according to their weight or they could introduce some prop-
agation delay. Synapses are classified according to their weight: excitatory if
positive, or inhibitory if negative.

Computational units represent neurons, whose dynamics is governed by
two parameters: the membrane potential (or, simply, potential) and the thresh-
old. The former one depends on spikes received by neurons over ingoing
synapses. Both current and past spikes are taken into account even if old
spikes contribution is lower. In particular, the leak factor is a measure of
neuron memory about past spikes. The neuron outcome is controlled by the
algebraic difference between the membrane potential and the threshold: it is
enabled to fire (i.e., emit an output impulse over all outgoing synapses) only if
such difference is non-negative. Immediately after each emission the neuron
membrane potential is reset and the neuron stays in a refractory period for a
given amount of time. During this period it has no dynamics: it cannot increase
its potential as any received spike is lost and therefore it cannot emit any spike.

We focus on the Leaky Integrate & Fire model that from an observational
point of view is biophysically meaningful [13, 17] but is abstracted enough to
be able to apply formal verification techniques such as model-checking. The
original definition of Leaky Integrate & Fire traces back to [14]; here we work
on an extended version of the discretized formulation proposed in [6].

Definition 1 (Spiking Integrate and Fire Neural Network). A Spiking Integrate
and Fire Neural Network is a tuple (V, A, w), where:

• V are Spiking Integrate and Fire Neurons,

• A ⊆ V × V are the synapses,

• w : A→ Q ∩ [−1, 1] is the synapse weight function associating to each
synapse (u, v) a weight wu,v.

We distinguish three disjoint sets Vi of input neurons, Vint of intermediary
neurons, and Vo of output neurons, with V = Vi ∪ Vint ∪ Vo.
A Spiking Integrate and Fire Neuron is a tuple (θv, pv, τv, yv), where:

• θv ∈ N is the firing threshold,

• pv : N→ Q+
0 is the [membrane] potential function defined as

pv(t) =
m∑

i=1

wi · xi(t) + λ · pv(t− 1),
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with pv(0) = 0 and where xi(t) ∈ {0, 1} is the signal received at the
time t by the neuron through its ith input synapses, and λ ∈ [0, 1] is a
rational number, representing the leak factor,

• τv ∈ N+ is the refractory period,

• yv : N→ {0, 1} is the neuron output function, defined as

yv(t) =

{
1 if pv(t) > θv
0 otherwise

As shown in the previous definition, the set of neurons of a Spiking Inte-
grate and Fire Neural Network can be classified into input, intermediary, and
output ones. The dynamics of each neuron v is defined by means of the set of
its firing times Fv = {t1, t2, . . .} ⊂ N, also called spike train. For each input
neuron, the set Fv is assumed to be given as input for the network. For each
output neuron, the set Fv is considered an output for the network.

3 Timed Automata

Timed Automata [3] are a powerful theoretical formalism for modelling and
verifying real time systems. A timed automaton is an annotated directed (and
connected) graph, with an initial node and provided with a finite set of non-
negative real variables called clocks. Nodes (called locations) are annotated
with invariants (predicates allowing to enter or stay in a location), arcs with
guards, communication labels, and possibly with some variables upgrades and
clock resets. Guards are conjunctions of elementary predicates of the form
x op c, where op ∈ {>,≥,=, <,≤} where x is a clock and c a (possibly
parameterised) positive integer constant. As usual, the empty conjunction
is interpreted as true. The set of all guards and invariant predicates will be
denoted by G.

Definition 2. A timed automaton TA is a tuple (L, l0, X,Σ,Arcs, Inv), where

• L is a set of locations with l0 ∈ L the initial one

• X is the set of clocks,

• Σ is a set of communication labels,

• Arcs ⊆ L × (G ∪ Σ ∪ U) × L is a set of arcs between locations with
a guard in G, a communication label in Σ ∪ {ε}, and a set of variables
upgrades (e.g., clock resets);

• Inv : L→ G assigns invariants to locations.
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It is possible to define a synchronised product of a set of timed automata that
work and synchronise in parallel. The automata are required to have disjoint
sets of locations, but may share clocks and communication labels which are
used for synchronisation. We restrict communications to be broadcast through
labels b!, b? ∈ Σ meaning that a set of automata can synchronise if one is
emitting; notice that, a process can always emit (e.g., b!) and the receivers (b?)
must synchronise if they can.

Locations can be normal, urgent or committed. Urgent locations force the
time to freeze, committed once not only freeze time but the automaton must
leave the location as soon as possible, i.e., they have higher priority.

The synchronous product TA1 ‖ . . . ‖ TAn of timed automata, where
for each j ∈ [1, . . . , n], TAj = (Lj , l

0
j , Xj ,Σj ,Arcsj , Inv j) and all Lj are

pairwise disjoint sets of locations is the timed automaton

TA = (L, l0, X,Σ,Arcs, Inv)

such that:

• L = L1× . . .×Ln and l0 = (l01, . . . , l
0
n), X =

⋃n
j=1Xj , Σ =

⋃n
j=1 Σj ,

• ∀l = (l1, . . . , ln) ∈ L : Inv(l) =
∧

j Inv j(lj),

• Arcs is the set of arcs (l1, . . . , ln)
g,a,r−→ (l′1, . . . , l

′
n) such that for all

1 ≤ j ≤ n then l′j = lj .

The semantics of a synchronous product TA1 ‖ . . . ‖ TAn is that of the
underlying timed automaton TA with the following notations. A location is
a vector l = (l1, . . . , ln). We write l[l′j/lj , j ∈ S] to denote the location l in
which the jth element lj is replaced by l′j , for all j in some set S. A valuation
is a function ν from the set of clocks to the non-negative reals. Let V be the
set of all clock valuations, and ν0(x) = 0 for all x ∈ X . We shall denote by
ν � F the fact that the valuation ν satisfies (makes true) the formula F . If r
is a clock reset, we shall denote by ν[r] the valuation obtained after applying
clock reset r ⊆ X to ν; and if d ∈ R>0 is a delay, ν + d is the valuation such
that, for any clock x ∈ X , (ν + d)(x) = ν(x) + d.

The semantics of a synchronous product TA1 ‖ . . . ‖ TAn is defined as
a timed transition system (S, s0,→), where S = (L1×, . . . × Ln) × V is the
set of states, s0 = (l0, ν0) is the initial state, and→⊆ S × S is the transition
relation defined by:

• (silent): (l, ν) → (l′, ν ′) if there exists li
g, ,r−→ l′i, for some i, such that

l′ = l[l′i/li], ν � g and ν ′ = ν[r],
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(a) The timed automata network TA1 ‖ TA2 is the
synchronous product of the TA1 and TA2 automata.

[(l1, l3); x = 0]
↓

[(l1, l3); x = 1]
↓

[(l2, l3); x = 0]
↓

[(l2, l3); x = 0.5]
↓

[(l2, l3); x = 1]
↓

[(l2, l4); x = 1]

(b) A possible run.

Figure 1: TA1 and TA2 start in the l1 and l3 locations, respectively, so the
initial state is [(l1, l3); x = 0]. A timed transition produces a delay of 1
time unit, making the system move to state [(l1, l3); x = 1]. A broadcast
transition is now enabled, making the system move to state [(l2, l3); x = 0],
broadcasting over channel a and resetting the x clock. Two successive timed
transitions (0.5 time units) followed by a broadcast one will eventually lead
the system to state [(l2, l4); x = 1].

• (broadcast): (l̄, ν) → (l̄′, ν ′) if there exist an output arc lj
gj ,b!,rj−→ l′j ∈

Arcsj and a (possibly empty) set of input arcs of the form lk
gk,b?,rk−→ l′k ∈

Arcsk such that for all k ∈ K = {k1, . . . , km} ⊆ {l1, . . . , ln} \ {lj},
the size of K is maximal, ν �

∧
k∈K∪{j} gk, l′ = l[l′k/lk, k ∈ K ∪ {j}]

and ν ′ = ν[rk, k ∈ K ∪ {j}];

• (timed): (l, ν)→ (l, ν + d) if ν + d � Inv(l).

The valuation function ν is extended to handle a set of shared bounded
integer variables: predicates concerning such variables can be part of edges
guards or locations invariants, moreover variables can be updated on edges
firings but they cannot be assigned to or from clocks.

In Figure 1 we exemplify timed automata usage, we consider the network
of timed automata TA1 and TA2 with broadcast communications, and we give
a possible run.

Throughout our modelling, we have used the specification and analysis
tool Uppaal [4] which provides the possibility of designing and simulating
Timed Automata Networks on top of the ability of testing networks against
temporal logic formulae.
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4 Spiking Neural Networks modelling

We present here our modelling of the Spiking Integrate and Fire Neural Net-
work via Timed Automata Networks. Let S = (Vi∪Vint∪Vout,A,w) be such a
network (as remarked in Section 2 we distinguish between input, intermediary
and output neurons). The Timed Automata Network will be obtained as the
parallel composition of the encoding of each kind of neuron. More formally:

JSK = ( ‖
Ni∈Vi

JNiK) ‖ ( ‖
Nj∈Vint

JNjK) ‖ ( ‖
No∈Vout

JNoK)

4.1 Input neurons

The behaviour of input neurons is part of the specification of the network. Here
we define two kinds of input behaviours: regular and non-deterministic ones.
For each family, we provide an encoding into Timed Automata.

Regular input sequences. Spike trains are “regular” sequences of spikes
and pauses: spikes are instantaneous while pauses have a non-null duration.
Sequences can be empty, finite or infinite. After each spike there must be a
pause except when the spike is the last event of a finite sequence. Infinite
sequences are composed by two parts: a finite and arbitrary prologue and an
infinite and periodic part composed by a finite sequence of spike–pause pairs.
More formally the input sequence IS is defined by the grammar production :

IS ::= ε | Φ | Φ Ωω

where Φ is a finite prefix
Φ := P? (s P )∗s

and Ω is the part which is repeated infinitely often

((s P1) · · · (s Pn))ω

with s representing a spike and Pi = p[Ni] is a a pause of a duration Ni.
It is possible to generate an emitter automaton for any regular input se-

quence. Such an automaton requires a clock t to measure pause durations,
a boolean variable s which is true every time the automaton is firing and a
location for each spike or pause into the sequence. The encoding J IS K is as
follows, where α ranges over sub-sequences.:

• J ε K = an empty sequence is encoded into an automaton having

just one location E without any edge;
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• J Φ K = any finite sequence is encoded into

a sequence of locations, as described below, where the last one has no
outgoing edges and represent the end of the sequence;

• J Φ Ωω K = any infinite se-

quence is composed by a finite sub-sequence Φ followed by a finite sub-
sequence Ω repeated an infinite amount of times. The two sub-sequences
are encoded according to the rules explained below and the resulting
automata are connected. Finally, an urgent location R is added, having
an input edge from Ω last location and an output edge to Ω first location.

Any finite sub-sequence is a list of spikes and pauses. They are recursively
encoded as follows:

• J p[N ]α K = any pause having duration N

and followed by a sub-sequence α is encoded into a location P with the
invariant t 6 T having one outgoing edge connected to the automaton
J α K; such an edge is enabled if and only if t = T and, if triggered, t is
reset and, since pauses are always followed by spikes, s is set to true;

• J s α K = any spike followed by a sub-sequence

α is translated to an urgent location S having one output edge connected
to the automaton translated from α; such an edge emits on y if triggered
and resets s.

Non-deterministic input sequences. These kinds of input sequences are
useful when no assumption is available on neuron inputs. These are random
sequences of spikes separated by at least Tmin time units. Their encoding is
shown in Figure 2 and the automaton behaves as follows: it waits in location
B an arbitrary amount of time before moving to location S, firing its first spike
over channel x. Since location S is urgent, the automaton instantaneously
moves to location W, resetting clock t. Finally, from location W, after an
arbitrary amount of time t ∈ ]Tmin, ∞ [, it moves to location S, firing a spike.
Notice that an initial delay D may be introduced by adding invariant t ≤ D to
location B and guard t = D on edge (B→ S).
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Figure 2: Non-deterministic input sequence automaton

4.2 Intermediary and Output Neurons

The neuron is designed as a synchronous and stateful machine that: i) accumu-
lates potential whenever it receives input spikes within a given accumulation
period, ii) if the accumulated potential is greater than the threshold, the neuron
emits an output spike, iii) it waits during a refractory period, and restarts from
i). We assume that no two input spikes on the same synapse can be received
within the same accumulation period (i.e., the accumulation period is shorter
than the minimum refractory period of the input neurons of the network).
Next, we give the encoding of a neuron into Timed Automata. Notice that
this encoding applies to intermediary and output neurons only.

Definition 3. Given an intermediary neuron N = (θ, p, τ, y) with m input
synapses, its encoding into Timed Automata is JNK = (L,A,X,Σ,Arcs, Inv)
with:

• L = {A,W,D} with D committed,

• X = {t}

• Σ = {xi | i ∈ [1..m]} ∪ {y},

• Arcs = {(A, t ≤ T, xi?, {a := a + wi}, A) | i ∈ [1..m]} ∪ {(A, t =
T, , {p := a+bλpc}, D), (D, p < θ, , {a := 0}, A), (D, p ≥ θ, y!, ,W ), (W, t =
τ, , {a := 0, t := 0, p := 0}, A)} ;

• Inv(A) = t ≤ T, Inv(W ) = t ≤ τ, Inv(D) = true.

The neuron behaviour, described by the Automaton in Figure 3, depends
on the following channels, variables and clocks:

• xi for i ∈ [1..m] are the m input channels,

• y is the broadcast channel used to emit the output spike,

• p ∈ N is the current potential value, initially set to 0,

64 ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY



26/9/2017- page #65

Figure 3: Neuron model.

• a ∈ N is the weighted sum of input spikes occurred within the current
accumulation period; it is 0 at the beginning of each round.

The automaton has three locations: A, D and W. It can move from one
location to another according to the following intuitive semantics:

• the neuron keeps waiting in state A (for Accumulation) for input spikes
while t 6 T and whenever it receives a spike on input xi, it updates a
with: a := a+ wi

• when t = T , the neuron moves to state D (for Decision), resetting t and
updating p according to the potential function given in Definition 1 :

p := a+ bλ · pc

since state D is committed, it does not allow time to progress, so, from
this state, the neuron can move back to state A resetting a if the potential
has not reached the threshold p < θ, or it can move to state W, firing an
output spike, otherwise;

• the neuron remains in state W (for Wait) for τ time units and then it
moves back to state A resetting a, p and t.

4.3 Output consumers

In order to have a complete modelling of a Spiking Neural Network, for each
output neuron we build an output consumer automaton Oy. The automaton,
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Figure 4: Output consumer automaton.

shown in Figure 4, waits in location W for the corresponding output spikes
on channel y and as soon as it receives the spike, it moves to location O.
This location is only needed to simplify model checking queries. Since it is
urgent, the automaton instantly moves back to location W resetting s the clock
measuring the elapsed time since last emission and setting e to its negation,
with e being a boolean variable which differentiates each emission from its
successor.

Thus the encoding of an output neuron No is the parallel composition of
the encoding of the No as if it was an intermediary neuron plus an output
consumer on it broadcast channel y:

JNoK = JNoK ‖ Oy

5 Conclusion and Future Works

In this paper we formalised the LI&F model of Spiking Neural Networks via
Timed Automata Networks. LI&F neurons are modelled as automata waiting
for inputs on a number of different channels, for a fixed amount of time. When
such an accumulation period is over, the current potential value is computed
taking into account the current sum of weighted inputs, and the previous de-
cayed potential value. If the current potential overcomes a given threshold, the
automaton emits a broadcast signal over its output channel, otherwise it restarts
its accumulation period. After each emission, the automaton is constrained
to remain inactive for a fixed refractory period (after which the potential is
reset). Spiking Neural Networks composed by more than one neuron can
be formalised by a set of automata one for each neuron, running in parallel
and sharing channels accordingly. The inputs needed to feed network are
defined through Timed Automata as well. We have provided a language and
its encoding into Timed Automata to model patterns of spikes and pauses and
a way of modelling unpredictable sequences.

We have a complete implementation of the Spiking Neural Network model
proposed in the paper via the tool Uppaal. It can be found at page [1].

As for future work, we intend to validate our neuron model proving some
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characteristic properties expressed in temporal logics via model-checking. Fur-
thermore, we consider this work as the starting point for a number of research
directions: we plan to study whether our model cannot reproduce behaviours
requiring bursts emission capability, as stated in [13] (e.g., tonic or phasic
bursting), or some notion of memory (e.g., phasic spiking, or bistability). Fur-
thermore, it may be interesting to enrich our formalisations to include mod-
elling of propagation delays or even more complex spiking neuron models
like the theta-neuron model [7] or Izhikevich’s one [12]. Finally it may be
interesting to combine learning algorithms with formal-analysis: we would
like to exploit reachability properties verification to control weights variations
within the scope of existing learning algorithms or strategies, e.g., Hebb’s
rule [9].
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Abstract - Introduction

We have shown last year [1] the interest of reduced models of metabolism, still
representing the main architecture and stoichiometry of the whole metabolism,
but with fewer steps which are aggregations of the actual reactions. The re-
duced model HSM (Human-Scale Model) we have developed (Fig. 1) involves
58 reactions (of which 25 are reversible) and 63 metabolites (of which 35
are internal metabolites) (see appendix 1 for the abbreviations and appendix
2 for the list of metabolites and reactions). The advantage of such models is
to be more easily tractable and more understandable. Furthermore, the great
interest of reduced models is to permit different theoretical approaches of a
given metabolic network.

With this kind of model it was possible to combine the calculation of Ele-
mentary Flux Modes (EFM) [2, 3] and FBA analysis [4] to study the produc-
tion of serine in cancer cells on different substrates [1]. In this short paper we
continue the exploration of HSM models in introducing rate equations of the
reactions and the metabolites concentrations in order to develop a dynamical
study of such a metabolic network.

In this work we were faced with several problems: what is the rate equation
of aggregation of successive enzymatic reactions? What is the concentration
of the remainder metabolites?

We will show how we deal with these problems with the example of the
reduced glycolysis part of our model, which contains 5 reactions instead of 10
in the actual glycolysis.
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Figure 1: HSM13-3 metabolic network. The abbreviations are given in Appendix 1
and the reactions detailed in Appendix 2.

1 Model of reduced glycolysis

Our reduced model of glycolysis is represented in figure 2. It is essential
that the results we obtain when solving the dynamical system representing the
reduced network at steady state give fluxes and metabolites concentrations in
the range of the physiological values.
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Figure 2: Reduced glycolysis. Abbreviations: GLUCUP: Glucose uptake. G1: hex-
okinase + phosphoglucose isomerase. G2: phosphofructokinase + aldolase + triose-
phosphate isomerase. G3: Glyceraldehyde-3P Dehydrogenase + phosphoglycerate
kinase. ENOMUT: Enolase + Phosphoglycerate Mutase. PK: Pyruvate Kinase. LDH:
Lactate Dehydrogenase. The abbreviations of metabolites are given in table 2. The
numbers in front of the brown squares represented the Vmax of the (aggregated)steps.

2 The problem of concentrations

In order to have an idea of the concentrations of the different metabolites of
glycolysis, we did a survey of the literature which led us to table 1.
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In order to preserve the mass amount circulating inside the metabolic network
the concentrations of the metabolites at the nodes are taken as the sum of the
metabolites concentrations of the species involved in the aggregated reactions.
The abbreviation of these new virtual metabolites are the abbreviations of the
last metabolite species preceded by “n”. Thus (see the list of abbreviations in
Table 1):
nF6P = G6P + F6P
nG3P = F-1,6-P2 + DHAP + G3P
n3PG = 1,3DPG + 3PG
nPEP = 2PG + PEP
The experimental values of these sums of concentrations are given in table 2.

Metabolite Abbreviation Measured Concentrations
Glucose Glc 5 mM
Glucose-6-Phosphate G6P 150 µM
Fructose-6-Phosphate F6P 40 µM
Fructose-1,6-bisphosphate FBP 300 µM
Glyceraldehyde-3-Phosphate G3P 50 µM
Dihydroxyacetone Phosphate DHAP 350 µM
1,3-Biphosphoglycerate 13BPG 1 µM
3-Phosphoglycerate 3PG 125 µM
2-Phosphoglycerate 2PG 60 µM
Phosphoenolpyruvate PEP 25 µM
Pyruvate PYR 1 mM
Lactate LAC 10 mM
Phosphate Pi 2.5 mM
ATP ATP 3 mM
ADP ADP 0.3 mM
NAD NAD 0.5 mM
NADH NADH 0.07 mM

Table 1: Mean values of metabolites concentrations in glycolysis.

These values are orders of magnitude of the concentrations extracted from the
literature ([8] and [9] for instance).

3 The rate equations

When a reversible step is associated with an irreversible one (case of G1 and
G2), the rate equation is essentially the one of the irreversible step. For the
association of reversible steps we take mass action law as rate equation with the
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New Metabolite Sum of Exp. Conc.
(mM)

Model at
steady-state

Glc Glc 5 4.94
nF6P G6P + F6P 0.2 0.5
nG3P F-1,6-P2+DHAP +G3P 0.7 0.9
n3PG 1,3DPG + 3PG 0.1 – 0.2 0.15
nPEP 2PG + PEP 0.1 0.13
PYR PYR 1 0.96
LAC LAC 1 1 fixed
ATP ATP 3 4.45
ADP ADP 0.3 0.55
NAD NAD 0.5 1 fixed
NADH NADH 0.07 0.05 fixed

Table 2: Experimental and calculated values of the concentrations of the sums
of metabolites used in the simplified version of glycolysis depicted in Fig. 2. The
column “Exp. Conc. (mM)” is deduced from the values listed in table 1 applying the
conventions “nF6P = G6P + F6P etc.” and the column “Model at steady-state” gives
the corresponding values derived from the model at steady-state.

product of equilibrium constant as new equilibrium constant of the aggregated
steps. Several rate equations are taken from [5] and [6].

Glucose entry: vGLUCUP = kGLUCUP*GLUC - kMGLUCUP*Glc.
In the model, the high values of the kinetic constants lead to Glc = GLUC at
steady-state.

Step G1: vG1 = NG1/DG1 with
NG1 = VMG1*Glc/KGlc*ATP/KATP and
DG1 = (1+Glc/KGlc+(nF6P2/Ki))*(1+ATP/KATP)

This equation involves the inhibition term (nF6P2/Ki) [5] essential to insure
that the consumption of ATP is not too high at the beginning of glycolysis; this
may lead to the consumption of all ATP before its regeneration at the end of
glycolysis leading to an arrest of glycolysis when ATP = 0. This is the danger
of “Turbo effect” well explained in [5].

Step G2: vG2 = VMG2*nF6P/KnF6P/(1+nF6P/KnF6P)*ATP/KG2ATP/
(1+ATP/KG2ATP+(ATP/KiATP)4)

This equation involves the inhibition term (ATP/KiATP)4 [5], which represents
partly the allosteric properties of the phosphofructokinase (PFK).
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Step G3:
vG3 = VMG3*(nG3P/KG3G3P*NAD/KG3NAD*(5-ATP)/KG3ADP

-1/KQG3*n3PG/KG3n3PG*NADH/KG3NADH*ATP/KG3ATP)

Step ENOMUT:
vENOMUT = VMENO*(n3PG/KENOn3PG - 1/KQENO*PEP/KENOPEP)

Steps G3 and ENOMUT are reversible steps represented by mass action law
with the composition of equilibrium constants.

Step PK: This step is represented by a generalized Henri-Michaelis-Menten
equation vPK = NPK/DPK with:

NPK = VMPK*PEP/KPKPEP*(ADP)/KPKADP
DPK = (1+PEP/KPKPEP)*(1+(ADP)/KPKADP)

Step LDH: This step is reversible,
vLDH = VMLDH*(PYR/KLDHPYR*NADH/KLDHNADH

-1/KQLDH*LAC/KLDHLAC*NAD/KLDHNAD)

Step ATPase: A consumption of ATP is added to simulate the ATP usage of the
cell. It permits to reach a steady-state. This step is supposed to be irreversible,
modeled by a classical Henri-Michaleis-Menten equation.
vATPase = VMATPase*ATP/(KATP2+ATP)

The parameters values of these equations which fit the experimental values
of table 2 are given in the following:

NAD = 1 NADH = 0.05 kGLUCUP=100
kMGLUCUP=100 GLUC = 5 VMG1 = 7.5
KATP = 0.15 KGlc = 1 Ki = 4.422
KnF6P = 0.03 KG2ATP = 0.06 KiATP = 1
VMG2 = 40 VMG3 = 10 KG3G3P = 0.15
KG3NAD=1 KG3NADH =1 KG3ADP =1
KQG3 = 0.157 KG3n3PG = 0.1 KG3ATP = 1
VMPK =25 KPKPEP = 0.1 vMENO = 50
KQENO = 1.056 KENOn3PG =0.1 KENOPEP = 0.1
KPKADP = 0.1 VMLDH = 100 KLDHPYR = 0.4
KLDHNADH = 1 KQLDH = 11000 KLDHLAC = 1
KLDHNAD = 1 LAC = 1 VMATPase = 20
KATP2 = 3

With these values a steady-state is reached and the concentrations values
obtained at steady-state are listed in table 2. One can see that the calculated
values are not too different from the average experimental values.
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4 Conclusion

This model of glycolysis shows how rate equations can be applied on the
reduced metabolic network HSM of central carbon metabolism. We have
already developed a simple model of TCA cycle [7] which will be added
to this model of glycolysis. The proton motive force (PMF) which is the
thermodynamically link between the respiratory chain and the mitochondrial
ATP synthesis will be modeled as a special substrate concentration.

More generally, the different steps of HSM reduced network will be mod-
eled with a Henri-Michaelis-Menten equation if they contain an irreversible
steps or with a mass action law if all they reactions are reversible.

The interest of a dynamical modeling of a metabolic network is to intro-
duce the concentrations of the metabolites. Furthermore, the fluxes obtained
in a dynamical simulations can be analyzed in term of elementary flux modes
(EFM) and the yield compared to the flux balance analysis (FBA) of the same
network. Finally the sensitivity of the network can be studied, particularly, the
Flux Control Coefficients can be calculated.
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Appendix 1: Abbreviations of reactions

ANT: ADP/ATP exchanger.
ASPUP: Aspartate uptake.
ASYNT: ATP Synthase.
ATPASE: ATPusage.
CL: Citrate Lyase.
CS: Citrate Synthase.
ENOMUT: Enolase + Phosphoglycerate Mutase.
G1: hexokinase + phosphoglucose isomerase.
G2: phosphofructokinase + aldolase + triose-phosphate isomerase.
G3: Glyceraldehyde-3P Dehydrogenase+ phosphoglycerate kinase.
GG3: triose phosphate isomerase + aldolase + fructose-1,6-biphosphatase.
GG4: phosphogluco isomerase + glucose-6-phosphatase.
GLS1:Glutaminase.
GLNUP: Uptake of Glutamine.
GLUCUP: Uptake of glucose.
GLUD1: Glutamate Dehydrogenase.
GOT1: cytosolic Glutamate Oxaloacetate Transaminases.
GOT2: mitochondrial Glutamate Oxaloacetate Transaminases.
GS1: Glutamine synthase .
IDH1: cytosolic Aconitase + Isocitrate dehydrogenase (NADP).
IDH2: mitochondrial Aconitase + Isocitrate dehydrogenase (NADP).
IDH3: mitochondrial Aconitase + Isocitrate dehydrogenase (NAD).

76 ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY



26/9/2017- page #77

K567: 2-oxoglutarate dehydrogenase + succinate thiokinase + succinate
dehydrogenase + fumarase.
L: Leak of the membrane to protons.
LACIO : Input/Output of lactate.
LDH: Lactate Dehydrogenase.
MDH1: cytosolic Malate Dehydrogenase.
MDH2: mitochondrial Malate Dehydrogenase.
ME1: cytosolic Malic enzyme.
ME2: mitochondrial Malic enzyme.
NN: transhydrogenase.
PDH: Pyruvate Dehydrogenase.
PEPCK1: cytosolic PhosphoEnolPyruvate Carboxy Kinase.
PK: Pyruvate Kinase.
PL1: Synthesis of PhosphoLipids.
PL2: beta oxidation of fatty acids.
PL3: Formation of PalmitylCoA.
PP1: Oxidative part of PPP.
PP2: non-oxidative part of PPP.
PUR: Nucleotide Synthesis.
PYC: Pyruvate Carboxylase.
RC1: Complex I of Respiratory Chain.
RC2: Complex (III+IV) of Respiratory Chain.
SEROUT: Output of serine.
SERSYNT: Serine Synthesis = Dehydrogenase + Transaminase and
Phosphatase.
T1(CIC): Citrate/Malate exchanger.
T2(OGC): Glutamate/Aspartate exchanger.
T3(DIC): Dicarboxylate carrier.
T4 (GLAST): Malate/2-oxoglutarate exchanger.
T5(PIT): Pi carrier.
T6: Pyruvate transporter in mitochondria .
T7: Phosphoenolpyruvate exchanger cytosol/mitochondria.
T8: Glutamine exchanger cytosol/mitochondria.
T9: Glutamate/H+ transporter in mitochondria.
T10: AcetoAcetate /H+ transporter in mitochondria .
T11: Palmity-CoA transporter in mitochondria.
T12: cytosolic Pi transport .
T13: Cytosolic Palmitate transport.
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Appendix 2: METATOOL entry file of HSM X

-ENZREV
ASYNT ANT ENOMUT G3 GLUD1 GOT1 GOT2 IDH1 IDH2 LACIO LDH
MDH1 MDH2 ME1 ME2 PP2 T1 T2 T3 T5 T7 T8 T9 T12 T13

-ENZIRREV
ASPUP ATPASE CL CS G1 G2 GG3 GG4 GLNUP GLS1 GLUCUP GS1
IDH3 K567 L NN PDH PEPCK1 PK PL1 PL2 PL3 PP1 PUR PYC RC1 RC2
SEROUT SERSYNT T4 T6 T10 T11

-METINT
3PG AcetoAcetate c AcetoAcetate m ACoAc ACoAm AKGc AKGm ASPc
ASPm CITc CITm PMF G3P G6P GLNc GLNm GLUCc GLUTc GLUTm
LACc MALc MALm OAAc OAAm PalCoAc PalCoAm Palmitate c PEPc
PEPm Pic Pim PYRc PYRm R5P SERc

-METEXT
ADPc ADPm ASP ATPc ATPm BASES CO2 CoAc CoAm GLN GLUC HCO3
LAC NADc NADHc NADm NADHm NADPc NADPm NADPHc NADPHm
NH3 O2 Palmitate Pi Q QH2 SER

-CAT
ANT : ATPm + ADPc + 0.88 PMF = ATPc + ADPm .
ASPUP : ASP = ASPc .
ASYNT : 3 ADPm + 3 Pim + 8 PMF = 3 ATPm .
ATPASE : ATPc = ADPc + Pic .
CL : CITc + ATPc + CoAc = ACoAc + OAAc + ADPc + Pic .
CS : ACoAm + OAAm = CITm .
ENOMUT : PEPc = 3PG .
G1 : GLUCc + ATPc = G6P + ADPc .
G2 : G6P + ATPc = 2 G3P + ADPc .
G3 : G3P + NADc + ADPc + Pic = 3PG + NADHc + ATPc .
GG3 : 2 G3P = G6P + Pic .
GG4 : G6P = GLUCc + Pic .
GLNUP : GLN = GLNc .
GLS1 : GLNm = GLUTm + NH3 .
GLUCUP : GLUC = GLUCc .
GLUD1 : GLUTm + NADm = AKGm + NADHm + NH3 .
GOT1 : GLUTc + OAAc = ASPc + AKGc .
GOT2 : GLUTm + OAAm = ASPm + AKGm .
GS1 : GLUTc + NH3 + ATPc = GLNc + ADPc + Pic .
IDH1 : CITc + NADPc = AKGc + NADPHc + CO2 .
IDH2 : CITm + NADPm = AKGm + NADPHm + CO2 .
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IDH3 : CITm + NADm = AKGm + NADHm + CO2 .
K567 : AKGm + NADm + Pim + ADPm + Q = MALm + NADHm + CO2 +
ATPm + QH2 .
L : PMF = .
LACIO : LACc = LAC .
LDH : PYRc + NADHc = LACc + NADc .
MDH1 : MALc + NADc = OAAc + NADHc .
MDH2 : MALm + NADm = OAAm + NADHm .
ME1 : MALc + NADPc = PYRc + NADPHc + CO2 .
ME2 : MALm + NADm = PYRm + NADHm + CO2 .
NN : NADHm + NADPm + PMF = NADm + NADPHm .
PDH : PYRm + NADm = ACoAm + NADHm + CO2 .
PEPCK1 : OAAc + ATPc = PEPc + ADPc + CO2 .
PK : PEPc + ADPc = PYRc + ATPc .
PL1 : 8 ACoAc + 7 ATPc + 14 NADPHc + 7 HCO3 = Palmitate c + 7 ADPc
+ 7 Pic + 14 NADPc + 8 CoAc + 7 CO2 .
PL2 : PalCoAm + 7 NADm + 7 CoAm + 7 Q = 7 NADHm + 8 ACoAm + 7
QH2 .
PL3 : Palmitate c + CoAc = PalCoAc .
PP1 : G6P + 2 NADPc = R5P + 2 NADPHc + CO2 .
PP2 : 3 R5P = 2 G6P + G3P .
PUR : R5P + 2 GLNc + ASPc + 3 ATPc = BASES + 2 GLUTc + 3 ADPc + 3
Pic .
PYC : PYRm + HCO3 + ATPm = OAAm + Pim + ADPm .
RC1 : NADHm + Q = NADm + QH2 + 4 PMF .
RC2 : 6 QH2 + 3 O2 = 6 Q + 36 PMF .
SEROUT : SERc = SER .
SERSYNT : 3PG + GLUTc + NADc = SERc + AKGc + NADHc + Pic .
T1 : CITm + MALc = CITc + MALm .
T2 : AKGc + MALm = AKGm + MALc .
T3 : MALm + Pic = MALc + Pim .
T4 : GLUTc + ASPm + PMF = GLUTm + ASPc .
T5 : Pic + 0.12 PMF = Pim .
T6 : PYRc + 0.12 PMF = PYRm .
T7 : PEPc = PEPm .
T8 : GLNc = GLNm .
T9 : GLUTc + 0.12 PMF = GLUTm .
T10 : AcetoAcetate c + 0.12 PMF = AcetoAcetate m .
T11 : PalCoAc = PalCoAm .
T12 : Pi = Pic .
T13 : Palmitate = Palmitate c .
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Abstract

We present an abstract model of energy metabolism that aims at understand-
ing how activity level of biological functions and combination of nutrients
influence metabolic shifts. One of the most frequently observed transition
is between respiration and fermentation which is induced by high intake of
glucose even in the presence of oxygen (Crabtree and Warburg effects). This
glycolytic phenotype is observed in many micro-organisms including parasites
and is also shared by all cancer cell lines which makes the Warburg glycolytic
phenotype one of the most efficient target in oncology. Nutrients influence
production yield of high added value compounds and the study of metabolic
shifts is also of concern in bioproduction and fermentation processes. In order
to help understanding how major metabolic actors influence these transitions,
we developed an abstract and qualitative model of energy metabolism. To
facilitate the interpretation of our results with respect to biological knowl-
edge we restrict our variables to key metabolic or cellular components such
as pathways, cellular functions, nutrients and important cofactors that play the
role of regulators in this cellular system. Primary results on global dynamic
phenotypes such as metabolic oscillations and Warburg/Crabtree effects are
presented in this chapter. Our simulations have been done using a new software
called DyMBioNet.

1 Introduction

Highly proliferative cells such as micro-organisms play a major role in biotech-
nology as their high turnover provides interesting yields for the industrial bio-
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synthesis of high added value molecules such as food complement or bio-
fuel. To adapt between cellular maintenance or cell growth (i.e. produc-
tion of biomass) or between primary and secondary metabolism cells modify
their metabolism with respect to environmental conditions. Nutrients, pres-
ence/absence of oxygen, carbon/nitrogen ratio are external regulators of cellu-
lar economy. They may induce metabolic shift such as the short term Crabtree
effect that shows immediate shift from respiration to fermentation upon addi-
tion of excess sugar or the long term Crabtree effect that arise under steady-
state conditions at high growth rates [1]. This effect which persists even in the
presence of oxygen has also been observed in cancer cells by Otto Warburg in
the early 20th century. The Warburg phenotype evolved towards a seemingly
irreversible status due to the accumulation of mutations whereas the Crabtree
effect is clearly reversible [2]. In the rest of this chapter, we do not make
further distinctions between short and long term Crabtree effect or between
reversible Crabtree and irreversible Warburg effect as this is not the scope of
this chapter.

The Warburg glycolytic phenotype occurs in all tumor cell lines and there-
fore appears as a common anti-cancer target [3, 4, 5]. Other therapeutic areas
such as infectious diseases (e.g. parasitic diseases), anti-aging or obesity also
strongly depend on metabolism energetics. Controlling cellular fate is crucial
not only to develop therapeutic strategy against infectious diseases or cancer
but is also central to optimize yield in industrial bio-processes.

To study how metabolism can control such global cellular phenotypes,
we developed an abstract model of energy metabolism. We made use of the
Ockham’s razor principle which asserts that between two equivalent models,
the simpler, the better.

The next five sections describe: i) our qualitative modelling approach of
energy metabolism, ii) a global view of energy metabolism and especially,
the trade-off between efficient versus inefficient metabolism (respiration vs
fermentation), iii) the Thomas modelling framework, iv) our qualitative model
and the associated kinetic parameters, and finally v) four dynamics of energy
metabolism under respiration, fermentation and Crabtree/Warburg initial con-
ditions using DyMBioNet software.

2 Energy trade off in Cell Metabolism

Metabolism can be summarized as an oscillation between catabolism and an-
abolism. Catabolism degrades nutrients to extract electrons to be used dur-
ing anabolism (synthesis of biological macro-molecules) or store in cofactors
as a reservoir of energy. More specifically, electrons are stored in: i) cyto-
plasmic NAD(P)H which plays the role of electron container to synthesize
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biomolecules or redox potential to release fermentation products, ii) mito-
chondrial NADH to create proton gradients and ATP through ATP-synthase
in oxydative phosphorylation chain thanks to electron acceptor role of oxygen,
iii) the third main reservoir concerns electron-pair bonds with primary metabo-
lites (nucleotides, aromatic amino acids), plants alkaloids or flavor compounds
issued from fermentation process. Most of secondary metabolites of industrial
interest (i.e. food, biofuel) are produced during fermentation. The production
yield of these metabolites are therefore sensitive to the metabolic modes of the
cell especially to respiration and fermentation.

Figure 1: Energy metabolism: trade-off between fermentation and respiration.
The Glycolysis pathway (upper wheel) is connected through pyruvate to two
other pathways: fermentation with a fast turn over and Krebs cycle which has
a high efficiency but lower turn over.

The shift from a highly efficient metabolism (respiration) to an inefficient
metabolism (fermentation) at high glucose intake is one of the most important
effects characterizing the Crabtree or Warburg effect mentioned above. The
energy yield is decreasing from 36 to 2 molecules of ATP per molecule of
glucose but the turnover of glucose (number of glucose molecule degraded per
unit of time) is higher (Figure 1). These metabolic modes impact cell growth
rate [6] and bio-production of secondary metabolites [7].

3 A coarse-grained qualitative approach of energy metabolism

In order to study the impact of external conditions (nutrient, drugs) on the
global phenotypes of energy metabolism, especially the Crabtree or Warburg
effect, we focus on the biological actors that are directly related to these phe-
notypes. The variables of our model correspond therefore to coarse-grained
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metabolic descriptors such as metabolic pathways, biological functions, key
cofactors or cellular nutrients (Figure 2).

Figure 2: Four main classes of actors for the energy metabolism: biological
functions or pathways (left), nutrients and cofactor (middle), cell growth
components (right) and controls of cellular inputs (white).

The advantage of this qualitative modelling is to get closer connection with
experimental facts as global effect of cellular functions or pathways are usually
well known. The parametrization of the model depends only on biological
knowledge and not on molecular interactions for which kinetics constants are
more difficult to estimate in vivo. The model includes four classes of cellular
variables and one class of external cursors controlling nutrients and consump-
tion of energy. The four internal cell variables are: i) biological functions
or metabolic pathways such as Glycolysis, Fermentation, Krebs cycle and
Oxidative Phosphorylation (red circles in figure 2), ii) nutrients, which concern
carbon source symbolized by glucose (GLC), nitrogen source symbolized by
glutamine (GLN) and oxygen (O2), iii) energy and redox cellular level sym-
bolized by the ratio of cofactors ATP/ADP and NADH/NAD+ and finally iv)
the biomass-related components that correspond to anabolism.

The ATP/ADP ratio captures the energetic balance of the cell. It encap-
sulates all the other related molecules such as GTP, AMP and inorganic phos-
phate (Pi). Other important nutrients necessary for cell growth such as vita-
mins are supposed to be present implicitly. This abstraction level is not as high
for the NADH/NAD+ ratio which corresponds explicitly to the redox molecu-
lar components directly involved in the Glycolysis pathway and Krebs cycle.
The NADPH/NADP+ cofactors are the redox energy cofactors for anabolism
which are not explicitly involved in the Crabtree or Warburg transitions. For
that reason there were only implicitly included into the ”Biomass Production”
variables (blue cycle in Figure 2).
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4 The Thomas Modelling Framework

René Thomas has developed in the 70’s a discrete modelling approach for gene
networks [8, 9] where a gene never consumes its activators or inhibitors con-
trarily to metabolism where a product consumes its substrate. In our qualitative
model of energy metabolism, variables corresponding to biological functions
or metabolic pathways do not consume their resources. For example, Glycoly-
sis “activates” the Krebs cycle but it is nevertheless not “consumed” by Krebs.
We consequently decided to use the Thomas formalism instead of a formalism
dedicated to metabolic reactions such as BIOCHAM [10, 11]. Exceptionally,
for cofactors and nutrients, there are consumptions which are then modelled
by negative retro-actions (see full model in Figure 8).

4.1 Interaction network with multiplexes

The static representation of a biological network can be drawn using a directed
graph, in which directed arrows (activation/inhibition) represent the action of
one variable on its target variable. An example is given for the interaction
between Glycolysis and Krebs in Figure 3.

Figure 3: An oversimplified metabolic relation between Glycolysis and Krebs
(only for pedagogical purposes). The end product of Glycolysis is a nutrient
for Krebs (black positive arrow). Moreover a high level of activity of Krebs
can produce citrate, which may inhibit Glycolysis (grey negative arrow). Note
that Glycolysis is not consummed by Krebs.

Moreover, in formal modelling, actors are not always independent vari-
ables. It is often necessary to group together several concomitant molec-
ular conditions into a single statement for an activation or an inhibition to
be present. This is the role of a multiplex, that encodes the basic important
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logical conditions for the action to be present [12]. If the multiplex is FALSE,
then its action (activation or inhibition) is ignored (see Figure 4). More than
one multiplex can act on a given variable. Each multiplex represents only
one resource for its target node, i.e. one well-defined but complex biological
regulation event. The naive representation of Figure 3 can be replaced by 2
multiplexes (Figure 4) that encapsulate more detailed information than just +
and - signs.

Figure 4: Simplified interactions between Glycolysis and Krebs with mul-
tiplexes (green boxes). Top multiplex is called PYRUVATE to mention the
metabolite connecting the two pathways without making it an explicit variable
of the model, note that oxygen is also needed to act on Krebs (∧ stands for
the conjunction). Similarly, CITRATE refers to the inhibitory effect of high
level of citrate on phosphofructokinase. More precisely, it reduces glycolysis
by enhancing the inhibitory effect of ATP. So, a high level of Krebs may
finally inhibit Glycolysis (¬ stands for the negation of being a resource for
Glycolysis).

The top multiplex of Figure 4 informs that pyruvate, the end-product of
GLYCOLYSIS will aliment KREBS. The information that pyruvate is a re-
source of KREBS is encoded into a multiplex called “Pyruvate” (denoted by P)
which says symbolically that GLYCOLYSIS is functional (“GLYC ≥ 1”) and
can activate KREBS (Figure 4). Note that there is no retroactive loop on this
top part to say that KREBS consumes pyruvate and therefore GLYCOLYSIS.
Note also that there is an additional condition in the Pyruvate multiplex which
concerns oxygen. This is a rough illustration of our specific question, i.e.
the shift between aerobic or anaerobic metabolism in cancer cells or micro-
organisms. In this particular case, the assertion that oxygen is present stipulates
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(in cancer cell) the absence of Hypoxia-Induced Factor 1 (HIF1) which inhibits
mitochondria in anoxic condition. The statement on the presence of oxygen in
the “P” multiplex ensures therefore that HIF-1 is “off”.

The second multiplex at the bottom of Figure 4 mentions that citrate (pro-
duced by KREBS ) can inhibit GLYCOLYSIS (through PhosphoFructoKinase)
if accumulated in the cytoplasm. The minus inhibition sign is then logically
encoded by a negative logical statement (the negation ¬) in the second multi-
plex concerning KREBS.

4.2 Activity levels and thresholds

To each variable is assigned a number of qualitative activity states. Certain
variables like O2 are boolean describing only the absence or presence of this
nutrient. Other variables are multivalued in order to capture finer level of
biological activities. These qualitative states are defined according to a given
question of interest.

Figure 5: Three activity states for KREBS. The inhibition of GLYCOLYSIS
by citrate multiplex is effective only if CITRATE is in excess, which occurs
when KREBS is above the threshold of 2 (over-expressed)

For sake of simplicity, GLYCOLYSIS and KREBS variables as well as
PYRUVATE and CITRATE multiplexes are represented by G, KB, P and C
respectively. In addition, the assignment of a name to a multiplex is important
as it denotes a particular molecular mechanism in the energy metabolism. The
name is given to help biologists to define the kinetic parameters of the model
(see Table 1). The variable KREBS is multivalued (0,1,2) in multiplex C. Il this
multiplex, Krebs is prefixed by a ¬ symbol, which means that it inhibits gly-
colysis (represented also by a red line) only when it is over-expressed (0=low,
1=high, 2=over-expressed) as depicted in Figure 5.
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4.3 Kinetic parameters

A particular combination of resources acting on a variable determines its fate
if we leave the variable evolve without limit in time, the rest of the system
being supposedly frozen. The long time activity level of the variable of interest
corresponds to what is often referred to as kinetic parameters, which can be
represented using Kν,ω, where ν is the variable and ω represents the set of
resources (identified by solid arrows in Figure 4).

A variable that possesses n multiplexes as potential resources, has 2n

different potential sets of resources and consequently 2n kinetic parameters.
In Figure 4, KREBS (respectively GLYC) has multiplex P (respectively multi-
plex C) as the sole input and therefore 2 possible sets of resources each. Table 1
lists randomly chosen values for the parameters K.

Kinetic Parameters Values
KKB 0
KKB,P 1
KG 0
KG,C 2

Table 1: An arbitrary set of kinetic parameters. The first and third parameters
indicate that in absence of resources, respectively the Krebs cycle (KB) and
the glycolysis (G) are attracted toward a state (0) that is too low to allow
them having an action on the rest of the system. If the multiplex PYRUVATE
becomes a resource for Krebs (second parameter) then Krebs is attracted
toward a “normal” activity level (1). If the multiplex CITRATE becomes a
resource of glycolysis (that is an absence of citrate, fourth parameter) then,
according to this toy pedagogical example, glycolysis is attracted to a its
highest level (2).

These kinetic parameters are not “dynamical” parameters as they remain
fixed during the simulations but they give all the information that is necessary
to deduce the complete dynamics of the system.

Determining the values for the set of K parameters is based purely on the
biological knowledge. Using formulas from the multiplex, we can quickly
deduce the set of multiplexes which are resources. In Figure 4, multiplex P is a
resource of Krebs only when glycolysis is equal or above 1. In a similar vein,
multiplex C is a resource of G when Krebs is less than 2. This method gives
us a total of 9 parameters, as shown in Table 2.
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Current state Resources (Kν,ω) Attracting State
G KB KG KKB

0 0 C - 2 0
0 1 C - 2 0
0 2 - - 0 0
1 0 C P 2 1
1 1 C P 2 1
1 2 - P 0 1
2 0 C P 2 1
2 1 C P 2 1
2 2 - P 0 1

Table 2: States, applicable parameters and their values. These are only toy
values according to Table 1, chosen to obtain Figure 6.

4.4 Transition graphs

In a dynamical system, a transition from a current state (denoted by η) to a
next state (denoted by η′), can be represented by η → η′, as seen in Figure 6.
As demonstrated in [15], the probability that all variables pass through their
respective thresholds at the same time is negligible in vivo. This means that
the system is asynchronous and therefore only one variable is likely to evolve
(increase or decrease) over a unit of time while other variables remain un-
changed. As demonstrated by Houssine Snoussi, this way of discretizing the
state space is compatible with continuous approaches such as stepwise linear
differential equations [13]. From Table 2, assuming normoxic condition in
which case Oxygen is always present (O2=1) in the cells, we would obtain the
synchronous state graph of Figure 6a.

Focusing on state (2,2) in Figure 6b, we obviously see that imaginary
continuous trajectories (green) would quit the state (2,2) by going either in
state (1,2) or in state (2,1). According to [13], the René Thomas approach
retains the transitions (blue) : (2,2)→ (1,2) and (2,2)→ (2,1). By doing so in
each state,we get the transition graph of Figure 6c.

More formally,

• ν can change from state η(ν) to state η′(ν) = η(ν)+1 only if Kν,ω > η
and it is then required that η′(x) = η(x) for all x 6= ν.

• ν can change from state η(v) to state η′(ν) = η(ν)−1 only if Kν,ω < η
and it is then required that η′(x) = η(x) for all x 6= ν.

• Accordingly, a state η is stable when for all variables x, Kx,ω = η(x)
(i.e. there is no variable ν that gives rise to a possible transition).
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(a) Synchronous State graph (b) Asynchronous Transitions (c) Asynchronous Transition
graph

Figure 6: State transitions. The asynchronous dynamic (a) directly obtained
from Table 2 would be biologically incorrect because it contains “jumps”
from 0 to 2 that do not reflect a continuous increase of activity and because
it contains simultaneous variable changes (diagonal arrows). Asynchronous
variable changes are required for compatibility with models based on differen-
tial equations (b) where the probability to cross two frontiers at the same time
is null. So, Table 2 results finaly to the asynchronous transition graph (c).

5 Our qualitative model

5.1 Introduction

Based on the Thomas framework, we applied a method [14] in 5 steps as
follows:

1. What are the actors? (variables of the system, see section 3)

2. Which variables or combination of variables act on a given variable?
(interaction graph)

3. How many qualitative levels for each variable and in which order are the
targets influenced by a given variable? (link between targets and qual-
itative levels that determines the elementary comparisons in the multi-
plexes)

4. Identify the Kinetic parameters

5. Validate the global behavior of the model

5.2 Threshold order

For each main actor of section 3, we have firstly looked at the actors on which
it acts. For example, Krebs acts on Glycolysis, on the production of biomass
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(PROD-BIOM), as well as GLN and NADH/NAD+. After a first round of
discussions based on the literature, it appears that Krebs acts on Glyc and
Prod. BIOM mainly via the excess production of Citrate and at the same level
of Citrate. So, this gives rise to three targets for Krebs as in Figure 7 (for the
moment ignoring the thresholds):

We then assume that for a reason or another, Krebs goes progressively from
a state where it is completely off to a state where it is running at its maximum
(over-expressed).

Figure 7: Threshold order for Krebs. Krebs acts on three actors including one
multiplex. NADH is the first actor to be activated as Krebs’s level rises up and,
according to the purpose of our model, one sees no reason in the literature to
distinguish the abstract levels of Krebs where CITRATE and GLN are produced
by Krebs (else Krebs would get an additional level 3, which seems useless
according to the questions under consideration).

As soon as Krebs is active, it produces NADH. So, this is the first actor
activated by Krebs (threshold of 1). Krebs may increase its activity by consum-
ing alphaKeto Glutarate (αKG), one end-product of glutaminolysis (cancer
phenotype) which has the effect to produce citrate that exits mitochondria to
be transformed into malate. This citrate-malate shuttle has also the effect of
replenishing NAPDH for the biomass production. Both actions (consumption
of alpha-ketoglutarate, end-product of glutaminolysis and over-production of
citrate is a result of high level of krebs (level 2) without further distinction.

This reasoning allowed us to put the thresholds 1 and 2 in Figure 7. We did
the same work for all the variables and finally we obtain the interaction graph
of Figure 8.

Our abstract model of energy metabolism is made of 10 variables, 11
multiplexes (i.e. regulation mechanisms) and 4 metabolic controllers to setup
the external nutrient conditions.
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Figure 8: Model for energy metabolism resulting from answering three
questions:i) what are the actors? ii) what interacts with what? and iii) which
priority? The last component (kinetic parameters) is given in Table 4.

5.3 Identification of the K parameters

For each actor ν of Figure 8, we have considered the 2n possible sets of
resources and for each of them, we have determined the level towards which ν
is attracted. To do so, we consider a virtual experiment where the considered
resources of ω of ν are “frozen” in the system and we inventory which ones of
the targets of ν would be directly affected by ν.

If the previous stage of the method (threshold order) has been properly
done, there is a level l of ν such that all targets with a threshold t ≤ l are
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affected, then Kν,ω = l. For example, consider the 3 possible resources of
Krebs(Kb) in Figure 8. There are 8 configurations to treat. For example,
when ω = {P} (only Pyruvate), there is normal pyruvate (from glycolysis)
and Krebs is attracted towards a level where it is strong enough to produce
NADH, but not enough to inhibit GLN or produce excess of Citrate. So,
KKb,P = 1. In table 3, a − (respectively x) means absence (respectively
presence) of a resource. The column values corresponds to the threshold
levels of the variable (here the variable Krebs can take only 0,1 and 2 as
possible values). If a C appears as value, this means this condition cannot
occur.

Figure 9: Identification method for the kinetic parameters of Krebs: we
consider successively each of the 8 possible subsets of {β-OX,SAT,PYR},
assume that Krebs benefits from that subset (say ω) of resources for an infinite
period of time, and finally deduce from the literature on which targets Krebs
will finally act. Then KKREBS,ω equals 0 of no target activated, 1 if only
NADH is activated, and else 2, see Table 3.

We did the same work for the 7 other K parameters. Some sets of resources
are inconsistent. For example Pyruvate and β-Oxidation are contradictory.
Inconsistent sets of resources are identified by C in Table 3, where only 4 sets
of resources are consistent. The same work is applied for all variables and we
got the whole set of 100 parameters of the model, owing to the large panel of
convergent literature (see Table 4).

6 Results

6.1 The DyMBioNet Software

We have developed an extension of SMBioNet [15], DyMBioNet (short for
Dynamic Modelling of Biological Networks), which we use to simulate the
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Resources for Krebs, KKREBS,ω

PY R β-OX α-KG Values
- - - 0
- - x C
- x - 1
- x x C
x - - 1
x - x 2
x x - C
x x x C

Table 3: Set of resources for Krebs. “-” and “x” respectively stand for
the absence or the presence of a resource. A qualitative level for the
KREBS variable is assigned (under the column ”values”) for each of the
23 = 8 possible combinations of resources for this central variable. Some
combinations are contradictory (C).

dynamics of the energy metabolism. DyMBioNet also includes proof checking
techniques with Temporal Logic (CTL) to confirm the existence of certain
metabolic states under specific nutrient or drug conditions. It has a built-in
user-friendly interface and a suitable chart for demonstrating how the system
evolves over time. This formal logic framework will also help in the future
to propose most pertinent experiments to validate or refute certain hypotheses
concerning the Warburg effect.

In the following subsections, we illustrate four of the key behaviours that
participate to validate our model.

6.1.1 Respiration under normal condition

The nutrients were set up for normal respiration conditions, i.e. presence of
oxygen, normal level of glucose intake and low level of nitrogen source (GLN).
Simulation shows that under these nutrient conditions, the system is main-
tained in respiration mode or return to respiration if it starts in fermentation
mode (FERM = 1 at the initialisation of the simulation).

In this respiration condition, glutamine is not an important ingredient to
fuel this machinery. The default value of 0 for the variable Input_GLN cor-
responds to a basic level of input nitrogen source. The GLN nutrient variable
was used to model the excess of glutamine or the glytaminolysis phenotype
which is often activated in cancer cells [16]. A representative simulation under
normal respiration mode is shown in Figure 10.
Metabolic oscillations can be observed from all the simulations we performed.
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Variable K Parameters & values
ATP/ADP KATP/ADP,{cons.,phox} = 1,

KATP/ADP,{cons.,phox,glyc2} = 1,
KATP/ADP,{cons.,phox,pbm} = 2,

KATP/ADP,{cons.,phox,pbm,glyc2} = 2,
KATP/ADP,{glyc1,pbm,glyc2} = 1,

KATP/ADP,{glyc1,phox,pbm,glyc2} = 1,
KATP/ADP,{glyc1,cons.,glyc2} = 1,
KATP/ADP,{glyc1,cons.,pbm} = 2,

KATP/ADP,{glyc1,cons.,pbm,glyc2} = 2,
KATP/ADP,{glyc1,cons.,glyc2} = 1,
KATP/ADP,{glyc1,cons.,phox} = 1,
KATP/ADP,{glyc1,cons.,pbm} = 2,
KATP/ADP,{glyc2,cons.,pbm,glyc2} = 2

BIOM (BM) KBM,{β ox} = 1,KBM,{β ox,pbm} = 1
FERM KFERM,{ex pyr} = 1
GLYC KGLY C,{NAD+,GLU1} = 1,

KGLY C,{NAD+,GLU1, GLU2} = 1,
KGLY C,{NAD+,CIT,GLU1} = 1,
KGLY C,{NAD+,CIT,GLU1,GLU2} = 2

GLN KGLN,{in gln} = 3,KGLN,{in gln,krebs} = 3,
KGLN,{in gln,pbm} = 3,KGLN,{in gln,krebs,pbm} = 3

KREBS KKREBS,{β−OX} = 1,KKREBS,{PY R} = 1,
KKREBS,{PY R,α−KG} = 2

NADH KNADH,{Krebs,Phox} = 1,
KNADH,{Krebs,glyc,phox} = 1,
KNADH,{glyc,krebs,ferm} = 1,
KNADH,{glyc,phox,ferm} = 1,
KNADH,{krebs,phox,ferm} = 1,
KNADH,{glyc,krebs,phox,ferm} = 1

OXYG KO2,{in O2} = 1,KO2,{in O2,phox} = 1
PHOX KPHOX,{PC} = 1

PROB BIOM
(PBM)

All K parameters are equal to 1, except KPBM,{}

Control Variables
for c in

GLC,CONS.,
GLN or IN O2)

Kc=value assigned to c

Table 4: List of K parameters for the whole model (K parameters that do not
appear in the table have values 0)

The three basic metabolites which are often used to observed metabolic os-
cillations O2, NADH and ATP are oscillating between low and medium state.
Glycolysis (GLYC) is also oscillating, which is due to the NADH/NAD+ and
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ATP/ADP oscillators. The biomarkers of respiration and metabolic oscilla-
tions (NADH via Krebs) and PHOX oscillate as well. The model therefore
reproduces the basic metabolic oscillating behaviours.

Let us point out that discrete abstract frameworks are, by construction, not
quantitative. Within quantitative frameworks one could try to identify param-
eters with a sufficient precision in order to determine whether the oscillations
are damped. Here the price to pay for abstraction is to be unable to address
this question.

6.1.2 Biomass production conditions

Glutamine, which circulates with the highest concentration among amino acids,
serves as a major bioenergy substrate and nitrogen donor for proliferating cells
[16]. The amount of ATP in highly proliferative cell is not dramatically differ-
ent from a quiescent cell in respiratory mode. The addition of glutamine trig-
gers the accumulation of biomass. In this context, glucose and glutamine are
considered essential nutrients providing ATP and carbon skeletons for building
blocks of macromolecules respectively. This justifies the following set of
initial values [GLU = 1,Input_OXYG = 1 and Input_GLN = 1] for this
simulation that are critical nature of proliferative phenotypes (see Figure 11).

All the biomarkers for oscillating metabolism are clearly visible during
this simulation in which other nodes in the graph keep their same initial state.
The availability of glutamine (by turning [GLU = 1,Input_OXYG = 1])
has an effect on the production of biomass and later on the biomass. The
nitrogen source for building blocks like nucleotides as well as DNA coincides
with the presence of glutamine in the cell. We can also observe that glutamine
at a given moment becomes an active nutrient for Krebs cycle through alpha
Ketoglutarate. This is marked by the shift of Krebs from level 1 to 2 in the
simulated chart.

6.2 Fermentation Condition

In normal fermentation, the minimal required conditions are firstly O2=0 (a
very low level or no more oxygen available) and the presence of either a low or
high glucose concentration in cells. We investigate the effects of consumption
of ATP in the metabolic system. It means that PHOX will stay at level 0 after
a certain amount of time. Whether we start with an initial value of 0 or 1 for
fermentation, there will be a tendency for fermentation to go towards 1 and
stay at 1. In all fermentation processes, the principal purpose is to regenerate
NAD+ so that glycolysis can continue.

Most of the biomarkers of fermentation (GLYC, NADH, FERM and ATP/ADP)
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Figure 10: Respiration (Cell Maintenance). The initial state expresses normal
cell maintenance conditions with medium level for glucose (GLC=1), presence
of oxygen input and no excess of glutaminolysis or anaplerotic reactions. Time
goes from left to right, with a unique variable change at each time step. So,
one sees when a variable increases due to a line of its color that rises, and a
decreasing line indicates a decrease. Increases and decreases are always from
one unit at each time step.

have the tendency to oscillate: Glycolysis is high when NAD+ and ATP are
high, and Glycolysis is low when NADH and ADP is high! We can also
witness that Krebs and Phox as well, stay at level=0 during fermentation which
is in accordance with biological observations.

6.3 Crabtree/Warburg effect

The capability to ferment sugars into ethanol is a key metabolic trait of yeasts.
Crabtree-positive yeasts use fermentation even in the presence of oxygen, where
they could, in principle, rely on the respiration pathway. This biologically
observed phenomenon is surprising because fermentation has a much lower
ATP yield than respiration (2 ATP vs. approximately 18 ATP per glucose) [2].
This normally occurs at high glucose level (GLU=2) and Input_Oxygen=1.

In accordance with these biological observations: Initially, the model state
is in the Krebs phase and shortly afterwards it ends in the fermentation phase.
Consequently, our model is able to reproduce the Crabtree effect.

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 97



26/9/2017- page #98

Figure 11: Respiration during cell division. The initial state expresses normal
cell growth conditions with medium level for glucose, presence of oxygen
input and presence of anaplerotic reactions.

7 Conclusion

Our coarse-grained modelling of energy metabolism allows us to study how
main actors of metabolism (including nutrients) can influence or affect global
metabolic phenotypes such as metabolic oscillations or metabolic transitions
between fermentation and respiration. The high level of abstraction has the
advantage to directly relate the variables of the model to the biological knowl-
edge or readouts from cellular phenotypic screens.

This abstract model of energy metabolism reproduces the basic aspects
of energy metabolism dynamics such as metabolic oscillations and the War-
burg/Crabtree effect. This metabolic transition from respiration to fermenta-
tion is confirmed with the DyMBioNet simulation when the glucose intake
variable is modified from medium (GLC=1) to high (GLC=2).

A long term goal of this study is to propose pertinent experiments us-
ing formal logic to confirm or refute certain hypotheses concerning energy
metabolism or to study the consistency of anti-Warburg strategies. For other
problematics such as optimizing trade off between biomass and storage for
bioproduction, new variables need to be incorporated to make the model more
suitable for these new problems.
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Figure 12: Initial state leading to fermentation, characterized by an absence of
oxygen input and normal nutrient level (GLC=1).

Figure 13: Fermentation showing the Crabtree effect under high glucose input,
in the presence of oxygen

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 99



26/9/2017- page #100

References

[1] Hagman A, Säll T, Piskur J. Analysis of the yeast short-term Crabtree
effect and its origin. FEBS Letter 2014, 281(1), 4805−4814.

[2] Diaz-Ruiz R, Rigoulet M, Devin A. The Warburg and Crabtree effects:
On the origin of cancer cell energy metabolism and of yeast glucose
repression. Biochimica et Biophysica Acta, 2011, 1807, 568−576.

[3] Levine AJ, Puzio-Kuter AM. The Control of the Metabolic Switch in
Cancers by Oncogenes and Tumor Suppressor Genes. Science 2010,
330,1340−1344.

[4] Tran Q, Lee H, Park J, Kim SH, Park J. Targeting Cancer
Metabolism - Revisiting the Warburg Effects. Toxicology Reseach, 2016,
32(3),177−193.

[5] Schwartz L, Buhler L, Icard P, Lincet H, Steyaert JM. Metabolic
Treatment of Cancer: Intermediate Results of a Prospective Case Series.
Anticancer Research 2014, 34(2),973−980.

[6] Molenaar D, van Berlo R, de Ridder D, Teusink B. Shifts in growth
strategies reflect tradeoffs in cellular economics. Molecular Systems
Biology 2009, Epub 2009 Nov 3.
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Abstract

Understanding how neurons integrate the thousands of inputs they receive is a
fundamental issue of neuroscience research. For this purpose, we define a new
model for studying the impact of the dendritic morphology on the neuronal
function. Following the Cable Theory application to neuron modelling, we
propose relevant abstractions to reduce the number of parameters while keep-
ing biophysical accuracy. This allows us to demonstrate a theorem character-
izing structural equivalence classes of neurons sharing the same input/output
(I/O) function. The theorem implies that the dendritic morphology is, surpris-
ingly, not as critical as expected with respect to the I/O function of the neuron.

1 Introduction

Understanding brain organization and the way it processes neuronal informa-
tion is an interdisciplinary worldwide challenge [6]. Here we focus on the I/O
function at the single neuron scale with a particular emphasis on neuron mor-
phology. It is known since decades that dendritic arborization is the part of the
neuron where most of the neuronal computation is performed. However, it has
been largely neglected up to know in computational neuroscience, faced with
the difficulty to reduce its complexity. For this purpose, we decided to sys-
tematically use the remarkable abstraction capabilities of theoretical computer
science. We propose the first neuron model integrating dendritic morphology,
based on formal methods. It permits to prove rigorous properties about the role
of the dentrites morphology in the I/O function of the neuron.

An input signal received on the dendritic tree far from the soma can easily un-
dergo a 40-fold attenuation [19]. It follows that strong distal excitatory signals
may be annihilated by a weak inhibitory signal received closer to the soma.
In accordance, inhibitory synapses seem to be mostly located on proximal
dendrites in some cell types [12, 1].

Section 2 introduces the basics about the neuron biology. Section 3 quickly
describes the existing neuron models and introduces our framework. Formal
methods commonly separate static descriptions from dynamics ones. Section 4
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thus defines the static description of our framework, mainly allowing to de-
scribe the structure of a neuron. Section 5 defines the dynamic description,
allowing to rigorously link any input signal to its output signal for any given
neuron. Our formal approach allows establishing a necessary and sufficient
condition for two different neurons to have the same I/O function. Section 6
describes this result. We finally discuss the impact of neuron morphology on
its function in light of our result.

2 Archetypical biological neuron

2.1 Structure-function relationship

An archetypical neuron consists of a cell body called the soma and of two kinds
of extensions: dendrites on the one hand and an axon on the other hand (cf.
Figure 1). Nervous signals travel from dendrites to the axon passing through
the soma. Dendrites are tree structures which can be highly branched. Nervous
impulses are received at specific points called synapses, mostly located all
over the dendrites. These input signals then propagate along the dendrites
and accumulate in the soma which behaves as a bath with tap turned on. If
soma potential exceeds a given threshold, a nervous impulse is generated and
transmitted to adjacent neurons through the axon, partially emptying the bath.
It should be noted that there are different types of neurons whose structure may
widely vary from the archetypical one [17].

Figure 1: Structure of archetypical biological neuron.

2.2 Resting potential

The neuron, as any cell, is delimited by a membrane. It is a lipid bilayer
pierced by channels confering a selective permeability to specific ions. At rest,
the neuronal membrane has a polarity: the interior of the cell is negatively
charged compared to the extracellular medium. This difference of potential of
about –70mV is called the resting potential, due to an unequal distribution of
ions on both sides of the membrane. When the permeability is disrupted, ionic
flows are generated leading the membrane potential to deviate from the resting
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value. A depolarization is an increase in the potential beyond its resting value
and a hyperpolarization is a decrease.

2.3 Action potential

An action potential (AP) is the physiological support of what we call neuronal
information. It is a sudden and transient reversal of the membrane potential. It
is generated at the axon hillock where the membrane is rich in Na+ voltage-
dependent channels (cf. Figure 1). As the extracellular media is highly concen-
trated in Na+, the opening of these channels causes a massive inflow of Na+

resulting in a strong depolarization. These channels are rapidly inactivated and
closed. At the same time, voltage-dependent K+ channels open, leading to a
K+ ouflow, returning the potential to its resting value. This repolarization is
usually followed by a slight hyperpolarization. The amplitude and duration of
APs are constant parameters for a given neuron type. Therefore both duration
and amplitude cannot encode the nervous signal. Therefore, the intensity
depends only on APs frequency.

2.4 Synaptic transmission

Although there are electrical synapses, most of them are chemical. Incoming
APs trigger the release of neurotransmitters in the synaptic cleft. These small
molecules bind to receptors on the postsynaptic neuron membrane causing
ionic channels to open. This results in a membrane potential change, called a
postsynaptic potential (PSP), whose voltage is proportional to the intensity of
the stimulation. The PSP can be either a depolarization or a hyperpolarization
being thus respectively excitatory (EPSP) or inhibitory (IPSP). If the APs
frequency is sufficiently high, their individual effects (PSP) are added: it is
called temporal summation.

2.5 Propagation through the dendritic tree

PSPs generated at synapses propagate along the dendrites towards the soma.
As thousands of synapses are distributed over the dendritic tree, the signals
are combined all along: it is called spatial summation. The spreading of the
electrical signal in dendrites is decremental: the potential tends to return to
its resting value due to leak channels allowing ions to cross the membrane
following the electrochemical gradient.
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2.6 Integration by the soma and axon transmission

The soma accumulates all the signals having undergone both temporal and
spatial integrations. There is a threshold below which the potential change at
the soma has no consequence. However, if the depolarization is strong enough,
a new AP is generated to be transmitted to other neurons via the axon. The
reaching of this threshold actually triggers the opening of voltage-dependent
Na+ channels at the origin of the APs (Section 2.3). The maximal theoretical
APs frequency is imposed by the refractory period in which no AP can be
generated despite a suprathreshold potential. It is due to a transient inactivation
of the Na+ voltage-dependent channels just after each AP beginning. This
absolute refractory period is followed by a relative one during which the
stimulation must be stronger than usual to trigger the opening.

The newly generated APs propagate along the axon towards their output synapses
in a regenerative way. It means that, contrary to the signal conduction in
dendrites, the APs do not undergo any alteration.

3 Single neuron models

Neuron models described in the literature can be categorized according to their
goal of modelling, separating computational from biophysical models.

3.1 Computational neuron models

Computational models are considered as computational units thus highly ide-
alized. The first example is the formal neuron proposed by McCulloch and
Pitts in 1943 [11]. It is a binary neuron which performs a weighted sum of its
inputs. A Heavyside function is applied to calculate its output: 1 if the sum
exceeds the threshold and 0 otherwise. It allows elementary logic calculations
and it is mostly used as part of networks for artificial intelligence purposes.
Basically, it is a bio-inspired calculation and it should not be used for a deep
understanding of the neuronal functioning.

3.2 Biophysical neuron models

Biophysical models are mostly used to understand the neuronal behaviors.
They allow to focus on specific mechanisms and usually consider the mem-
brane potential as the key variable. The potential depends on the electrical
membrane properties. One of the most famous biophysical model was pre-
sented by Hodgkin and Huxley in 1952 [7]. It describes the dynamics of ion
channels governing the initiation of the AP by a set of non linear differential
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equations. This model is accurate and compatible with experimental observa-
tions. However, it is very complicated and difficult to validate because of its
large number of parameters [13]. This model thus led to simplified models
such as the FitzHugh-Nagumo model [5].

3.2.1 The Integrate-and-Fire model

The Intergrate-and-Fire (I&F) model, proposed by Lapicque in 1907, does
not focus on the molecular mecanisms governing the AP. It focuses on the I/O
function of the neuron [10, 3]. The membrane is described as an electrical
circuit constituted of a capacitor in parallel with a resistor. In the leaky-I&F
model, an additional term is added to take into account the leak of ions through
the membrane: C dV

dt = −gl(V − V0) + I(t), where V is the membrane
potential, C the capacitance, V0 the resting potential, gl the leak conductance
and I(t) the injected current (external or synaptic). This differential equation
describes the potential dynamics below the threshold. The AP initiation is
not explicitly represented: in addition, when V reaches the threshold, an AP
is generated. At the same time, the potential is reset and the threshold value
is updated to take into account the refractory period [18]. There are other
extensions of the I&F model such as quadratic or exponential models [2].

3.2.2 Cable Theory applied to dendrites

Most of the existing neuron models are punctual, meaning that the neuron is
equivalent to a point, ignoring its morphology. However, there are biophysical
models focusing on the influence of structural characteristics on the nervous
signal propagation. One of them is the Cable Theory applied to dendrites,
proposed by Rall, a pioneer of dendrites modelling, in the 1960’s [14, 15].
Cable Theory is based on a second order partial differential equation developed
by Lord Kelvin in 1850 to describe the attenuation of the electrical signal
spreading along a submarine cable. This concept was later applied to den-
drites [15]. The dendrites are considered as cylindrical cables along which
an electrical signal passively propagates. This phenomenon is described as
follows: λ∂

2V
∂x2

= τ ∂V∂t + V , where V is the membrane potential variation
from the resting value, x is the traveled distance over the cylinder, t is the
time, λ =

√
rm
ri

is the space constant and τ = rm × cm is the time constant
where ri is the intracellular resistance, rm the membrane resistance and cm the
membrane capacitance.

Given an initial condition, the equation is solved analytically for different
boundary conditions, assuming an infinite or a finite cable. The equation de-
scribes the attenuation undergone by the nervous signal during its conduction,
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taking into account the length of dendrites, their diameter and the composition
of the membrane. It is the basis of essentially all simulators taking the neuronal
morphology explicitly into account such as Neuron or GENESIS [1]. However,
the main drawback of this approach is the number of parameters involved [13].

3.3 A framework dedicated to the study of dendritic integration

In the remainder of this chapter, we study the impact of the morphology of the
dendritic trees on the neuron I/O function. For this purpose, we have developed
the first formal neuron model integrating dendrites morphology. We are at
the interface between computational and biophysical models as we are not
directly interested in the cellular mechanisms involved in neuron properties but
rather in the “computational properties” of the neuron. Notwithstanding, our
parameters can always be correlated with observable biophysical entities. Our
major contribution is to model this process by mixing discrete and continuous
modelling. Since the AP is known for its speed and its stereotypical properties,
it is reasonable to consider it as an instantaneous event identified by its time
of occurrence (conventionally called spike). More precisely, in our model
a neuron receives spikes sequences at synapses. Those discrete inputs are
immediately converted into continuous signals which then conduct through the
dendritic tree towards the soma. The soma integrates all the signals and when
a threshold is reached, a spike is emitted on the output. Our soma modelling
is inspired by the leaky-I&F model. To investigate the dendritic integration,
we focus on dendrites modeling, choosing Cable Theory as a basis. Although
based on noticeable hypotheses [4], Cable Theory is credible and it allows
very efficient abstractions. We have reduced the number of parameters while
keeping the biophysical accuracy. Thanks to this approach, we are able to
study equivalent classes of dendritic integration.

It is worth noting that our framework will include an abstract modelling of the
ionic charge flows in the excited neuron. These charges are directly related to
the membrane potential difference compared to the resting value, depending on
the local membrane properties. Charges travel through the dendritic tree and
they are summed at branching points. Finally, they control the soma potential
and consequently the spike emissions. From our abstract point of view, we will
make no difference between “charges” and “potentials.”.

4 Static description of a neuron

According to computer science, a tree is recursively defined as a root node to
which is attached a forest of children trees. Our neuron model consists of a
forest of dendritic trees connected to a root soma and we ignore the axon as it
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transmits the signal from the soma without any loss (cf. Figure 2) . Synapses
on the dendritic forest are the input ports of the system. They receive sequences
of spikes and each of them triggers a local change of the electrical potential.
The potential reaches a maximal absolute value after a short period of time
and then returns progressively to its resting value. The kinetic is proper to
each synapse and characterized by the parameters given in Definition 1.

Definition 1. [Synapse] A synapse is a triplet s = (νs, τ̂s, τ̌s) where:

• νs is a non-zero real number called maximal potential of a spike for s.
If νs > 0 then s is said excitatory, otherwise it is said inhibitory;

• τ̂s and τ̌s are strictly positive real numbers respectively called rise time
and descent delay of the potential.

Continuous signals generated at synapses then propagate in the dendritic trees
towards the soma. We choose to divide dendrites into homogeneous elemen-
tary compartments delimited by branching points and synapses (Definition 4).
In agreement with Cable Theory, we hypothesize a passive signal propagation
with leakage. Whatever the boundary conditions, the analytical solution of the
linear cable equation is of the form V (x) = V0 × α where α, is a variable de-
pending on x. Therefore, we decided to describe the potential at the output of
a compartment as equal to the potential at its input attenuated by a coefficient
α after a delay δ (Definition 2). Grouping the parameters of the Cable Theory
into those two abstract parameters greatly simplifies our model.

Definition 2. [Compartment] A compartment is a couple c = (δc, αc) where:

• δc is a real number greater or equal to zero called the crossing delay
for c;

• αc is a real number such that αc ∈]0, 1], called the attenuation at the
end of c. If δc = 0, then αc = 1.

The soma accumulates input signals coming from the dendrites making its
potential changing gradually. At the same time, there is a leak of charges
making the potential slowly returning to its resting value. The soma is also
characterized by its activation threshold from which it can emit a spike, and
by the duration of the refractory periods (Definition 3). Note that the relative
refractory period can be technically expressed by an augmented threshold.

Definition 3. [Soma] A soma is a tuple ∇ = (θ, θ̂, ρ, ρ̂, γ) where all the pa-
rameters are strictly positive real numbers: θ is called the activation threshold,
θ̂ the threshold augmentation, ρ the absolute refractory period, ρ̂ the relative
refractory period and γ is called the leak.
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Definition 4. [Neuron] A neuron is a labelled rooted tree satisfying the follow-
ing conditions: any non-root node having 0 or 1 child is labelled by a synapse,
any branch is labelled by a compartment and any non-root node having at
least 2 children is called a branching (and is not labelled). The root of the tree
is labelled by a soma. Given a neuron N, we note Sy(N) the set of its synapses
and Co(N) the set of its compartments. Moreover, the direct children of the
soma are called dendritic trees. Finally, we note N the set of all neurons.

Figure 2: Schematic representation of our neuron model structure.

In computer science, the parent of a node is its only neighbour on the way
to the root. The root is the only parentless node. Children of a node are
its neighbours except its parent node. In the neuron model, the information
goes from the leaves (synapses) to the root (soma). To avoid any confusion,
we use the terms input/output and predecessor/successor to replace the couple
child/parent. Given a neuron N and a compartment y c−→ z: y is called the
input node of c, z the output node of c, c the output compartment of y and c
the input compartment of z. We note In(z) the set of the input compartments

of z. A predecessor of y c−→ z is a compartment in N of the form x
c′−→ y and

we note Pred(c) the set of the predecessors of c. Also, we call contributor
compartments of c (CC(c)), the compartments at delay 0 from y. We define
the synaptic contributors (CS(c)) in a similar way. More formally:

Definition 5. [Contributors] Given a neuron N and a compartment y c−→ z,
∀c′ ∈ Pred(c), the set of the contributor compartments of c noted CC(c) is
defined inductively by:

• If δc′ 6= 0 then c′ ∈ CC(c);

• If δc′ = 0 then CC(c′) ⊂ CC(c).

Moreover, the set of the synaptic contributors of y c−→ z noted CS(c) is the
subset of Sy(N) defined inductively by:

110 ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY



26/9/2017- page #111

• If y ∈ Sy(N) then y ∈ CS(c);

• ∀c′ ∈ Pred(c), if δc′ = 0 then CS(c′) ⊂ CS(c).

5 The state of a neuron and its dynamics

To describe the state of a neuron and its dynamics, we need to introduce the
notion of “segment”:

Notation 1. Given a set E, a segment with values in E is an application ω :
[0, t] → E where t ∈ IR+ ∪ {+∞} with the convention that [0,+∞] = IR+.
We note Sgt the set of all the segments and we endow Sgt(E) with a partial
internal law of concatenation as follows:
if ω1 : [0, t1] → E and ω2 : [0, t2] → E are two segments such that t1 ∈ IR+

and ω1(t1) = ω2(0), then ω1 · ω2 is the concatenated segment 1 ω1 · ω2 :
[0, t1 + t2] ∈ E such that:

• (ω1 · ω2)(t) = ω1(t) if t 6 t1
• (ω1 · ω2)(t) = ω2(t− t1) if t > t1

We note
n•

i=1
ωi for ω1 · ω2 · ... · ωn, the concatenation of the n segments.

Moreover, if � is a binary operation on E, it can be extended as follows: if
ω1 and ω2 are segments of the same length t0, we note ω1�ω2: [0, t0] → E
the segment such that (ω1�ω2)(t) = ω1(t)�ω2(t) for all t ∈ [0, t0]. When

� = +, we accept the notation
n∑
i=1

ωi for ω1 + ω2 + ...+ ωn.

The input signals are received at the synapses in the form of infinite segments
taking value 1 at the times of the spikes and 0 otherwise (Definition 6). The
output signal will be of the same type so that our modelling opens a way of
building a network where the input of a neuron would come from the output of
other ones.

Definition 6. [Signal] A signal is a segment ω : IR+ → {0, 1} such that:

∃r ∈ IR∗+, ∀t ∈ IR+, (ω(t) = 1 ⇒ (∀t′ ∈]t, t+ r[, ω(t′) = 0))

The carrier of ω is defined by: Car(ω) = {t ∈ IR+|ω(t) = 1}. A signal such
that Car(ω) is a singleton {u} is called a spike at the time u, noted ωu.

We call “trace”, the potential change triggered by a spike. It directly de-
pends on the synapse parameters (Definition 1). This continuous variation

1by convention (t1 +∞) = +∞
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is exponential from a biophysical point of view [15, 16]. For the sake of
simplicity, we approximate it as linear (Definition 7). It seems reasonable
as the experiments do not always follow the theoretical model and show a
significant variability [8]. The temporal summation observed in biology is
reproduced by making the sum of the respective traces of the successive spikes.
It gives what we call the trace of the signal (cf. Figure 3).

Definition 7. [Trace of a signal] The trace of a spike ωu on a synapse s is the
segment vs,ωu defined by:

• If t 6 u then vs,ωu(t) = 0;

• If u 6 t 6 u+ τ̂s then vs,ωu(t) = νs
τ̂s

(t− u);

• If u+ τ̂s 6 t 6 u+ τ̂s + τ̌s then vs,ωu(t) = νs
τ̌s

(u+ τ̂s + τ̌s − t);

• If u+ τ̂s + τ̌s 6 t then vs,ωu(t) = 0

Moreover, given an input signal ωs on a synapse s, the trace of ωs is defined
by the real segment vs,ωs =

∑
u∈Car(ωs)

vs,ωu .

Figure 3: Trace of a signal. The trace of a signal is the sum of the traces of its
spikes. Each spike received at a synapse s causes a maximum variation νs of
the potential after a time τ̂s followed by a return to the resting potential with a
delay τ̌s.

The state of a neuron at a given time is the value of the potential at every point
of it. It includes the state of the soma and the state of all the compartments
(Definition 9).

The value of the potential at the soma is not sufficient to characterize its state.
One must also know the time elapsed since the last emmited spike to manage
refractory periods. We thus define the state of the soma as a couple (e, p) where
e is the elapsed time since the last spike and p is the current soma potential.
Due to the biological properties of the neuron, there is a constraint on this
couple which has to be nominal (i.e. normal): when p is above the threshold,
e is necessarily less than the refractory period duration (Definition 8). Indeed,
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when p exceeds the threshold, there are only two possibilities: either e is in the
refractory period, or a spike is emitted and thus e is reset to 0.

Definition 8. [Nominal] Given a soma ∇ = (θ, θ̂, ρ, ρ̂, γ), a couple (e, p)
where e ∈ IR+ and p ∈ IR, is nominal if (e < ρ) or (p < θ) or (p <

θ + θ̂ + θ̂(ρ−e)
ρ̂ ). We note Nominal(∇) the set of all the nominal couples.

Based on the compartment definition (Definition 2) and knowing the potential
at its input node, it is easy to calculate the potential at its output after its
crossing delay. The potential at each point of a compartment at a given time is
deduced from this relationship. We thus define the state of a compartment c at
a time h as a segment vhc (t) which describes the evolution of the potential at
its output between h and h+ δc (cf. Figure 4).

Definition 9. [State of a neuron] The state of a neuron N is a triplet η =
(V, e, p) where:

• V is a family of segments, indexed by Co(N), the set of the compart-
ments of N; each segment is of the form vc : [0, δc]→ IR where δc is the
crossing delay of the compartment c. For each compartment c:

vc(δc) ∼


 ∑

c′∈CC(c)

vc′(0)


αc

where by convention the comparator ”∼” is: ”=” if its input node is a
branching, ”>” if its input node is an exitatory synapse or ”6” if its
input node is an inhibitory synapse;

• e ∈ IR+ represents the elapsed time since the last spike and p ∈ IR is
called the soma potential such that the couple (e, p) is nominal for the
soma of N.

We note ζN the set of all the states of the neuron N.

The compartments dynamics is done by “segments sliding” by an arbitrary
timestep ∆ (cf. Figure 5). The potential at the input of c is calculated from
the potential at the output of its contributor compartments while taking into
account the spikes received at synaptic contributors. More formally:

Theorem 1. [Dynamics of the compartments]

Let a neuron N , an initial state ηI = (V I , eI , pI) and an input signal S =
{ωs}s∈Sy(N). There exists a unique application V : IR+×Co(N)→ Sgt(IR),
which associates a segment vhc (t) : [0, δc] → IR for each couple (h, c) ∈
IR+ × Co(N) and such that, for any ∆ 6 inf({δc|c ∈ N ∧ δc > 0}) and
for each couple (h, c):
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1. v0
c = vIc

2. for any t+ ∆ 6 δc, vh+∆
c (t) = vhc (t+ ∆),

3. for any t such that δc − ∆ 6 t 6 δc, vh+∆
c (t) =(

∑
c′∈CC(c)

vhc′(t− δc + ∆) +
∑

s∈CS(c)

vhs,ωs
(t− δc + ∆)

)
αc.

Figure 4: The state of a compartment. The state of a compartment c is
the potential at its output between t = 0 (vc(0)) and the crossing delay of
c (vc(δc)).

Figure 5: Dynamics of the compartments. The state of the compartments at
time h + ∆ can be calculated from the state of the compartments at time h
by “sliding.” The potential at the input of a compartment is the sum of the
potentials at the output of its contributors.

Lastly, the soma dynamics is inspired by the leaky-I&F model. At a time t,
the soma potential depends on inputs coming from the dendritic trees (denoted
F (t)) and on the leak γ applied to the current value of the potential. From
an initial condition (e0, p0), we can define the PF function which describes
the evolution of the soma potential over time (Lemma 1). To account for the
refractory period, the couple (e, p) is forced to remain nominal (Definition 8).
So when p reaches the threshold, its value is reduced (by θ) and e is reset to
0. PF is hence discontinuous at this set of times that defines the carrier of the
output signal (Definition 6).
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Lemma 1. [Technical lemma] Given a soma ∇ = (θ, θ̂, ρ, ρ̂, γ), there exists
a unique family of functions PF : Nominal(∇) × IR+ → IR indexed by the
set of continuous and lipschitzian functions F : IR+ → IR, such that for any
couple (e0, p0) ∈ Nominal(∇), PF satisfies:

• PF (e0, p0, 0) = p0

• ∀t ∈ IR+ the right derivative dPF (e0,p0,t)
dt exists and is equal to F (t) −

γ.PF (e0, p0, t)

• ∀t ∈ IR+, ` = lim
u→t−

(PF (e0, p0, u)) exists and:

– if (t+ e0, `) ∈ Nominal(∇) then PF (e0, p0, t) is continuous and
is derivable if t > 0 therefore PF (e0, p0, t) = `,

– otherwise, for any u > t, PF (e0, p0, u) = PG(0, `−θ, u−t) where
for any x ∈ IR+, G(x) = F (x+ t).

The lemma hereinabove allows us to define the dynamics of a neuron which
associates a state to each time.

Definition 10. [Dynamics of a neuron] Given a neuron N , an initial state
ηI = (V I , eI , pI) and an input signal S = {ωs}s∈Sy(N), the dynamics of N
is the infinite segment d : IR+ → ζN defined by:

• d(0) = ηI

• ∀h ∈ IR+, d(h) = η = (V, e, p) where:

– V = {V (h, c)}c∈Co(N) = {vhc }c∈Co(N) where the application V
is the one from Theorem 1;

– Consider beforehand F (~) =
∑

c∈In(∇)

v~c (0).

F is lipschitzian at ~ as in any point its derivative is between(
∑

s∈Sy(N)

−νs
τ̌s

)
and

(
∑

s∈Sy(N)

νs
τ̂s

)
. According to Technical lemma 1,

there exists a unique function PF such that PF (eI , pI , 0) = pI

and ∀~, dPF (eI ,pI ,~)
dh = F (~) − γ.PF (eI , pI , ~). Therefore, if

PF (eI , pI , ~) is continuous on the ]0, ~] interval, then e = eI +
~. Otherwise, let ~′ be the greatest ~ such that PF (eI , pI , ~) is
discontinuous, then e = h− ~′.

– Considering the previous PF function, p = PF (eI , pI , h).
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6 Remarkable properties

We found that any neuron can be reduced to a pin-holder. A “pin-holder” is
a neuron where each dendritic tree is simply one synapse linked to the soma
by a single compartment. The pin-holder corresponding to a neuron can be
obtained by applying the decomposition function defined below:

Definition 11. [Decomposition function] We note P , the set of all the pin-
holders. The decomposition function fd : N → P is the application which
associates to any neuron N ∈ N the neuron from P built as follows:

• fd(N) has the same soma than N : ∇,

• fd(N) has the same set of synapses than N : Sy(fd(N)) = Sy(N),

• For each synapse s ∈ Sy(N), there exists a unique path made of com-
partments c1, ..., cn (where for all i, ci = (δci , αci)) from ∇ to s in
N . Therefore, the compartment linking ∇ to s in fd(N) is the couple

(δs, αs) such that δs =
n∑
i=1

δci and αs =
n∏
i=1

αci .

The definition of the state of a pin-holder differs from the state of its cor-
responding neuron only at the compartments level, as the soma remains the
same.

Definition 12. [State of a pin-holder] Given the state of a neuron N , we
note fdN : ζN → ζfd(N) the application which associates to each state η =

(V, e, p) of N , the state fdN (η) = (V , e, p) of fd(N) such that for each
synapse s of fd(N) and c its output compartment:

vc = vc1 · (vc2 × α1) · ... · (vcn ×
n−1∏

i=1

αi) =
n•

i=1


vci ×

i−1∏

j=1

αj




such that c1, ..., cn is the path of compartments from ∇ to s in N where for
each i, ci = (δci , αci).

Thanks to the pin-holder concept we have introduced, we demonstrated the
following theorem:

Theorem 2. [The pin-holder theorem] Let N1 and N2 be two neurons. If
fd(N1) = fd(N2) then, for any input signal S , N1 and N2 have the same
soma dynamics meaning that the evolution of the (e, p) couples with time is the
same after a certain delay. Therefore, they have the same output signal (ω∇)
after a certain delay.

116 ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY



26/9/2017- page #117

Figure 6: The pin-holder theorem. The theorem defines equivalent classes of
structure and demontrates that the exact shape of dendritic trees is not critical
in the I/O function of the neuron. The neurons N1, N2 and P represented
here belong to the same class. The parameters are (α = 0.1, δ = 1) for
the blue compartments, (α = 0.25, δ = 2) for the purple compartments and
(α = 0.125, δ = 3) for the green compartments.

The interesting result is that a pin-holder is the canonical representative of a
large set of neurons (cf. Figure 6). According to Theorem 2, these neurons
have the same soma dynamics and therefore the same output for a given input.
This result shows that the dentrites morphology is, surprisingly, not critical
when only taking into account the I/O function of the neuron. Instead of
the precise morphology, attenutation and delay are the key parameters in this
function.

Moreover, the normalization into a pin-holder is an important reduction of the
neuron complexity and this is very efficient for computational purposes.

Notice that the pin-holder is a sort of extension of the classical formal neuron
(Section 3). Indeed, the α parameter of the compartments in our model is
comparable to the weights applied to the inputs in the classical version. The
main difference is the delay brought by our δ parameter.

7 Conclusion

The complex neuronal information processing emerges from an appropriate
arrangement of a large number of neurons, each behaving as a device with
potentially rich computational capabilities. Focusing on the I/O function at
the scale of an individual neuron is thus a fundamental step in understanding
the whole brain function. Cable Theory provides a good approximation to
link the structure of the neuron to its function. As we are interested in the
impact of dendrites morphology, we decided to base our work on this founding
model. We proposed relevant abstractions to reduce the number of parameters
while keeping the biophysics relevance. This enabled us to demonstrate the
pin-holder theorem showing that a very large number of different dendtritic
tree structures share the same I/O function. Consequently, and unexpectedly,
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under the assumptions of Cable Theory, it implies that the precise morphology
does not have a critical impact on the neuron I/O function, only delays and
attenuations matter. It then comes that the dendritic morphology is probably
essentially driven by the fact that neuronal structure is the result of a progres-
sive development during neuroembryogenesis.

Among the basic Cable Theory assumptions, the passive conduction of the
signals through the dendrites is a strong one: Some neurons exhibit active
mechanisms at the level of dendrites [8]. Another assumption is that synapses
parameters do not noticeably vary in time although inhibitory synapses seem
to be more effective when an excitatory signal passes close to them [9, 17].
Taking into account these properties to model more complex neurons would
probably modify our basic results, but we provide a first track on how the
inputs distributed over the dendritic tree interact in time and space to determine
the I/O function of the neuron.

A future direction is to take benefit from the pin-holder theorem in order
to study interconnected neurons. Our framework opens up perspectives for
precise network studies for two principal reasons. First, thanks to our hybrid
approach, we would only need to work on discrete signals as the continous part
of the system is restricted to the “internal” part of the neuron. Also, the pin-
holder theorem allows to drastically reduce the neuron model complexity and
this is a strong advantage for simulating and formally reasoning on networks.
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Abstract

In recent year, amount of biological data has rapidly increased due to high-
throughput experiments on living organisms. This fact leads to the emerg-
ing trend towards studying and analyzing of large metabolic networks. The
computation of network structural properties could help to explore inherent
metabolic behaviors. Elementary Flux Modes (EFMs) analysis is one of the
tools able to give a useful insight into such metabolic networks. However, the
results produced by this tool could be so big that their analysis is not feasible
easily. Recently, a dual approach to EFMs calculus has been developed with
calculation of Minimal Cut Sets (MCSs), i.e. the identification of sets of
reactions which prevent the execution of an objective reaction. EFMs are min-
imal sets of enzymes that operate at steady state with all irreversible reactions
used in the appropriate direction, whereas MCSs are minimal sets of reactions
which can block the yield of a certain product from given substrates. The
results of MCSs are expected smaller than those of EFMs in a given metabolic
network. In order to verify this hypothesis, we have tested this assumption
with 6 networks each having different size and structure: one example of a
single pathway, the TriCarboxylic Acid (TCA) cycle, three descriptions of
the mitochondria energy metabolism (in 3 different tissues: liver, yeast and
muscle) and two models of the central carbon metabolism of heterotrophic
plant cells. We have found that the number of MCSs is higher than EFMs’s for
TCA cycle and mitochondrial networks. Conversely, with biggest networks,
the central metabolism plant cells, the number of MCSs is smaller than those
of EFMs but remains very large. However this analysis has revealed that the
size of each cut set does not grow with the size of the network and the study of
small MCSs, i.e. the capacity to stop some production from stopping a small
number of reactions, can lead to identify very interesting reactions patterns
which are more or less necessary for the network activity. Future works will
focus on this point.
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1 Introduction

Metabolic networks are well-known to be one of the most complex cellular
systems [36, 33] regarding on the number of shared metabolites by different
reactions. In this context, specific modeling and analysis methods have to
be designed. A number of studies are concentrated on the characterization
of metabolic networks by means of graph theory to gain an insight into the
global network structure. In that way, finding topological properties can help
us to analyze biological structures [2, 6, 37]. Depending on the goals of the
analysis, these works appear in different research themes: graph-theoretical
analysis [15, 5], Petri nets models [32, 10], flux balance analysis [17, 23],
metabolic pathway analysis [30, 29, 22, 24]. . .

Concerning metabolic pathway analysis, computing feasible routes through
the network is one of the methods addressing large networks. Several modeling
methods can be used to do it such as Petri net network, Extreme Pathways or
Elementary Flux Modes (EFMs) computation. In this work we have focused
on EFMs which use the stoichiometric matrix to find set of reactions which
can interact together respecting steady state assumption. One of the well-
known problem about EFMs computation is the size of the results. Recently,
an additional work has been derived from EFMs to give a dual view of them
and to provide a smaller solution. It is the computation of Minimal Cut Sets
(MCSs) [19]. We have tested these two methods and compared their results
for 6 different networks which exhibit different size and level of complexity
modeled. In this article after a rapid presentation of these two methods and a
description of the networks, we will show that when the network size increases
some differences can be observed between EFMs and MCSs results.

2 Analyze the reliability of the metabolites production

Elementary Flux Modes (EFMs) analysis has been introduced by Schuster [31]
to analyze metabolic pathways. It is a constraint-based approach which can be
used to calculate all biologically meaningful pathways through a network [30].
This method is useful to gain an insight into metabolism of living organisms
and to identify all genetically independent pathways that are inherent in a
metabolic network (see [35] for more complete explanations). An EFM is
a unique and non-decomposable set of reactions. From the stoichiometric
matrix, EFMs are computed by selecting groups of reactions which interact
together and respecting the well-known steady-state mass balancing equation
as follows:

dS

dt
= Nv (1)

122 ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY



26/9/2017- page #123

Figure 1: TCA cycle network. The metabolites are the circles: the red labels
represent the internal metabolites, the other ones (black colors) represent the
external metabolites. The rectangles are the reactions: the shapes filled by cyan
are the transporters. The arrows denote the direction of reactions, a double
arrow means that the reaction is reversible.

S is a vector of concentration values, N is the m×r stoichiometric matrix made
up of m metabolites and r reactions, and v is the r-dimensional (flux) vector of
the reaction rates. At the steady state, Nv has to be equal 0. Grafahrend-Beleau
et al. [13] have shown that computing the set of EFMs of a given network is
equivalent to compute the set of t-invariants of the network modeled through a
Petri net.
In the small example network of TCA cycle given in Figure 1 (for details see
[26]), we can see 15 reactions and 25 metabolites (11 internal and 14 external
ones). Applying EFMs computation, 16 EFMs have been found. To analyze
this result, for example, we can consider the case of production of external
citrate obtained by firing the transporter reaction T1. Figure 2 shows the 7
EFMs/available routes to fire T1 and if any of them cannot be operated (by
the inhibition of one reaction belonging to the EFMs) there is no more way to
activate T1.
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Figure 2: 7 EFMs containing T1 to produce external citrate.

A number of tools were specifically designed to compute all EFMs of a given
metabolic network: METATOOL [28], CellNetAnalyzer [20] (also known as
a successor to METATOOL), efmtool [34] and regEfmtool [11] (re-using efm-
tool and adding logical rules). These tools implement an algorithm based
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on linear algebra and its complexity is exponential, especially for metabolic
networks including many connected pathways [21]. As the number of obtained
EFMs can be huge, enumerating all possible pathways that contain a given re-
action is a difficult task [1]. The question of “how to suit biological reasoning
to such large results” stays open. Classification of EFMs can be done by clus-
tering methods. Due to their specificity: each EFMs is unique and minimal,
classical hierarchical clustering does not offer satisfying results. Overlapping
clustering seems to be more promising for this task. A classification method
for EFMs, ACoM [27], has been proposed, based on motif findings with over-
lapping clustering tools. In [13] a classification of t-invariants is also studied
using another agglomerative clustering algorithms. But most often the size of
the results to classify still remains a major difficulty. Going back to classical
graph theory methods, another way to extract knowledge from networks has
been explored: computing graph diameter, average degree of nodes, average
path length. . . and authors such as Barabási [6], Fell [12] or Jeong [15] have
confirmed that metabolic networks can exhibit behaviors similar to small world
networks and can be explored that way to find organization, links or hubs
through metabolic networks [9]. More recent works have suggested using a
dual view on the problem of finding feasible routes and of searching ways to
cut access to a specific reaction and then to inhibit it. The next sections will
present this method.

3 Fragility of metabolic networks analysis

A new algorithm to find Minimal Cut Sets (MCS) through metabolic networks
has been proposed by Klamt and Gilles [19]. Whereas EFMs can identify
all possible and feasible metabolic routes for a given network at steady state,
MCSs computing allows finding a set of reactions able to eliminate a given
objective functioning. An MCS is a unique and the smallest set of reactions
whose removal from the network would stop a given metabolic function. As
the Klamt algorithm allows to compute all MCS of a given metabolic network,
EFMs and MCSs complement each other in a duality based relationship [18, 4].

MCSs concept is closed to the problem of finding the minimum cuts in a
graph, that is a well-known approach to characterize the structure of networks
in graph theory [3, 7]. The main idea can be expressed like that:

• if a few of links are cut or otherwise fail, the network may still be able
to transmit messages between any pair of its nodes,

• if enough links fail, there will be at least one pair of nodes that cannot
communicate with each other.

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 125



26/9/2017- page #126

Thus an important measure of the reliability of a network is the minimum
number of links that must fail to disconnect the graph. In that way, MCSs
can be used for studying the fragility of a network structure and identifying
suitable targets to stop metabolic functionality. If we go back to the TCA
cycle network, MCSs computation gives 54 MCSs and 27 of them contain T1.
One can be disappointed by this result because the number of MCSs is not
always smaller than EFMs and does not seem to be a good solution for the
problems which their size of results are huge. In a first and rapid conclusion,
the goal claimed by [14] to use MCSs results to minimize the needed effort to
understand the structure of complex networks seems to be far away. But it is
noted that the TCA cycle contains only one function/pathway and perhaps is
not a good example for the purpose of testing automatic analysis of complex
networks. Automatic tools address large networks composed of several path-
ways and it is why we now present results obtained with 5 another networks
describing cell energy metabolism or plant central carbon metabolism.

4 Description of the metabolic networks

To compare the results provided by the computation of EFMs and MCSs,
we have used 3 networks modeling energetic metabolism of mitochondria in
3 different tissues: muscle, liver, yeast, and 2 networks modeling different
versions of the central metabolism of plant cells. One, called network plant
cell A (PCA), is the smallest network consisting of 70 metabolites and 78
reactions described in more details in [8] and depicted in Figure 3. The second
one, called PCC, has more reactions and metabolites. The additional reactions
describe the amino acids synthesis towards external metabolites.

Energetic metabolism of mitochondria is often described as a set of five main
pathways: oxidation of phosphorylants, TCA cycle (also called Krebs cycle),
ketone bodies, beta-oxidation, and a part of ornithine cycle. Depending on
the tissues, some variations can be observed. The 3 retained models concern
muscle and liver (Homo sapiens) and yeast (S. cerevisiae). Both mitochondrion
of muscle and yeast do not contain an urea cycle. Mitochondria of yeast does
not include beta-oxidation as well as production/consumption inside ketone
bodies and three specific reactions have been added for TCA cycle and five
transport reactions linked to them [25].

Next, we look at the metabolic network of heterotrophic plant cells (details
can be found in [8]). Figure 3 shows the network including the main pathways
of the central carbon metabolism in plant cells: glycolysis (black color), the
TCA cycle (blue color), the pentose phosphate pathway (pink color), the starch
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Figure 3: Enlarged metabolic network of a heterotrophic plant cells. Each
color indicates one pathway: blue for the TCA cycle, black for glycolysis
and also for the fluxes towards output metabolites, pink for the PPP, green for
the sucrose and starch synthesis, red for respiration and brown for storage in
vacuole. External metabolites are in bold. Irreversible reactions are indicated
by unidirectional arrows.

and sucrose pathways (green color) and the storage reactions towards the vac-
uole (brown color). Due to its autotrophic nature, the plant synthesizes its own
respiratory substrates (mainly carbohydrates) which then serve as substrates
for the TCA cycle. The TCA cycle provides precursors for several biosynthetic
processes, such as nitrogen fixation and biosynthesis of amino acids. The
pentose phosphate pathway includes the irreversible oxidative branch, whereas
the non-oxidative branch is reversible (recycling of pentose-phosphates from
fructose phosphate and triose-phosphate). In the starch and sucrose pathways,
sucrose is metabolized in cytosol, whereas starch is metabolized in plastids
from imported hexose phosphates (G1P or G6P). Several effluxes are illus-
trated: protein synthesis from several amino acids (glutamate and glutamine,
aspartate and alanine), lipid synthesis (diacyl glycerol) from plastidial pyru-
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vate and trioses, synthesis of cell wall polysaccharides from UDP-glucose,
sugars (glucose, fructose and sucrose) and storage of organic acids (malate
and citrate) in vacuoles. Subcellular compartments, such as mitochondria and
plastids, can lead to potentially reversible transport of metabolites such as G6P,
X5P, PEP and DHAP.

In the first version (PCA), there are 70 different metabolites. Among them,
15 metabolites are external, meaning that they are carbon sources or carbon
sinks (nutrients, waste products, stored and excreted products, and precursors
for further transformation). These are exogenous glucose and amino acids
(glutamine and alanine), CO2, sugars (sucrose, glucose and fructose) and or-
ganic acids (citrate and malate) stored in vacuoles, amino acids for protein syn-
thesis (aspartate, alanine, glutamate and glutamine), cell wall polysaccharides,
starch and lipids. The metabolites named cofactors (ATP, NADH, NADPH,
and FADH2) can be internal which means that they are expected to be bal-
anceable at steady state. The PCC version has 89 reactions and 74 metabolites,
24 metabolites are external. The direction (reversible or irreversible) of the
reactions is derived from thermodynamic properties. The complete list of
reactions in METATOOL format is supplied at:
http://dept-info.labri.u-bordeaux.fr/˜beurton/MetabolicNetworks

5 Elementary Flux Modes computation

To compute EFMs, the original METATOOL software (module 5.0.3 beta in
CellNetAnalyzer1) has been chosen, a program with a graphical user interface
for the analysis of metabolic networks running under Matlab (Mathworks,
Inc.). Table 1 shows the different number of EFMs obtained for six networks.
For these six networks, the number of EFMs could be considered to be very
large and it grows exponentially with the number of reactions as it is expected.
We can see that for the first simple network (TCA cycle) the number of EFMs
is in the same range than the number of reactions. The number of reactions in
the mitochondria networks is double than those of TCA cycle and the number
of EFMs is multiplied by hundreds. At least, the number of reactions in the
plant cell networks is doubled again and the number of EFMs is multiplied
by thousands. After this global remark we can take a look more precisely
different cases. Into the muscle and liver mitochondria networks, one can see
that the smaller number of reactions leads to the greater number of EFMs. This
suggests that the structures of these two networks are different; even if they
share a large part of the reactions. Concerning the two plant cell networks,
one can note that the number of EFMs becomes very big. The difference of 11

1http://www.mpi-magdeburg.mpg.de/projects/cna/cna.html
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reactions between PCA and PCC leads to a number of EFMs 102 times bigger
for PCC. It means that these differences create many new routes through the
network.

Networks Nb. React Nb. Int. Meta Nb. EFMs
TCA cycle 16 13 16
Muscle 37 31 3, 253
Liver 44 36 2, 307
Yeast 40 34 4, 627
PCA 78 55 114, 614
PCC 89 50 9, 319, 997

Table 1: Global description of six networks. Here, the abbreviations are
explained: Nb. React = Number of Reactions; Nb.Int Meta = Number of
Internal Metabolites; Nb. EFMs = Number of Elementary Flux Modes

6 Finding all Minimal Cut Sets

The next step is to compute MCSs in order to verify whether the hypothesis
of Klamt about the size of MCSs result could work in our cases. We have
computed all MCSs for all possible objective functions in the networks so
that we can compare these results to these ones of EFMs which computes all
possible routes through the networks.
Table 2 summarizes the obtained results of six networks. In the case of the
TCA cycle, the number of MCSs is three times bigger than the number of
EFMs. As a consequence, computing the number of feasible pathways could
be less complex than computing the different ways used to cut the network.
The three mitochondria networks exhibit the same kinds of results. The num-
ber of MCSs is at least ten times bigger the number of EFMs. However, note
that there is a difference between liver and yeast results: the number of MCSs
for yeast is much bigger than liver. Therefore, EFMs and MCSs probably do
not capture the same information about how the networks are connected. For
two plant cell networks, we have obtained less MCSs than EFMs. Beside,
surprisingly, while PCA has double number of reactions comparing to yeast
and the EFMs number in PCA is thirty times bigger than the EFMs number in
yeast, the MCSs number in both PCA and yeast are not very different. Thus,
sometimes a big network could be less difficult to analyze than another smaller
one.

In addition to comparing the number of EFMs and MCSs, we have taken a
look on their length. The length is an important parameter to run procedures
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Networks Nb. EFMs Nb. MCSs EFMS Length MCSs Length
TCA cycle 16 54 8.3 (4/12) 3.8 (3/4)
Muscle 3, 253 42, 534 17.7 (2/23) 10.2 (6/12)
Liver 2, 307 47, 203 16.7 (2/24) 11.4 (6/14)
Yeast 4, 637 90, 318 15.3 (2/22) 11.6 (7/13)
PCA 114, 614 93, 009 37.7 (2/53) 11.2 (4/18)
PCC 9, 319, 997 2, 815, 375 33.1 (1/48) 11.8 (4/18)

Table 2: Global comparison between the number of MCSs and EFMs.
The fourth and fifth columns denote the EFMs and MCSs average lengths,
respectively. The minimum and maximum length of EFMs and MCSs
respectively are put in the parentheses.

used to post-treat the results, for example: finding common motifs and clas-
sification. The length of an MCS is the minimal number of reactions whose
removal obstructs a given objective reaction. On other words, the length of an
MCS is defined by the number of reactions constituting that MCS. The length
of an EFM is the number of reactions belonging to the route. The last two
columns in Table 2 show the obtained results for six networks. One can note
that the distribution of lengths is totally different. Whereas the length of EFMs
grows with the size of networks, the MCSs length remains stable (the TCA
network could be considered independently because of its very small size).
Figure 4 shows the distribution of MCSs lengths for 5 networks. The TCA
network has not been included in this comparison because its number of re-
actions and the number of MCSs are too small to be considered. Even five
distributions seem to be heterogeneous, it is shown that a big number of MCSs
does not imply a large range of values. Intuitively, most MCSs are not so long.
Remarkably, the yeast network exhibits a different profile with a lot of MCSs
(more than 50%) close to the maximum length.

Due to software simulation limitations (e.g., segmentation fault or more than
ten days to obtain the results), we have not been able to compute EFMs and
MCSs of PCA and PCC with CNA. The new application, regEFMtool written
by [16] based on efmtool developed by [34], provided us an efficient tool for
making a computation of EFMs. The computation of PCA was obtained after
less than one hour with regEFMtool. Moreover, this program allows us to
consider a specific objective reaction to inhibit and so to compute only the
set of EFMs concerning this reaction. The available algorithms for MCSs
computation through CNA or efmtool require the EFMs to be computed first
and reuse the EFMs matrix to compute MCSs. Future works will be focused
on the study of small MCSs because they defined small, i.e easy to analyze,
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Figure 4: Histogram of the MCSs length.

sets of reactions which are able to stop productions of metabolites. If we
consider these sets, we can defined patterns of reactions which are critical for
the network. By definition of MCSs if all reactions belonging to one MCS
are unavailable, it is not possible to find feasible routes through the network.
Moreover, if two distant reactions, i.e. not directly connected by the same
shared metabolite, belong to the same MCSs that signifies that they define a
kind of dependency between them, because at least one of them is required.

7 Conclusion

Nowadays, a large amount of data is available through big international data-
bases to describe metabolic networks at the cellular level. However, these
metabolic networks containing several connected pathways are complex to
analyze. From the last decade, a lot of methods have been developed to support
in finding automatically characteristics of such networks, for instance, finding
set of reactions interacting together to guarantee a certain biological function.
The EFMs analysis is one of these methods and it is actually implemented
in some softwares. Unfortunately, the size of the results grows exponentially
with the network size. Recently, a dual view of EFMs, called MCSs, used to
compute a set of reactions which is able to disconnect/cut a given metabolic
functionality of the network, has been studied. The results of this new method
are expected to be smaller than those of EFMs. We have tested this hypothesis
with 6 different networks from a very simple one containing only one pathway
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(i.e., the TCA cycle) to more complex ones like central metabolism of plant
cells. Our experiments showed that in the cases of the TCA cycle and the 3
networks of mitochondria, the hypothesis is not confirmed because the number
of the obtained MCSs is greater than the number of EFMs. But with the larger
networks, which have more than 70 reactions, the number of MCSs seems not
to grow exponentially. It is worth to note that both EFMs and MCSs results
are impossible to analyze manually and they require automatic procedures to
do this task. Beside, classification and finding common motifs are common
way to achieve this analysis but these methods are influenced by a few of
parameters such as the size of the classified elements difficult to fix. One
can note that if the average length of the EFMs (i.e. the number of reactions
belonging to one EFM) depends on the network size, the MCSs average size
does not. Regarding on this information we have take a look at small size
MCSs and in future works we will study how these small cut sets can be used
to identify reaction patterns through the networks.
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Abstract

Microbial communities composed of different species are frequently observed
in nature. There is growing interest in understanding the advantages of living
in a mixed species community as compared to a monoculture. Understanding
the effects of microbial interactions will lead to better control of environmental
microbial systems responsible for nutrient cycling, medical systems like the
human GI tract or chronic wounds, and applied systems like biofuel synthesis.
We examine two different advantages associated with interacting microbial
communities operating as a food chain. The first advantage is the minimiza-
tion of anabolic resource investment required to drive a constant flux through
a series of enzyme-catalyzed reactions. The second advantage is enhanced
productivity of a biofilm community when inhibitory byproducts are consumed
by a scavenger population.

1 Introduction

Microorganisms acquire resources from their environment, which are pro-
cessed via series of enzymes into cellular energy and biomass, and metabolic
byproducts are secreted. Species that are efficient at deriving cellular energy
and biomass from available resources typically grow and reproduce faster than
less efficient species [11]. This simplified view suggests communities should
consist of a monoculture of the most ‘efficient’ species, sometimes termed a
‘superorganism’. Superorganisms are not observed in nature. Instead, complex
communities of interacting microorganisms are observed [6]. Potential advan-
tages of mixed communities relative to monocultures include efficiency gains
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from specialization, the development of advanced functions, the ability to bet-
ter tolerate environmental fluctuations, the utilization of inhibitory byproducts
by other community members, and lower susceptibility to a single predatory
attack, among many possible advantages.

The focus here is on food chains within microbial communities, specifi-
cally, systems where one population consumes metabolites excreted by oth-
ers. These types of interactions are frequently referred to as syntrophic in-
teractions [13]. Food chains are commonly observed in natural and applied
systems including the cycling of carbon during the degradation of lignocel-
lulosic material and the cycling of nitrogen in waste water treatment facili-
ties [10]. Additionally, food chains have been observed to evolve repeatedly
in the laboratory environment. For example, chemostats inoculated with a
single Escherichia coli strain and operated under carbon-limited conditions
will evolve spontaneously into a community of cross-feeding sub-strains. The
evolved communities consist of one strain specializing in glucose catabolism
and other strains specializing in catabolism of secreted inhibitory byproducts
like acetate. The overall system demonstrates a 15% improvement in biomass
production from the limiting resource glucose [9].

While there are many potential benefits for microorganisms existing in a
mixed community, the focus here is on a theoretical analysis of two possible
benefits associated with resource exchange: enhanced return on limiting an-
abolic resource and lowered byproduct inhibition. The first benefit is quantified
by solving a constrained optimization model of a series of reactions controlled
by resource investment into different substrate and enzyme pools, and the sec-
ond benefit of reduced byproduct accumulation is quantified using individual-
based models of a biofilm community.

2 First Benefit: Enhanced Return on Anabolic Resource Invest-
ment

Cellular flux is driven by combinations of resource investments into both sub-
strate and enzyme pools. Consider an n reaction enzymatic pathway

S1
E1→ S2

E2→ · · · En−1→ Sn
En→ P,

where the substrate S1 is transformed into product P with the help of n en-
zymes, E1, ..., En. In a limited resource environment, microorganisms that
maximize the functional return on resource investment will be competitive [2].
To examine the trade-off between investment into combinations of substrate
and enzyme pools, we assume that the cell can partition an essential resource
(e.g., carbon) into optimal combinations of substrate pools utilized in the en-
zymatic pathway and into building the enzymes E1, ..., En. Both substrate
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pools and enzymes represent resource investments but with different resource
liquidities. If substrate Si consists of bi carbon atoms and enzyme Ei consists
of ai carbon atoms, then the total carbon investment for the enzymatic pathway
is:

C :=
n∑

i=1

([Ei]ai + [Si]bi).

Our model of the enzymatic pathway takes the form of a set of differential
equations:

Ṡ1 = ka1S0−
V1[S1]

κ1 + [S1]
, Ṡ2 =

V1[S1]

κ1 + [S1]
− V2[S2]

κ2 + [S2]
, Ṗ =

Vn[Sn]

κn + [Sn]
−ka2 [P ],

where ka1S0 is a constant source term and [P ] is the concentration of the
final product. Here Vi = [Ei]ki and we assume a one-to-one stoichiometric
relationship between Si and Si+1 as catalyzed by Ei. Assuming the pathway
is at steady state, we obtain

ka1S0 =
V1[S1]

κ1 + [S1]
=

V2[S2]

κ2 + [S2]
= . . . =

Vn[Sn]

κn + [Sn]
= ka2 [P ]

and thus ka1S0 is the steady state flux through the pathway. The concentration
of the final product [P ] is proportional to ka1S0.

We then formulate the pathway investment minimization problem as the
strategy of minimizing the amount of anabolic substrate for a given flux:

min
{[Ei],[Si],i=1,...,n}

C([Ei], [Si]) subject to n constraints (1)

ki[Ei][Si]

κi + [Si]
= ka1S0 for i = 1, ..., n.

The optimization is over substrate Si and enzyme Ei concentrations. Solving
(1) using Lagrange multipliers results in the following system of equations:

ai = λi
ki[Si]

κi + [Si]
, bi = λi

kiκi[Ei]

(κi + [Si])2
, ka1S0 =

ki[Ei][Si]

κi + [Si]
.

Solving the system of equations gives:

[Si] =

√
ka1S0

κi
ki

ai
bi
,

[Ei] =
bi
aiκi

[Si](κi + [Si]) =

√
ka1S0

biκi
kiai

+
ka1S0
ki

.
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Therefore the minimum anabolic investment to achieve a flux ka1S0 through
the enzymatic pathway is:

C =
n∑

i=1

([Ei]ai + [Si]bi) =
n∑

i=1

(
ai
ki
ka1S0 + 2

√
κiaibi
ki

ka1S0

)

The impact of different flux levels on the relative total investment require-
ment is shown in Figure 1. This figure shows that reducing the flux from a
baseline value of 1.0 causes an increase in the relative investment cost, but
increasing the flux leads to a decrease in the relative investment cost. The key
observation we make is thatC(ka1S0) is an increasing, concave down function
of ka1S0:

∂C

∂(ka1S0)
=

n∑

i=1

[
ai
ki

+
1√
ka1S0

√
κiaibi
ki

]
> 0,

∂2C

(∂(ka1S0))
2
= −1

2

n∑

i=1

[
1√

(ka1S0)
3

√
κiaibi
ki

]
< 0.

As a consequence, if one compares the carbon investment, C, needed
to achieve a flux ka1S0 to the investment needed to achieve twice the flux,
2ka1S0, this investment is less than 2C, representing an enhanced functional
return on a given anabolic resource investment. From an ecological perspec-
tive, the complete oxidation of a substrate at a fixed flux in a single population
will require more anabolic resource investment (approximately 10% more for
the parameter choices in Figure 1) than in a food chain of two interacting
microbial populations that split the same substrate oxidation pathway. This
observation assumes efficient metabolite exchange between the two interacting
populations.

3 Second Benefit: Inhibitory Byproduct Consumption

All metabolisms have byproducts which can negatively influence chemical
thermodynamics, as well as stress microorganisms by creating inhibitory local
environments. Common metabolic byproducts that can be inhibitory include
organic acids and alcohols such as formic acid, acetic acid, ethanol, pyruvic
acid, lactic acid, or glycerol. An existing individual-based model of microbial
growth in a biofilm was modified to compare the growth of a monoculture gen-
eralist population to a community of cross-feeding populations [14]. Biofilms
are aggregates of cells encapsulated within a polymeric matrix of microbial
origin. Biofilm communities were studied because product inhibition is espe-
cially significant in an environment where metabolite transport is limited to
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Figure 1: For a fold change in the flux, the fold change in the total anabolic
resource investment can be higher for a reduced flux or lower for an increased
flux (solid line). The diagonal dashed line (green) shows an equal fold change
in resource investment for a desired fold change in flux. The vertical dashed
lines (black) highlight the 1- and 2-fold changes in flux.

diffusion; convective transport is negligible in typical biofilms [12]. Commu-
nities of different microbial populations are compared in the simulations. The
communities are based on three unique populations:

1. a generalist population that consumes sugar and produces an inhibitory
byproduct (e.g., acetate) as well as CO2,

2. a producer population that consumes sugar and produces only an in-
hibitory byproduct (e.g., acetate), and

3. a scavenger population that consumes the inhibitory byproduct as its
only substrate, producing CO2.

These representative microorganisms and their interactions, which are sum-
marized in Figure 2, are relevant to many natural and engineered systems,
including the syntrophic consortium studied by Bernstein et al. [3, 4].

Individual-based models, in which individual cells are explicitly modeled
and substrate concentrations are modeled using a continuum approximation,
are a natural choice for biofilm community simulations. Numerous individual-
based models have been developed, and they often focus on different phys-
ical aspects of the biofilm environment, from growth to chemical transport
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Figure 2: (a) The monoculture contains only the generalist strain, which
consumes sugar and produces both an inhibitory byproduct and CO2. (b)
The break point in the metabolic pathway, which can represent a number of
commonly observed byproducts, is shown for division of the pathway between
the two specialists. (c) The food chain consists of a producer that consumes
sugar and produces the inhibitory byproduct, and a scavenger that consumes
(and is inhibited by) the byproduct from the producer and secretes CO2.

to detachment [1, 7, 8]. The individual-based biofilm model analyzed here
is described in two sections: (1) the diffusible substrate model, and (2) the
microbial cell model.

3.1 Diffusible Substrate Model

Substrates considered in the biofilm model include a sugar, which serves as
the reduced carbon source for the generalist and producer populations, and a
reduced metabolic byproduct such as acetate or lactate, which is the carbon and
energy source for the scavenger population. Local substrate, S, concentrations
within the biofilm are modeled using the reaction-diffusion equation:

dS

dt
= DS∇2S +

∑

i

(
1

Ys,i

dXi

dt

)
(2)
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where DS is the diffusivity of substrate S within the biofilm, Ys,i is the yield
of microbial cell i consuming or producing substrate S, and

(
dXi
dt

)
is the

specific growth rate of the individual microbial cell i. The diffusivity of sugar
is 0.85 mm2/h assuming a six-carbon sugar, and the inhibitory byproduct
diffusivity is 0.99 mm2/h assuming a short chain organic acid. The other
parameters in equation 2 are dependent on the specific population phenotype
and are defined in the next section. The domain is assumed to have walls
(i.e., no-flux boundary conditions) on the bottom and sides, while the top is
assumed to have a fixed substrate concentration (1.0 g/L for sugar and 0.0 g/L
for inhibitory byproduct). The initial condition is a concentration of zero for all
substrates, set in part to capture the initial slow growth phase when the biofilm
is initially being established.

3.2 Microbial Cell Model

While substrates are modeled using a continuum approximation, microorgan-
isms are modeled as discrete cells, which allows each cell to potentially have
a unique metabolism. For the presented study, three microbial populations
are modeled. The growth rates of the generalist population and the producer
population are described by:

dXi

dt
=

(
µiG

KG,i +G

)(
KI,i

KI,i +A

)
Xi

where G is the local sugar concentration (g/L), µi is the maximum specific
growth rate of population i, KI,i is the byproduct inhibition constant for pop-
ulation i, KG,i is the half-saturation constant for population i, and A is the
local byproduct concentration (g/L). The effect of byproduct concentration on
specific growth rate of the producer and generalist populations is shown in
Figure 3a where the byproduct acts as an inhibitor to growth. The specific
growth rate of the scavenger population is calculated using:

dXs

dt
=


 µsA

KA +A+ A2

KIA


Xs

where KA is the half-saturation constant and KIA is the byproduct inhibition
constant. The effect of byproduct concentration on the growth rate of the
scavenger population is shown in Figure 3b where the byproduct is both the
sole energy source and inhibitor. The parameter values used in the cell growth
equations are summarized in Table 1.

The individual biofilm model algorithm is implemented using the Python
programming language and is publicly available on github [15]. The algo-
rithm begins with a setup phase where the initial cell distributions and initial
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Param. Value Param. Value Param. Value
µg 0.4 h−1 µp 0.36 h−1 µs 0.4 h−1

KG,g 0.05 g/L KG,p 0.05 g/L KA 0.005 g/L
KI,g 0.04 g/L KI,p 0.15 g/L KIA 0.5 g/L
YG,g 0.15 gX/gG YG,p 0.14 gX/gG
YA,g 0.25 gX/gA YA,p 0.22 gX/gA YA,s 0.3 gX/gA

Table 1: Parameters used in the individual-based biofilm model where g is
the generalist population, p is the producer population, and s is the scavenger
population. See [5] and references therein for source information.

Figure 3: (a) The effects of byproduct inhibition on the specific growth rate of
the generalist and producer populations at a fixed sugar concentration of 1 g/L,
and (b) the effects of byproduct concentration on the scavenger population
where the byproduct of the producer population is both the sole energy source
and an inhibitor.

substrate concentrations are set. Then, a time loop is initiated and each time
step begins with a calculation of the growth of each cell based on the current
substrate concentration at the individual cell location. The mass of each cell is
increased based on the growth rate and time step. Next, the reaction-diffusion
equation is solved to determine updated substrate concentrations. Finally, any
cells that have increased in mass beyond a threshold (twice their initial mass
for the results shown here) are divided into two cells with one occupying the
original location and the other being randomly placed within a cell diameter
of the parent microorganism. If any cells are overlapping, i.e., occupying the
same space, an iterative smoothing process is used to spread out the cells until
no overlap exists.

3.3 Individual-Based Biofilm Model Results

The impact of resource partitioning is illustrated via comparison of three dif-
ferent microbial communities. Initial conditions consisted of 36 cells for all
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System g count p count s count total count
1 389 0 0 389
2 0 288 147 435
3 165 192 109 466

Table 2: Cell counts after simulating 10 hours of growth for an initial
community of 36 cells (evenly divided among the relevant three populations).
g is the generalist population, p is the producer population, and s is the
scavenger population. The values represent the average from 8 independent
simulations.

communities; when interacting communities were analyzed, the 36 cells were
divided equally between population types, e.g., for the two-population com-
munities there were initially 18 cells from each population. The first, and
simplest, community consisted of only the generalist population. The second
community consisted of the producer and scavenger populations, and the third
community combined generalist, producer, and scavenger populations.

Table 2 summarizes the final population cell counts after simulating 10
hours of growth for all three communities. In all cases, the initial community
was comprised of 36 total cells that were randomly placed within two cell
diameters of the bottom of the domain. The presented population cell counts
are averages of 8 different simulations. The standard deviation of the 8 simu-
lations based on different random starting locations was 5-10 cell counts. It is
also important to emphasize that in the mathematical model, starting location
is the only source of randomness.

Figure 4a shows a representative cell distribution for a monoculture com-
munity of generalists (green). The cells are drawn larger than their actual size
to facilitate visualization. Cell clustering was a result of random initial cell
seeding. Figure 4a also shows contours of the byproduct concentration, an
inhibitor for this population. The highest byproduct concentrations are found
in the center of large cell clusters and inhibit cell growth. This is the least
productive community, having the smallest final cell count.

The second community consisted of producer and scavenger populations.
The initial community consisted of 18 cells from each population, and an
example of a final cell distribution is shown in Figure 4b. The producer popu-
lation (shown as blue) generated more inhibitory byproduct than the generalist
population; however, the highest byproduct concentrations were comparable
to the generalist monoculture due to the function of the scavenger population
(red). The scavenger population grew fastest in regions of high byproduct
concentration. The average byproduct concentration in this community was
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Figure 4: Examples of final microorganism populations after 15 hours
of growth for: (a) a monoculture community comprised of the generalist
population (green circles), (b) a food-chain community consisting of producer
(blue) and scavenger (red) populations, and (c) a diverse community consisting
of all three populations: generalist (green), producer (blue), and scavenger
(red). (d) Total cell count as a function of time for the monoculture (green),
producer and scavenger combined (purple), and all three populations combined
(black). The trendlines are best-fit exponential curves.

lower than the generalist monoculture, and the overall biomass productivity
(i.e., final total cell count) of the community was significantly (1̃0%) higher.

The third community was a combination of the first two communities and
consisted of all three populations considered here: (1) generalist, (2) producer,
and (3) scavenger. The initial community was 12 cells of each population for
a total of 36 cells. As shown in Table 2, this combined community had the
largest biomass productivity. An example of a final cell distribution is shown
in Figure 4c. In some cases, this community had the highest byproduct con-
centration due to the larger populations of generalist and producer. However,
the average concentration never rose significantly higher than the other two
communities due to byproduct consumption by the scavenger population.
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The total population of the three different senarios as a function of time
is shown in Figure 4d. For the first 5 hours, the monoculture population
(shown in green) is slightly higher than either the producer-scavenger com-
munity (purple) or the three populations combined (shown in black). After 6
hours, the mixed communities increase in population more rapidly with the
community with all three populations showing the most rapid increase in total
cell numbers.

4 Conclusions

Microbial food chains can represent an ecologically competitive partitioning
of environmental resources. Resource partitioning via cross-feeding can po-
tentially benefit a community in numerous ways, and two specific advantages
are examined here. First, it was shown through analysis of resource parti-
tioning into substrate and enzyme pools that division of labor via interacting
populations can maximize cell function (e.g., enzymatic flux) for a limiting
anabolic resource investment. Second, dividing metabolic processes between
cell populations allows the community to avoid a large accumulation of in-
hibitory byproducts, enhancing overall community productivity. Since dif-
ferent metabolic byproducts present varying degrees of inhibition, resource
investment, and energy demand, there is a wide range of benefits from resource
sharing in microbial communities. As research and commercial interest in mi-
crobial consortia increases, a better quantitative understanding of the benefits
of resource sharing will be important for rational engineering and control.
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Abstract

Biological systems use various network motifs in order to create a desired
emergent behaviour. One of the prominent motifs is the positive feedback loop.
Positive feedback loops have the ability to create a sharp switch-like transition
between two steady states. Positive feedback loops that create switch-like
behaviour can also be coupled to each other in various ways: they could be
directly coupled through a shared component, or flipping one switch can drive
a second downstream switch without sharing a common component, which
we term as consecutive switches. Here we investigate the kinetic differences
these coupling variants can bring, and the effect of these upon a biological
system using as an example two eukaryotic cell cycle checkpoints, G1/S and
metaphase to anaphase. We find that consecutive positive feedback loops
create different global behaviours that differ from those created by directly
coupling the positive feedback loops. Directly coupled switches always flip
all species in the network at the same moment; consecutive switches can also
do this under some conditions, but they also have the ability to switch some
species first and other species later, introducing an intermediary state.

1 Introduction

Dynamical systems modelling builds networks, which explain how different
species interact with each other, with the aim of understanding the global
behaviour that results from the network. Examples of these global behaviours
that are particularly relevant to biology, is switch-like transitions and oscilla-
tions, due to the regularity with which they are experimentally observed [1].

From a dynamical perspective, a switch is a rapid and large alteration in the
activity of a species over a small change in input. Switch-like transitions are
created through the presence of one or more positive feedback loops (PFBLs)
within the system, and are one of multiple possible behaviours that can be
produced using PFBLs [2-6]. A PFBL is a loop of either purely activations,
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or activations and an even number of inhibitions within a network. This motif
often causes each species to activate its own activators/inactivate its own in-
hibitors; creating an amplification of the signal that drives the rapid alteration
in concentration of the molecule.

Some switches have the further property of being bistable [6–8]. Bista-
bility, is the phenomena that is observed when an input that creates a switch
will not reverse the effect; but remains in the new state, causing hysteresis.
A different value of the input is required to revert the switch to the original
state (hysteresis). Bistability is caused by two stable points existing for a given
parameter set such that the final state of the system will then depend upon the
initial conditions (e.g. initial concentrations of molecules) as well the parame-
ters of the system (e.g. inputs, thresholds and rate constants). Bistability is of
particular importance in biology, as it provides the system with resistance to
external noise and perturbation, as well as a sudden, fast and significant change
in state over a small change in system input [8].

The cell cycle is of particular interest when attempting to understand bi-
ological switch-like transitions, as it is a system that all living organisms un-
dergo in order to grow and divide, figure 1. In eukaryotes, the cell cycle can
be viewed as a series of abrupt transitions between each phase that converge
upon a closed loop [9]. As growth and division need to be tightly regulated,
there are three checkpoints within the cell cycle, where the cell is able to
confirm if previous processes are complete and no errors have occurred. These
checkpoints are at the G1/S transition, the G2/M phase transition, and the
metaphase to anaphase transition [10]. At each of these checkpoints the cell
has a gene regulatory network that inhibits progress to the next stage of the
cycle until the cell is ready. The change of phase then creates a fast change in
many molecular concentrations. For this reason, the regulatory system should
act like a switch, and once the phase change is completed, bistability should
ensure that noise cannot flip the switch back [11–14].

Biology often uses more than one PFBL to create a switch-like transition
through coupling them together. This can be done either directly through a
shared component, or flipping one switch, which can drive a second down-
stream switch. This system we have named a consecutive switch. One example
of a directly coupled PFBL network is controlling the metaphase to anaphase
transition [15–17]. It has been previously found that directly coupling PFBLs
increases the stability and resistance to noise of the switches, and changes
the speed of switches [8, 18, 19]. The cell cycle can also be described as
a series of switch-like transitions that drive each other in turn. Not only
does the whole cell cycle appear as a series of consecutive PFBLs that create
sudden, large concentration changes in key molecules, but also within the
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G1/S transition (the first cell cycle checkpoint) in budding yeast (S. cerevisiae)
multiple sequential PFBLs sequential drive one other [20, 21].

We therefore propose to investigate the differences between coupled and
consecutive PFBLs upon the properties of a switch. We shall utilise the cell cy-
cle checkpoints, in particular the metaphase to anaphase and G1/S transitions,
as an example to examine the effects of the differences upon coupled bistable
biological systems.

Figure 1: Budding yeast cell cycle. The cell cycle begins in G1 phase and the
cell grows, the start transition ensures that sufficient size has been reached prior to S
phase where DNA is replicated. G2 phase allows further growth, the G2/M transition
ensures DNA has been replicated without error, and M phase is where the cell divides
with the metaphase to anaphase transition ensuring proper alignment of the spindles
prior to DNA separating into mother and daughter cells.

2 Model

We have created simplified networks of metaphase to anaphase transition and
the G1/S transition, in order to compare the effects of directly coupled versus
consecutive PFBL networks upon the resulting switch-like behaviour, shown
in figure 2.

The metaphase to anaphase transition shows a directly coupled PFBL net-
work in S. cerevisiae. This transition inhibits the cyclin dependent kinase
activity (Cdc28) so that the cell divides [22]. The first positive feedback loop
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involves Sic1 (an inhibitor of Cdc28) and Cdc28 [15, 16]. During metaphase
Cdc28 activity is high which inhibits Sic1. During the transition, Cdc14 con-
centration increases which activates Sic1 and inhibits Cdc28. The second
positive feedback loop is formed by Cdh1 (also a Cdc28 inhibitor) and Cdc28
[17]. Cdc14 also activates Cdh1 which likewise inhibits Cdc28 (figure 2, left
panel).

Figure 2: Simplified cell cycle checkpoint transition networks for S. cerevisiae
that demonstrate coupled and consecutive PFBL networks. An example of a classic,
well understood coupled PFBL network is the metaphase to anaphase transition which
inactivates Cdc28, through Sic1 and Cdh1 (left). Two consecutive PFBL networks are
created using the G1/S transition by splitting the G1/S transition into early and late
processes. This enable each network to contain two PFBLs that are sequential (right).
The two networks differ in that in early G1/S (right, top), Cln3 synthesis is increased
so that the input is inside the first PFBL; whereas for the late G1/S network (right,
bottom) Cln3 is still increased as the input but is external to the PFBL it is affecting.

To examine the effect of consecutive PFBLs upon a network, we use the G1/S
transition in S. cerevisiae. In late G1, at the beginning of the G1/S transition
(early G1/S in the model), cyclin Cln3 is produced in the ER but inhibited
from being released to its destination in the nucleus by Whi7 [23–25]. Once
Cln3 accumulates to a sufficiently high concentration, it is able to induce the
phosphorylation and inactivation of Whi7. This allows Cln3 to bind the cyclin
dependent kinase (Cdk), Cdc28, further inhibiting Whi7. Cln3/Cdc28 then en-
ters the nucleus, creating the first PFBL. Nuclear accumulation of Cln3/Cdc28
drives a second positive feedback loop that involves Cln1,2 and Whi5 [12,26–
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29]. Cln3/Cdc28 phosphorylates and inactivates Whi5, which is inhibiting
the transcription factor required for S phase (SBF). The release of SBF starts
to transcribe Cln1,2 which binds to Cdc28, and further inhibits Whi5, allow-
ing the activation of SBF. Cdc28/Cln1,2 also targets the Cdk inhibitor Sic1.
Upon the presence of Cdc28/Cln1,2, the inhibition of Cdk/Clb5,6 by Sic1 is
surpassed by Cdk/Clb5,6 inducing the degradation of Sic1, [30] generating a
third positive (double negative or antagonistic) feedback loop [31].

As this transition contains three as opposed to two PFBLs, we are able to
split this network into early G1/S using the first and second PFBLS (figure 2,
right top); and late G1/S containing the second and third PFBLs (figure 2,
right bottom). This allows us to explore if the position of the input, Cln3, has
an effect upon the resulting behaviour of the network. In early G1/S, the rate at
which Cln3 is synthesized is increased manually, affecting Cln3 concentration,
so the input to the system is within the first PFBL. Whereas in the late G1/S
model, Cln3 concentration is increased manually to create the input for the
network and this is external input to the first PFBL.

We turned each wiring diagram in figure 1 into a mathematical model.
The models are deterministic and created using ordinary differential equations
(ODEs), (table 1). Each of the species is able to be in an ON or an OFF
state and all the transitions between the ON and OFF states are governed by
Goldbeter-Koshland kinetics [32], such that a reaction rate, r, is defined as:

roff→on =
k1[Catalyston][Xoff ]

KM1 + [Xoff ]
and ron→off =

k2[Catalystoff ][Xon]

KM2 + [Xon]

where k is the kinetic parameter and KM is the Michaelis-Menten constant for
the reaction. The concentrations of catalysts in each reaction are the concen-
trations of inhibitors or activators such that: inhibitions will act as catalysts to
ron→off and activations will act as catalysts to roff→ob. A leakage of 0.1 is
added to all the models for all transition reactions (table 1). Static thresholds
are also added when a reaction has no catalyst. These conditions ensure that
all variables remain positive, which is important since they represent molecular
concentrations.
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Equations

Metaphase
/ Anaphase

dsic1on/dt = k1*(totsic1-sic1on)*(0.1+cdc14) /
(KM6+(totsic1-sic1on))
-k2*sic1on*(0.1+cdc28on)/(KM1+sic1on)

dcdc28on/dt = k3*(totcdc28-cdc28on)*(0.1+Threshold) /
(KM2+(totcdc28-cdc28on))
-k4*cdc28on*(sic1on+cdh1on+0.1) /
(KM3+cdc28on)

dcdh1on/dt = k5*(totcdh1-cdh1on)*(0.1+cdc14) /
(KM4+(totcdh1-cdh1on))
-k6*cdh1on*(0.1+cdc28on)/(KM5+cdh1on)

Early G1/S

dcln3off/dt = s*cln3synthrate-k1*cln3off*(Threshold1+0.1)/
(KM6+cln3off)+k2*cln3on*(whi7on+0.1) /
(KM1+cln3on) -k3*cln3off

dcln3on/dt = (k1*cln3off*(Threshold1+0.1)/(KM6+cln3off))
-k2*cln3on*(whi7on+0.1)/(KM1+cln3on)
-k10*cln3on

dwhi7on/dt = k4*(totwhi7-whi7on)*(Threshold2+0.1) /
(KM2+(totwhi7-whi7on))-k5*whi7on*
(cln3on+0.1)/(whi7on+KM3)

dcln1on/dt = (-k6*cln1on*(whi5on+0.1)/(KM4+cln1on))
+k7*(totcln1-cln1on)*(Threshold4+0.1) /
(KM5+(totcln1-cln1on))

dwhi5on/dt = (-k8*whi5on*(cln1on+cln3on+0.1) /
(KM6+whi5on))+k9*(totwhi5-whi5on)*
(Threshold3+0.1)/(KM7+(totwhi5-whi5on))

Late G1/S

dwhi5on/dt = k1*(totwhi5-whi5on)*(Threshold1+0.1) /
(KM6+(totwhi5- whi5on))
-k2*whi5on*(cln1on+cln3+0.1)/(KM1+whi5on)

dcln1on/dt = k3*(totcln1-cln1on)*(Threshold2+0.1) /
(KM2+(totcln1-cln1on))
-k4*cln1on*(whi5on+0.1)/(KM3+cln1on)

dsic1on/dt = k5*(totsic1-sic1on)*(Threshold3+0.1) /
(KM4+(totsic1-sic1on))
-k6*sic1on*(cln1on+clb5on+0.1)/(KM5+sic1on)

dclb5on/dt = k7*(totclb5-clb5on)*(Threshold4+0.1) /
(KM7+(totclb5-clb5on))
-k8*clb5on*(sic1on+0.1)/(KM8+clb5on)

Table 1: Model equations for each network using ordinary differential equations.
OFF states are equal not expressly written can be calculated as OFF=total – ON, the
exception is Cln3off in early G1/S, which is written above.
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To analyse the system and create the plots provided in the results, the input
parameter for each network is varied and the steady state(s) of the system for
that parameter set are plotted to create a bifurcation diagram. In order to be
able to vary Cln3 synthesis in the early G1/S model we include terms in the
ODE model for Cln3off to be synthesized and both Cln3off and Cln3on to be
degraded, which means that the total concentration of Cln3 varies parameter
set. Experimental results show that Cln3 concentration varies with volume,
and has been used in many models [20, 21, 33] The parameter sets and initial
conditions for all plots provided in the results are presented in the Appendix,
table 2.

3 Results

Bifurcation analysis allows us to examine where a system will alter its quali-
tative behaviour when an input is changed due to external signals, through the
evolution of fixed points. In particular, this will enable us to identify switch-
like transitions in the system. Switch behaviour is created when the steady
state curve, or attractor, that the system is currently attracted to is destroyed,
forcing the system to rapidly jump from the initial steady state curve to a new
steady state curve over a very small change in input parameter [34].
The bifurcation diagram for the coupled PFBL network (metaphase to anaphase
transition) found that one switch-like transition is created that turns off Cdc28
(figure 3). This can be observed by following the thick curve for [Cdc28]
from when [Cdc14]=0 ([Cdc28]=10) until the bifurcation point. If [Cdc14] is
increased any higher, then the steady state of [Cdc28] is close to zero.

The bifurcation diagrams for the consecutive PFBLS exhibit new behaviour
that is not possible for coupled PFBLs (figure 3, bifurcation diagrams for early
and late G1/S transition). These diagrams show that, as the input parameter is
increased, it is possible for the switch to occur in one of two ways. On the left
hand diagrams for the early and late G1/S transitions, Cln3 and Cln1,2/Cln1,2
and Clb 5,6 respectively, turn on at the same value of input parameter (see fig-
ure 3 and table 3). We call this “compound” switch behaviour, as 2 switch-like
transitions occur together making the appearance of only one abrupt transition
between steady states. This means that one of the switches is effectively hidden
and is not observed as a separate switch. In the right hand panels of the G1/S
models, the parameters within the system have been changed (see appendix for
complete set of parameters for each plot in figure 3). It can be seen that the
first and second PFBLs do not flip at the same parameter values (see figure 3
and table 3).
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Figure 3: Bifurcation Diagrams of coupled and consecutive networks. Solid lines
represent steady states; black circles are bifurcation points; and coloured arrows are
the concentrations for each species as the transition is completed. The directly coupled
PFBL creates one switch-like transition, whereas the consecutive PFBLs have either
“compound” or “separated” switch-like transitions. Equations of these models are in
table 1 and see table 2 in the appendix for parameter alterations used to create the
“compound” and “separated” switch behaviours. Figures created using Oscill8 [37].
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We term this a “separated” consecutive switch behaviour. The Cln3 for early
G1/S and Cln1,2 in late G1/S turn on at a lower input parameter than the Cln1,2
and Clb5,6 respectively. This occurs because the first switch-like transition oc-
curs but this does not sufficiently suppress the inhibitor in the second PFBL to
induce the second switch-like transition, creating an intermediary stable state.
Further suppression of the inhibitor or activation of the activator eventually
causes the second PFBL to create a switch-like transition.

It was observed that both the “compound” and “separated” switch be-
haviour scenarios could occur for the proposed consecutive FBFL wirings.
This suggests that that the position of the input, whether internal or external,
does not affect the emergent behaviour of the system.

4 Discussion

It is observed that directly coupling PFBLs creates one switch-like transition
that has previously been shown to increase bistability and decrease pertur-
bations caused by noise [19]. The cell often couples PFBLs but it is also
becoming increasingly apparent that the cell ‘stacks up’ consecutive PFBLs
to create one phase change. This is most well known in the G1/S transition
[14, 20].

It is therefore important to attempt to understand the differences between
these two network architectures upon the switch-like transitions. It was ob-
served that by using consecutive PFBLs driving each other, multiple switch-
like transitions are created as opposed to a single switch behaviour. The two
different networks tested also showed that these switch-like transitions may
either be seen at different times or that one may be hidden and effectively
unobservable.

The resulting appearance and number of switch behaviours in a system is
dependent upon the parameters. This could allow models to be constrained
in parameter space but also implies that experiments need to be designed to
identify if there are hidden PFBLs within a network. In biology, mutants can
be created to knockout molecules. We propose this as a method to enable ex-
perimentalists to remove particular PFBLs and identify of these extra switches
and increase the accuracy of systems level networks.

We hypothesize that the cell may have either switch behaviour occur at
different times or overlap PFBLs to create a “compound” switch behaviour
depending upon the requirements of the network. For example, in the G1/S
transition Cln1,2 triggers budding in S. cerevisiae and Clb5,6 initiates DNA
replication [30, 35, 36]. The cell creates the bud prior to DNA replication,
in normal conditions, but once budding has occurred DNA replication should
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begin. Therefore, we would expect one switch-like transition to drive another
switch-like transition, with each occurring at different times with an intermedi-
ary stage between them. These intermediary states may also be present in the
cell cycle which is a large series on consecutive switches. The intermediary
states may create hidden phases of the cell cycle that need to be completed in
order to trigger the next state.

In contrast to this, the cell can use multiple PFBLs to create a “compound”
switch behaviour that has a greater change in concentrations between the ON
and OFF state of the final molecule in the network. The final molecule is
observed to have almost background concentration change as the input pa-
rameter is increased until the bifurcation point, where it completely turns on.
This may be especially important in a situation where a small concentration
change in a molecule may have a negative impact upon cell health or wastes
cellular resources, for instance a transcription factor that once turned on starts
transcribing genes related to a different phase. This may also be the case for
Clb5,6 as S phase processes should not begin prior to completion of G1.

In conclusion, we observe that consecutive PFBLs can create different
properties to those of coupled or single positive feedback loops and therefore
may be particularly useful in some biological systems [8, 18, 19].
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Appendix

Cell cycle
transition

Parameters and initial conditions that will create
bifurcation diagrams

Metaphase
to
Anaphase

Initial conditions – Sic1on = 0 Cdh1on = 0
Cdc28on = 10

Parameters – k1 = 1.1 KM1 = 1 k2 = 1 KM2 = 1
k3 = 1 KM3 = 1 k4 = 1 KM4 = 1 k5 = 1 KM5 = 1 k6 = 1
KM6 = 1 Totsic1 = 10 Threshold = 2
Totcdh1 = 10 Totcdc28 = 10

Early G1/S
Compound

Initial conditions – cln3off = 0 cln3on = 0 whi7on = 10
cln1on = 0 whi5on = 10

Parameters – s = 10 k1 = 1 k2 = 1 k3 = 1 k4 = 1 k5 = 1
k6 = 1 k7 = 1 k8 = 1 k9 = 1 k10 = 0.5 totcln1 = 10
totwhi7 = 10 totwhi5 = 10 KM1 = 1 KM2 = 1 KM3 = 1
KM4 = 1 KM5 = 1 KM6 = 1 KM7 = 1 Threshold1 = 3.9
Threshold2 = 1 Threshold3 = 9.5 Threshold4 = 4

Early G1/S
Separated

Initial conditions – cln3off = 0 cln3on = 0 whi7on = 10
cln1on = 0 whi5on = 10

Parameters – s = 10 k1 = 1 k2 = 1 k3 = 1 k4 = 1 k5 = 1
k6 = 1 k7 = 1 k8 = 1 k9 = 1 k10 = 0.5 totcln1 = 10
totwhi7 = 10 totwhi5 = 10 KM1 = 1 KM2 = 1 KM3 = 1
KM4 = 1 KM5 = 1 KM6 = 1 KM7 = 1 Threshold1 = 3.9
Threshold2 = 1 Threshold3 = 9.4 Threshold4 = 5

Late G1/S
Compound

Initial conditions – cln1on = 0 whi5on = 10 clb5on = 0
sic1on = 10

Parameters – k1 = 1 k2 = 1 k3 = 1 k4 = 1 k5 = 1 k6 = 1
k7 = 1 k8 = 1 totcln1 = 10 totwhi5 = 10 totclb5 = 10
totsic1 = 10 KM1 = 1 KM2 = 1 KM3 = 1 KM4 = 1
KM5 = 1 KM6 = 1 KM7 = 1 KM8 = 1 Threshold1 = 10
Threshold2 = 5 Threshold3 = 10 Threshold4 = 5

Late G1/S
Separated

Initial conditions – cln1on = 0 whi5on = 10 clb5on = 0
sic1on = 10

Parameters – k1 = 2 k2 = 2 k3 = 1 k4 = 1 k5 = 1 k6 = 1
k7 = 0.1 k8 = 1 totcln1 = 10 totwhi5 = 10 totclb5 = 10
totsic1 = 10 KM1 = 1 KM2 = 1 KM3 = 1 KM4 = 1
KM5 = 1 KM6 = 1 KM7 = 1 KM8 = 1 Threshold1 = 10
Threshold2 = 5 Threshold3 = 10 Threshold4 = 22.6

Table 2: Parameters and initial conditions used to create bifurcation diagrams found
in results
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Concentrations for
compound switch
transition

Concentrations of
Cln1/Sic1 for separated
switch transition

Early
G1/S
transition

[Cln3] switch behaviour
observed at cln3 synthesis
rate=16.8 from 0.75 to 7.0
[Cln1/2] switch behaviour
observed at cln3 synthesis
rate=16.8 from 0.6 to 9.7

[Cln3] switch behaviour
observed at cln3 synthesis
rate=16.8 from 0.75 to 7.0
[Cln1/2] switch behaviour
observed at cln3 synthesis
rate=43.6 from 1.6 to 9.7

Late
G1/S
transition

[Cln1/2] switch behaviour
observed at [cln3] = 6.8
from 2.0 to 9.7
[Sic1] switch behaviour
observed at [cln3] = 6.8
from 0.9 to 9.8

[Cln1/2] switch behaviour
observed at [cln3] = 6.8
from 2.0 to 9.7
[Sic1] switch behaviour
observed at [cln3] = 15.5
from 1.5 to 9.3

Table 3: Concentrations of components that are activated in a switch-like manner
and the input values at which this behaviour occurs.
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Abstract

We have previously constructed a 1,3-propanediol de novo synthesis path-
way starting from malate, composed of six consecutive enzymatic reaction
steps. An important step in this pathway consists in the conversion of the
monocarboxylic acid (L)-dihydroxybutyrate (DHB) into the keto-acid 2-oxo-
4-hydroxybutyrate (OHB). In this study, we utilized a rational approach to en-
gineer a DHB dehydrogenase by using bacterial malate dehydrogenase (eMDH)
as the template enzyme. Structural analysis of (L)-malate dehydrogenase and
(L)-lactate dehydrogenase enzymes that act on sterically cognate substrates
revealed key residues in the substrate and co-substrate binding sites which are
responsible for substrate discrimination. Accordingly, mutations were intro-
duced into three different protein regions (substrate binding site, exterior loop
and the vicinity of the coenzyme nicotinamide ring) yielding a total of twenty-
four eMDH variants that were characterized on DHB, malate and lactate. The
highest DHB dehydrogenase activity of 20.42 ± 0.19 U.mg−1 was found for
the quintuple mutant R81A:M85Q:I12V:G179D:D86S which corresponded to
an increase of 2042-fold compared to the wild-type enzyme.

1 Introduction

A central goal of the bioeconomy consists in reducing our dependence on
fossil resources through next-generation biomanufacturing by focusing on the
industrial production of bio-based specialty chemicals [1]. To accomplish this
goal, non-natural biochemical pathways are needed, in which synthetic biology
– including redesign and protein engineering – emerges as a critical tool.

1,3-Propanediol (PDO) is an important chemical that can be utilized as
monomer for the synthesis of high-value polymers. PDO can naturally be
synthesized from glycerol by two enzymatic steps: glycerol dehydration to 3-
hydroxypropionaldehyde (HPA) by a glycerol dehydratase, and HPA reduction
to PDO by 1,3-propanediol oxidoreductase. No natural microorganisms have
however been found to directly use sugars to produce PDO [2].
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We recently constructed a non-natural biosynthetic pathway towards PDO
production from malate using Escherichia coli as a microbial chassis [3,4].
Since malate is a TCA cycle intermediate, the proposed route can be engi-
neered in selected hosts with the ability to utilize different and cheap sug-
ars. The proposed PDO synthetic pathway is composed of six enzymatic
steps: (1) phosphorylation of malate to 4-phospho-malate, (2) reduction of 4-
phospho-malate to malate semialdehyde, (3) reduction of malate semialdehyde
to (L)-2-dihydroxybutyrate (L-DHB), (4) oxidation of L-DHB to 2-keto-4-
hydroxybutyrate (OHB), (5) decarboxylation of OHB to HPA, (6) reduction
of HPA to PDO. Enzyme engineering towards substrate specificity remains as
a critical task towards improving pathway efficiency.

In this work, we report on the construction of an efficient DHB dehydroge-
nase (step no. 4) by engineering the malate dehydrogenase from Escherichia
coli.

2 Materials and methods

2.1 Cloning, mutagenesis, expression and purification

E. coli DH5α (New England Biolabs) was routinely used for the construction
of plasmids. The mdh gene encoding the wildtype (L)-malate dehydrogenase
of E. coli (eMDH) was amplified by PCR and cloned into vector pET-28a+
(Novagen). Point mutations were introduced by PCR based on site-directed
mutagenesis. The resulting PCR products were digested by DpnI at 37 oC to
remove template DNA and transformed into competent cells. Mutated plas-
mids were verified to carry the desired mutations by sequencing.

Enzymes were expressed in E. coli BL21(DE3) cells (New England Bi-
olabs) in 200 mL Luria-Bertani (LB) medium supplemented with 50 µg/mL
kanamycin (37 oC, 200 rpm) that were inoculated from an overnight culture
at OD600 of 0.05 and grown to OD600 of 0.6 before protein expression was
induced for 3h by addition of 1 mM isopropyl β-D-1-thiogalactopyranoside
(IPTG) to the culture medium. Cells were harvested by centrifugation and
pellets were stored at -20 oC until further analysis. Protein purification starting
from frozen cell pellets was performed according to [3].

2.2 Enzymatic assays

Protein concentrations were determined by the method of Bradford (Bio-Rad)
and enzymatic activities on malate, DHB, and lactate were measured at 37 oC
by monitoring the absorbance at 340 nm which is characteristic for NADH
using an Epoch 2 microplate spectrophometer (BioTek). Initial rate measure-
ments were carried out for reaction mixtures (250 µL) that contained variable
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concentrations of substrate, 10 mM NAD+, 179 mM glycine buffer (pH 9.0), 5
mM MgCl2, 50 mM KCl and appropriate amount of enzyme. Three substrates,
including (L)-malate, (L)-lactate and a racemic mixture of (D/L)-DHB, were
tested at in a concentration range between 0 and 50 mM.

3 Results

3.1 Strategy for DHB dehydrogenase design

Malate dehydrogenase catalyzes the reversible NAD+-dependent oxidation of
malate to oxaloacetate. Because of the structural similarity between the C4
carboxylic acids DHB and malate, the dimeric eMDH enzyme was selected
as a design template to engineer an enzyme which catalyzes the oxidation of
DHB to OHB.

Malate and lactate dehydrogenases are both 2-hydroxy-acid dehydroge-
nases. They share a similar tertiary structure in which the nucleotide binding
domain and catalytic residues are conserved but yet maintain a respective
selectivity for di- and monocarboxylic acids. Key differences between the two
enzymes are found in the sequences of a loop region that covers the active-site.
In this regard, loop closure in LDH is similar to that in MDH, as implied by a
common kinetic mechanism. Crucially, contrarily to MDH, LDH loop closure
occurs without the favorable energy contributions of a stabilizing salt bridge
formed between a second substrate carboxylate group absent in (L)-lactate and
a second arginine guanidinium group in the enzyme. Since (L)-lactate and (L)-
2,4-dihydroxybutyrate (DHB) are both monocarboxylic acids, identification of
compensatory stabilizing loop interactions in lactate dehydrogenase afforded
a design strategy for the engineering of DHB dehydrogenase.

3.2 Identification of the target mutation sites for engineering MDH

Sequence and structure comparison between MDH and LDH were used to
identify putative target residue positions for mutation. LDH acts on a sub-
strate which has only one carboxy group, contrarily to MDH that acts on a
substrate presenting a second negatively charged carboxy group. Since DHB
has also only one carboxy group, we have step-wise replaced eMDH residues
by corresponding amino acids in LDH.

Comparison of MDH and LDH active-site loop sequences revealed the
presence of three internal loop stabilizing interactions specific to LDH. The
corresponding eMDH target mutation sites were step-wise replaced by corre-
sponding amino acids in LDH.

Analysis of lactate dehydrogenase multiple sequence alignments shows the
notable presence of smaller residues at (equivalent) positions in eMDH close
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to the coenzyme nicotinamide ring. Yin and co-workers [5] demonstrated the
favorable impact of an I12V mutation in the engineering of lactate dehydroge-
nase activity in eMDH.

3.3 Enzyme activity and specificity

The specific activities of wild-type eMDH and the twenty-four generated mu-
tant enzymes were measured on (L)-malate, (D/L)-DHB and (L)-lactate at ini-
tial substrate concentrations of 50 mM. (L)-lactate was included in the analysis
because of its structural similarity to DHB and malate. Enzymatic assays at
substrate concentrations of up to 50 mM revealed that the activity of the mutant
enzymes did not saturate on all substrates. Therefore, substrate affinity could
not be determined. It is of note that we could only use a racemic mixture of
(D/L)-DHB. Since eMDH is only active in (L)-stereoisomers it is very likely
that the activities and substrate affinities of the MDH mutants on (L)-DHB are
actually higher.

The wild-type enzyme eMDH had a very low DHB dehydrogenase activity
(0.01 ± 0.00 U mg−1) which was more than 6000-fold smaller than on its
natural substrate malate (62.25 ± 1.33 U mg−1) (Fig. 1a). No (L)-lactate
dehydrogenase activity was found for this enzyme.

Point mutations were first introduced into the substrate-binding region of
eMDH either individually or as groups (Fig. 1b). The substitution of arginine
at position 81 by glutamine, cysteine and alanine residues (R81Q, R81C and
R81A, respectively) resulted in a sharp decrease of enzyme activity on (L)-
malate up to approximately 98% (Fig. 1a, 1b) confirming the pivotal role
of R81 in determining substrate specificity of MDH enzymes [6]. Conversely,
mutants in position R81 showed improved (L)-lactate and DHB dehydrogenase
activity when compared to the wild-type enzyme. While the variant R81Q
showed the highest activity on (L)-lactate among this group (0.28 ± 0.01
U.mg−1), the mutant R81A was the one with highest DHB dehydrogenase
activity (0.33 ± 0.01 U.mg−1).

We therefore continued to combine the mutation R81A with mutations
on the mobile loop which closes the active site (at residues A80, M85, D86,
G179, T211) and mutations in the coenzyme nicotinamide ring vicinity NAD-
cofactor binding site (at residue I12).

In Fig. 1c, we can observe the effect of grouping mutations at the substrate
binding site and exterior loop. While no improved activity on (L)-lactate
was found, most of eMDH variants exhibited higher activity on DHB, and
notably the mutant R81A:M85Q (2.02 ± 0.11 U.mg-1), suggesting a syner-
gistic effect when introducing residue alterations at these two different re-
gions of the protein. Interestingly, the increase in DHB dehydrogenase activity
was also followed by an increase in malate dehydrogenase activity. Upon
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simultaneous introduction of mutations in substrate binding site and in the
coenzyme nicotinamide ring vicinity (Fig. 1d), the same trend was observed.
The mutant R81A:I12V exhibited 1.7-fold higher DHB dehydrogenase activity
if compared to best eMDH* with mutations at only the substrate binding site
(Fig. 1b, 1d).

Figure 1: Specific activities of wild-type eMDH (1a) and mutant enzymes (1b-e) on
(L)-malate (grey bars), (L)-lactate (red bars) and (D/L)-DHB (green bars). Mutants
were divided into four groups according to the cumulation of mutations in up to three
functional regions: 1b, substrate binding site; 1c, substrate binding site and exterior
loop; 1d, substrate binding site and coenzyme nicotinamide ring vicinity; 1e, substrate
binding site, exterior loop and coenzyme nicotinamide ring vicinity. Initial substrate
concentration was 50 mM.

To investigate whether DHB dehydrogenase activity could still be improved,
we decided to go further by combining mutations at the substrate binding
site, exterior loop and vicinity of the coenzyme nicotinamide ring (Fig. 1e).
Variants from this group were found to be the most interesting ones with

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 169



26/9/2017- page #170

improvement in DHB dehydrogenase activity being noteworthy (up to 10-fold
when comparing to R81A:M85Q), whilst activity on (L)-lactate was improved
up to 7.8-fold when comparing to the single mutant R81Q. Again, mutant vari-
ants exhibiting improved activity on DHB showed increased activity on (L)-
malate (up to 48% of eMDH activity), suggesting that a compromise between
DHB and (L)-malate dehydrogenase activities is required.

Overall, the quintuple mutant R81A:M85Q:I12V:G179D:D86S (eMDH* 5)
showed the highest activity on DHB (20.42 ± 0.19 U.mg−1) and also on
(L)-lactate (2.20 ± 0.03 U.mg−1), while the triple mutant R81A:M85E:I12V
(eMDH* 3) preferred DHB as a substrate over the original substrate (Table 1).
Both variants target substitutions at three functional regions.

Clone Specific activity (U.mg−1) Specificityc

(L)-Malate (D/L)-DHB (L)-Lactate log2 (VD/VM)

eMDH 62.25 ± 1.33 0.01 ± 0.00 0.00 ± 0.00 -13.60 ± 0.01
eMDH* 5a 30.37 ± 2.35 20.42 ± 0.19 2.20 ± 0.03 -0.57 ± 0.03
eMDH* 3b 1.01 ± 0.17 1.77 ± 0.00 0.15 ± 0.01 0.81 ± 0.07

(a) eMDH* R81A:M85Q:I12V:G179D:D86S
(b) eMDH* R81A:M85E:I12V
(c) Ratio of the specific activities of one enzyme on (D/L)-DHB and

(L)-malate. Activities were measured at 50 mM.

Table 1: Specific activity of best eMDH* on tested substrates at 50 mM

4 Conclusions

Creating enzymes with novel properties by protein engineering is a key en-
abling technology for synthetic biology, which aims at both improving pro-
ductivities of natural products and enlarging the panel of chemicals that can be
produced by microorganisms.

We are currently implementing a 6-step synthetic pathway which produces
PDO from malate by employing 5 hitherto unknown enzymatic activities. In
the present report we describe the engineering of a DHB dehydrogenase by
using eMDH as the template enzyme. Wild-type eMDH had only very residual
and hardly measurable activity on the DHB substrate (0.01 ± 0.00 U mg−1).
Upon introduction of identified point mutations at distinct protein functional
regions, we were able to obtain improved DHB dehydrogenase activities in
all the twenty-four generated eMDH variants. he highest DHB dehydroge-
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nase activity of 20.42 ± 0.19 U.mg−1 was found for the quintuple mutant
R81A:M85Q:I12V:G179D:D86S which corresponded to an increase of 2042-
fold compared to the wild-type enzyme. On the other hand, the triple mutant
R81A:M85E:I12V showed the highest specifciity by preferring DHB over its
original substrate (L)-malate.

The characteristics of these two engineered DHB dehydrogenase are highly
promising and we shall test these new enzymes upon in vivo implementation
of the synthetic PDO pathway.
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