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“But technology will ultimately and usefully be better served by following
the spirit of Eddington, by attempting to provide enough time and intellectual

space for those who want to invest themselves in exploration of levels
beyond the genome independently of any quick promises for still quicker

solutions to extremely complex problems.”

Strohman RC (1977) Nature Biotech 15:199

FOREWORD
Systems Biology includes the study of interaction networks and, in particular, their dy-
namic and spatiotemporal aspects. It typically requires the import of concepts from
across the disciplines and crosstalk between theory, benchwork, modelling and simu-
lation. The quintessence of Systems Biology is the discovery of the design principles of
Life. The logical next step is to apply these principles to synthesize biological systems.
This engineering of biology is the ultimate goal of Synthetic Biology: the rational concep-
tion and construction of complex systems based on, or inspired by, biology, and endowed
with functions that may be absent in Nature.

This annual School started in 2002. It was the first School dedicated to Systems
Biology in France, and perhaps in Europe. Since 2005, Synthetic Biology has played
an increasingly important role in the School. Generally, the topics covered by the School
have changed from year to year to accompany and sometimes precede a rapidly evolving
scientific landscape. Its title has evolved in 2004 and again in 2012 to reflect these
changes. The first School was held near Grenoble after which the School has been
held in various locations. It started under the auspices of Genopole R©, and has been
supported by the CNRS since 2003, as well as by several other sponsors over the years.

This book gathers overviews of the talks, original articles contributed by speakers
and students, tutorial material, and poster abstracts. We thank the sponsors of this
conference for making it possible for all the participants to share their enthusiasm and
ideas in such a constructive way.

Patrick Amar, Gilles Bernot, Marie Beurton-Aimar, Attila Csikasz-Nagy, Oliver Ebenhoeh, Ivan Junier,
Marcelline Kaufman, François Képès, Pascale Le Gall, Sheref Mansy, Jean-Pierre Mazat, Victor Norris,
William Saurin, El Houssine Snoussi, Ines Thiele, Birgit Wiltschi.
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Toward whole-cell models for science and engineering

Jonathan KARR1

1 Inst. for Genomics & Multiscale Biology Inst., the Mount Sinai
School of Medicine, New York, US

Abstract

A central challenge in biology is to understand how phenotype arises from
genotype. Despite decades of research, a complete understanding of biology
remains elusive. Computational techniques are needed to create a unified
understanding. Recently, we developed the first comprehensive whole-cell
computational model which accounts for the specific function of every anno-
tated gene product and predicts the dynamics of every molecular species over
the entire cell cycle. We validated our model by comparing its predictions to a
wide range of experimental data. We have used the model to gain new insights
into cell cycle regulation and energy usage. We believe that whole-cell models
will accelerate bioengineering and medicine by enabling rapid, low cost in
silico experimentation, facilitating experimental design and interpretation, and
ultimately guiding rational biological design.

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 11
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Signaling and regulatory networks

Tamas KORCSMAROS1

1 The Genome Analysis Centre (TGAC) and Institute of Food Research,
Norwich, UK

Abstract

Signaling pathways control most stress response mechanisms. We previously
created SignaLink, a signaling resource (http://signalink.org) contain-
ing manually curated data of major signaling pathways. To provide a de-
tailed mapping of signaling systems we further developed a novel concept to
integrate and utilize regulatory mechanisms of the signaling network. The
multi-layered (onion-like) database structure of SignaLink 2 is made up of
signaling pathways, their pathway regulators (eg, scaffolds) and modifier en-
zymes (eg, phosphatases, ubiquitin ligases), as well as transcriptional and
post-transcriptional regulators (transcription factors and miRNAs). The user-
friendly website allows the interactive exploration of how each protein is regu-
lated. We used SignaLink and the multi-layered network concept to investigate
the systems-level properties of two stress-related mechanisms: 1) NRF2, a
master transcriptional regulator of oxidative and xenobiotic stress responses; 2)
autophagy (cellular self-eating) that involves the sequestration and degradation
of cytosolic materials.

Autophagy is a complex cellular process having multiple roles, depending
on tissue, physiological or pathological conditions. Major post-translational
regulators of autophagy are well known, however, they have not yet been col-
lected comprehensively. The precise and context dependent regulation of au-
tophagy necessitates additional regulators, including transcriptional and post-
transcriptional components that are listed in various datasets. Prompted by the
lack of systems-level autophagy-related information, we developed an online
resource, Autophagy Regulatory Network (ARN;
http://autophagy-regulation.org; Turei at al, Autophagy, 2015), to
provide an integrated database for autophagy research. ARN contains man-
ually curated, imported and predicted interactions of autophagy components
in humans. We listed transcription factors and miRNAs that could regulate
autophagy components or their protein regulators. The user-friendly website of
ARN allows researchers without computational background to search, browse
and download the database. The database can be downloaded in various file
formats. ARN has the potential to facilitate the experimental validation of
novel autophagy components and regulators. In addition, ARN helps the inves-

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 13
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tigation of transcription factors, miRNAs and signaling pathways implicated in
the control of the autophagic pathway.

Autophagy is also known to be important for intestinal homeostasis and
its malfunction is related to inflammatory bowel disease (IBD). Autophagy
is often manipulated by intestinal pathogenic bacteria, such as Salmonella.
To investigate how Salmonella is modulating autophagy we developed the
first large-scale network resource for Salmonella enterica, integrating known
and predicted regulatory, metabolic and signalling interactions. Then, we
integrated earlier identified Salmonella-host interactions and data from ARN
to list and predict novel genes responsible for autophagy modulation in the gut.
The developed bioinformatics workflows and experimental validation system
could be used for other pathogens.

14 ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY
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Towards imagining Bio-Futures

Markus SCHMIDT1

1 Biofaction KG, Vienna, AT

Abstract

Science and technology and hence also synthetic biology, is informed and
propelled by our ability to imagine futures that do not (yet) exist. Without
imagination we would not be able to discover new conceptual territories, de-
sign innovative products, facilitate new forms of human interaction, etc.

In the third millennium the world is confronted with a number of com-
plex problems and challenges such as increasing demand for energy, water
and other natural resources while maintaining an ecologically sustainable eco-
nomic growth and mitigating global environmental change.

Not unlike the case of the Cartesian split between body and mind that
manifests itself in the academic division between science and the humanities,
the collaboration between science and various genres of imagination such as
fine and visual arts, design, gamification, and (multi-media) storytelling is up
for improvement in order to unlock the hidden potential that is required to
enable a truly flourishing society.

In this talk I will shed a light on the relationship between science and gen-
res of the imagination such as visualisation of speculative futures, art-science
residencies and workshops, reflection about objects created at the interface
between art and science, and generation of out-of-the-box solutions to intricate
problems of global relevance.

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 15
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Temporal control of cell division: switches, refractory
periods and feedback control

Silvia SANTOS1

1 MRC clinical sciences centre, Imperial College London, UK

Abstract

During cell decision-making signal transduction networks dynamically change
in time and space in response to cues, and thereby trigger different cellular
states. The decision to divide is one of the most fundamental cellular re-
sponses and the evolutionarily conserved networks that control cell division
adapt and remodel in a variety of biological contexts - during development
and homeostasis, infections and malignancy, in response to drugs and stresses.
A striking example of this versatility occurs during development where the
same core regulators drive structurally different divisions. Divisions in the
embryo are clock-like, fast, short and synchronous with no checkpoints or gap
phases. With time, these divisions become longer and asynchronous. The
resulting somatic like cycles have checkpoint control and gap phases, and
the initiation of events is dependent on completion of early events, just like
a falling domino. The question, thus, arises on how do the same cell cycle
regulators self- organize and remodel in time and space to generate structurally
different cell division cycles? In our lab we use human embryonic stem cells as
a model for the embryonic cell cycle and monitor the activities, concentrations
and spatial distribution of key cell cycle regulators in single cells, during ES
cell differentiation.

In my talk I will be discussing how combining single cell imaging and
omics approaches with mathematical modelling is allowing us to shed light
into how cell cycle networks remodel in time and space during cell cycle
transitions and during ES cell differentiation.

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 17
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Immune recognition, antagonism and phenotypic spandrel

Paul FRANÇOIS1

1 Department of Physics, McGill University, Canada

Abstract

Recent works in quantitative evolution have shown that biological structures
are constrained by selected phenotypes in unexpected ways . This is also
observed in simulations of gene network evolution, where complex realistic
traits naturally appear even if they have not been explicitly selected . An
important biological example is the absolute discrimination between different
ligand qualities, such as immune decisions based on binding times to T cell
receptors (TCRs) or FcεRIs. I will present our evolutionary simulations in
which the phenomenon of absolute discrimination is mediated by an adap-
tive sorting mechanim. Adaptive sorting is not achieved without detrimental
ligand antagonism: a dog in the manger effect in which ligands unable to
trigger response prevent agonists to do so. I will show indeed how abso-
lute discrimination and ligand antagonism are interconnected. Inspired by
the famous discussion by Gould and Lewontin, we thus qualify antagonism
as a phenotypic spandrel: a phenotype existing as a necessary by-product of
another phenotype. Phenotypic spandrels reveal the internal feedbacks and
constraints structuring response in signalling pathways, in very similar way to
symmetries structuring physical laws.

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 19
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DNA-encoded programs: In vitro models of biological
networks

Yannick RONDELEZ1

1 LIMMS/CNRS-IIS, Institute of Industrial Science,
The University of Tokyo

Abstract

Living cells use webs of chemical reactions organized in precise networks
to perform informational tasks. This concept is at the very core of systems
biology, but also has link with electronic or computer science. The dynamical
and information-processing properties of living cells, i.e. their ability to make
decisions, sense their environment, maintain their integrity, memorize bits of
information, interact, coordinate, etc. is indeed encapsulated in the topology
and dynamics of their molecular networks.

I will present a method, based on standard DNA biochemistry, to build
artificial analogues of cellular circuits in test tubes, using a simple enzymatic
decoding machinery. It uses modular elementary interactions (activation, in-
hibition, degradation), which can be connected in tightly regulated networks
of desired topology. The system is kept out of equilibrium using catalytic
resolution of kinetic bottlenecks, but could also in principle be embedded in
an open system. This approach was initially demonstrated by building de
novo and in vitro a robust chemical oscillator: we implemented a positive and
a delayed negative feedback loops, encoded in the sequence of small DNA
templates, and obtained the predicted oscillatory dynamics [1]. More recently,
we have extended the approach to encode other types of biological networks,
such as those involved in complex ecosystems. Also, because of the simple
and well-controlled environment, the chemical network is easily amenable to
quantitative mathematical analysis so that the approach can be partially autom-
atized. Other features of living systems are being integrated [2]. For example
many networks, most notably morphogenic subsystems, use diffusion as a key
functional tool, and I will present initial results in this direction. Linearity/non-
linearity of the individual interactions is also an essential component of the
function, and we have worked to make it programmable as well. Our results
show that the rational cascading of standard elements opens the possibility
to implement complex behaviours in vitro. These synthetic systems may thus
accelerate our understanding of the underlying principle of biological dynamic
networks and provide building blocks for the construction of more integrated
emergent behaviours.

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 21
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RNA-based circuits in vitro and in vivo

Friedrich SIMMEL1

1 Systems Biophysics and Bionanotechnology, Technische Universität München, DE

Abstract

Gene regulatory mechanisms such as anti-sense RNA, riboregulators and ri-
boswitches, or CRISPR interference utilize base-pairing interactions and RNA
conformational changes, which – compared to other biomolecular interactions
– are relatively well understood and predictable. It is thus quite straightforward
to artificially “cprogram” such gene regulatory processes by simply designing
the proper RNA sequences. This makes RNA regulatory motifs particularly
promising for applications in synthetic gene circuitry.

In the talk, we will discuss a variety of examples of synthetic RNA-based
circuits, which have been recently implemented in our lab. Specifically, we
will deal with a synthetic biochemical oscillator system based on simple tran-
scriptional switches termed “genelets” (which can only be implemented in
vitro). We will then also present a variety of rationally designed in vivo gene
circuits involving so-called “toehold riboregulators” and also CRISPR-based
mechanisms.

References

[1] E. Franco, E. Friedrichs, J. Kim, R. Murray, E. Winfree and F. C. Simmel,
Timing molecular motion and production with a synthetic transcriptional
clock, Proc Natl Acad Sci USA 108, E784-E793 (2011)

[2] M. Weitz, J. Kim, K. Kapsner, E. Winfree, E. Franco and F. C.
Simmel, Diversity in the dynamical behaviour of a compartmentalized
programmable biochemical oscillator, Nat Chem 6, 295-302 (2014)

[3] K. Kapsner and F. C. Simmel, Partitioning Variability of a Compartmen-
talized In Vitro Transcriptional Thresholding Circuit, ACS Synth Biol 4,
1136-43 (2015)

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 23



17/9/2016- page #24



17/9/2016- page #25

Hybrid and logical approaches for dynamical analysis of
gene regulatory networks

Madalena CHAVES1

1 Biocore group, INRIA Sophia Antipolis Meditérranée, FR

Abstract

Mathematical modeling and control theoretic ideas play an essential role in the
design and implementation of new circuits in Systems and Synthetic Biology,
tasks which require a previous careful study of the dynamical behavior of the
network of interactions among the different components. Since these individ-
ual biological components generally have a nonlinear behavior and present an
inherent variability, mathematical models provide a first representation of the
response of the synthetic cell, and this makes them obligatory for a successful
implementation of the circuit.

Depending on the type of measurements available (eg., the frequency and
accuracy of data points), different mathematical formalisms can be chosen to
more efficiently allow a comparison between the biological and the mathemat-
ical models. Thus, in the case of less accurate or infrequent measurements,
or for systems with many variables, logical models are more appropriate and
can be used to great advantage. This is because logical models involve a low
number of parameters and can often be analyzed with exact tools based on
graph theory. In contrast, continuous models of differential equations generate
more detailed representations of a system but also require much more data
and information for parameter estimation and model validation. We will also
introduce a third intermediate class of models which provides a continuous
representation of trajectories while using discrete activation functions: these
are known as piecewise affine (PWA) models, since they can be described as a
concatenation of linear systems of differential equations.

Several examples will be used throughout the presentation to illustrate
applications of the different mathematical formalisms, such as some simple
regulatory motifs, a model for the circadian rhythm in cyanobacteria, or a
model for growth rate in E. coli.

References

[1] G. Bernot, J.-P. Comet, A. Richard, M. Chaves, J.-L. Gouzé, and F.
Dayan. Modeling and analysis of gene regulatory networks. In ”Modeling
in Computational Biology and Biomedicine”, F. Cazals and P. Kornprobst
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Eds, Springer-Verlag Heidelberg (2013), pp. 47-80 (available for down-
load from Springer’s website, as Sample pages).

[2] M. Chaves and M. Preto. Hierarchy of models: from qualitative to
quantitative analysis of circadian rhythms in cyanobacteria, Chaos
(Focus issue), 23(2), pp. 025113, 2013.

[3] M. Chaves, E. Farcot, and J.-L. Gouzé. Probabilistic approach for
predicting periodic orbits in piecewise affine differential models, Bull.
Math. Biology, 75(6), pp. 967-987, 2013.
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G-Networks for Gene Regulatory Networks

Erol GELENBE1

1 ISN, Imperial College London, UK

Abstract

G-Networks are an infinite state-space representation of Gene Regulatory Net-
works where a variable concentration of different genetic agents interact to
enhance or inhibit each other’s action and affect the concentration of the dif-
ferent genetic agents. We will describe the model and derive its dynamics
and equilibrium behaviour. G-Networks also have efficient parameter iden-
tification algorithms which are of O(n3) complexity for n agents. Based on
these tools we will show how they can be used to exploit data so as to detect
anomalies that can lead to disease.

Brief biography

Erol Gelenbe is the Gabor Professor at Imperial College and the Head of
Intelligent Systems and Networks. For his interdisciplinary research covering
computer science and other areas, he was elected a Fellow of the Academies of
Science of Belgium, Hungary, Poland and Turkey, and of the French National
Academies of Technology. He was awarded Chevalier de l’Ordre national de la
Legion d’honneur, and several other prizes in France, the USA, Italy, Hungary
and Turkey.
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Design and synthesis of a minimal bacterial genome

John GLASS1

1 Synthetic Biology and Bioenergy Group, JCVI, Rockville, US

Abstract

Whole-genome design and complete chemical synthesis were used to mini-
mize the 1079-kb synthetic genome of Mycoplasma mycoides JCVI-syn1.0.
An initial design, based on collective knowledge of molecular biology plus
limited transposon mutagenesis data, failed to produce a viable cell. Im-
proved transposon mutagenesis methods revealed a class of quasi-essential
genes needed for robust growth, explaining the failure of our initial design.
Three cycles of design, synthesis, and testing, with retention of quasi-essential
genes, produced JCVI-syn3.0 (531kb, 473 genes), with a genome smaller than
that of any autonomously replicating cell found in nature. JCVI-syn3.0 retains
almost all genes involved in synthesis and processing of macromolecules. Sur-
prisingly, it also contains 149 genes with unknown biological functions. JCVI-
syn3.0 is a versatile platform for investigating the core functions of life, and
for exploring whole-genome design.

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 29
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The modular cell in synthetic biology: its structural and
functional expansion with connection to the system level

Stefan SCHILLER1

1 Zentrum für Biosystemanalyse (ZBSA) and Freiburg Institute for Advanced Studies
(FRIAS), 79104 Freiburg, Germany

Abstract

Life is embedded into a fascinating molecular complexity of dynamic structure
& function forming processes we aim to understand and to control. The syn-
thetic biology approach we use interprets synthetic biology as transformation
and organization of molecules and molecular systems within complex systems
creating new system properties structuring and functionalizing space. Thus,
the synthetic biology approach focuses on embedding new cross-compatible
molecules & molecular networks as structural and functional modules for the
functional expansion of the cell.

Molecular operations take place at a dimension where supramolecular as-
semblies create properties not present at the level of individual molecules nor
at the meso- or macroscale. Thus, this field – termed nanotechnology – gained
some interest especially due to new (interfacial) material properties based on
structural and functional features at the nanoscale, the scale of large molec-
ular assemblies. Biology, especially cell and molecular biology is inherently
dealing with this dimension and its effects. In contrast to the aforementioned
area biological systems have, beside others, two important features: dynamic
behavior and the creation of structures and their reorganization upon the dis-
sipation of energy. Dynamic compatibility is one important requirement for
our system-module properties we only recently began to realize as important
factor. In this context we will consider time scales for dynamic processes in
the formation and change of space-structuring and, thus function generating
molecular architectures e.g. assembling and tuning enzyme cascades.

In order to realize such features these systems require a certain level of
complexity regarding the number and identity/(multi)functionality of their com-
ponents. Thus, theories and approaches which represent biological parts in
analogy to classical engineering with static (molecular) structures and building
blocks already describe the modules constituting such systems in a very limited
and oversimplified way. Especially our insufficient estimates (intuitive errors)
for dynamic effects in complex systems can be a fundamental limitation on
our way to efficiently expand, change or rebuild cellular systems. Approaches
to reflect on these pitfalls in order to suppress some of these limitations in our
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“mental” approach to think and control dynamics and complexity can be found
in a set of interesting experiments demonstrating these mistakes & failures [1].
The awareness of our mind-models, while we are thinking about and dealing
with complex and non-linear systems, is of great importance to efficiently deal
and to improve biological systems.

The correlation of analyzing complex systems as stepwise thinking & de-
duction as scientific tool, with the physical world, mirror images the discrete
nature in our current quantum oriented thinking. Discreteness as such, is not
only reflected in the molecular description of matter and its energy levels, but
recently also reflected in mathematical descriptions such as noncommutative
geometry. Why noncommutative geometry [2] might be important in synthetic
& systems biology? Well, the non-identical non-interchangeable space and the
spatiotemporal effects in structure formation, signal/information processing...
are currently neither handled experimentally nor theoretically – but we know
they are essential in cellular processes. With a current emphasis on quan-
tum dynamics, molecular interactions, fractal dimensions & chaotic systems
we face some interesting theoretical elements in our thinking. Coherence in
quantum phenomena/interaction and selection rules is for instance recently
discussed to be important in microtubule assembly [3, 4]. Beside the afore-
mentioned areas especially fractal dimension, known from the fractal geometry
of B. Mandelbrot allow for important cellular features such as a high level of
organization, shape irregularity, fractal dimension, as well as functional and
morphological self-similarity... many of them important e.g. to understand
cellular organelles.

These are the fundamental questions which are essential to be reflected
on and to looked after how they shape our ideas and approaches and how we
can think new correlations, how to identify new ways to assemble systems,
to exchange energy and information under dynamic, complex, crowded and
energy dissipative nonlinear and fractal (broken dimensions) regimes.

After these theoretical reflections on important elements in synthetic bi-
ology, and science in general, molecular ways towards new cellular modules
allowing to expand cellular functions, will be highlighted.

Taking a functional engineering approach we design a toolbox of bio-
genic tectons (tecton = architectural building block) on the DNA and pro-
tein level delivering these tectons as cellular building blocks and networks
with regulatory and structural functions, which did not previously exist in
nature [5, 6]. The novel format we developed was termed one-vector tool-
box platform (OVTP) and allows for the assembly of highly repetitive and
asymmetric genes (Figure 1). Realizing such protein-based modular biological
devices resembling a close systematic link to the so-called BioBricks, we de-
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sign biogenic protein tectons within cells showing complex dynamic structure
forming behavior, such as adjustable structured self-assembly of organelle-like
NanoBioSystems [7, 8].

Figure 1: The one-vector toolbox platform (OVPT) allows to assemble complex
genes and to code for new chemical functionalities via an expanded genetic code.

The building blocks used are defined assemblies of pentapeptide sequences
(VPGXG) where ”X” can be any amino acid beside proline, derived from
tropoelastin partial sequences, thus called elastine-like proteins (ELPs). The
adjustment of homo or hetero-blocks with e.g. hydrophilic or hydrophobic
amino acids at position ”X” allows for combinatorial complexity creating var-
ious compartment-like structures inside the cell (Figure 2).

Figure 2: Cellular compartments shown as model, electron microscopy image and
fluorescent image.

Current applications include the functionalization of these compartments with
unnatural amino acids further allowing to implement new chemical functions,
the coexpression of proteins with membrane anchors and the covalent protein-
protein coupling onto these compartments allowing first steps towards the as-
sembly of enzyme cascades.

These efforts are complemented by redesigning the translational networks
of the cell expanding the functionality of the genetic code with xenobiotic
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elements such as unnatural amino acids further increasing the functional space
of defined molecular protein modifications combining chemical and biosyn-
thetic methods. An interesting approach in this context is the transformation
of cofactors to prosthetic groups within enzymes and approaches to control
the assembly of proteins towards enzyme cascades via protein switches and
optogentic tools. Here we envision to functionally expand the chemical space
of enzymatic transformations to be combined with intracellular de novo or-
ganelles.

By designing interacting protein architectures and implementing novel in-
teraction systems on the nanoscale via bioorthogonally encoded chemical en-
tities/signals we emulate the coexistence of several elements allowing for a
functional expansion of the cell by molecular system design of our functional
modules. Implementing the controlled assembly of organic-inorganic nano-
architectures we termed ”protein adaptor-based nanoobject assembly” (PAB-
NOA) [9] opens up new roads towards functional materials with new properties
with molecular precision for possible applications in modulating molecular
quantum phenomena e.g. in energy converting or harvesting systems in vitro
and in vivo. This approach is an interesting modular feature which may allow
to expand photosynthetic reactions far away from the classical photosynthesis.
Such approaches do not only yield new materials and small molecules, but may
allow different routes to implement the biological energy and mass flow under
sustainable aspects. The scalability of the molecular role for the transformation
of matter and the conversion of energy in the context of in vivo and in vitro
applications and their embedding into the natural material and energy cycle
allows for a vast range of applications especially in the context of a sustainable
bioeconomy, exemplified in the picture below.
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Abstract - Introduction

Central carbon metabolism (glycolysis, gluconeogenesis, pentose phosphate
pathway, fatty acid synthesis, TCA cycle) is an important part of metabolism
both for synthesis of new molecules (amino acids, nucleotides, fatty acids etc.)
but also from the energy point of view (ATP synthesis) and the redox balance
of the cell (NAD/NADH and NADP/NADPH). The knowledge of genomes
leads to the construction of genome-scale models (GSM) involving all the
enzymes possibly encoded in the genome. The best example of such a model
is Recon2 involving 7,440 reactions and 5,063 metabolites [1]. Due to their
big size, it is difficult to study these models and the only possible approach
is Flux Balance Analysis (FBA) looking for flux values able, at steady-state,
to maximize or minimize some objective function. The calculation of all
the Elementary Flux Modes (EFMs), i.e. the minimal pathways inside the
metabolic network at steady-state are out of the possibilities of our computers
and the lack of knowledge of the amount of most of the enzymes and their
kinetic properties prevent to develop large representative dynamical systems.
Furthermore it is difficult on such big systems to understand their functioning
in special situations (normal or pathological) and even to be sure that the results
obtained are not artefactual or biased.

For all these reasons we decided to develop simpler models still represent-
ing the main architecture of the whole metabolism but with fewer simulated
reactions which are aggregations of the actual reactions. The advantage of such
models is to be more easily tractable and more understandable. Furthermore
they can be approached with a greater panel of methods such as analysis of
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EFMs, FBA and FVA. In addition, their dynamical behavior can be studied
with some reasonable hypotheses on their kinetic laws.

We will systematically apply, in a logical order, several theoretical ap-
proaches for metabolic networks as we already did in [2]. We will emphasize
the advantages and the drawbacks of each approach and show how we can
use all of them to gain a better understanding of the behavior of a metabolic
network.

1 Description of a Human-Scale metabolic (HSM) model of
central carbon metabolism

The reactions involved in HSM13 are listed in Appendix 2. They consist
in a simple version of the Krebs cycle already described in [2] (reactions
PDH, CS, K4, K567, MDH2 and PYC with the addition of glutamate dehy-
drogenase (GLUD1), in the glycolysis summarized in 5 steps, G1 (hexok-
inase + phosphoglucose isomerase), G2 (phosphofructokinase + aldolase +
triose-phosphate isomerase), G3 (glyceraldehyde-3P dehydrogenase + phos-
phoglycerate kinase), ENOMUT (enolase + phosphoglycerate mutase) and
PK (pyruvate kinase) extended by the reversible LDH (lactate dehydroge-
nase). The gluconeogenesis consists in the reversible reactions of glycolysis
with PEPCK1, GG3 (triose phosphate isomerase + aldolase + fructose-1,6-
biphosphatase) and GG4 (phosphogluco isomerase + glucose-6-phosphatase).
There is also a mitochondrial PEPCK named PEPCK2.

The reactions of pentose phosphate pathway (PPP) are summarized in PP1
(oxidative part of PPP) and PP2 (non-oxidative part of PPP).
The synthesis of nucleotide bases is represented by a simplification of purine
biosynthesis PUR, which is important here because it is an entry of glutamine
in metabolism and its conversion to glutamate. The other entry of glutamine
is in the mitochondria through transporter T8. It will give glutamate in mito-
chondria through the operation of glutaminase GLS1. The synthesis of serine
from 3-phosphoglycerate involves 3 steps: a dehydrogenase, a transaminase
involving the glutamate/2-oxoglutarate couple and a phosphatase. The three
steps are assembled in one reaction SERSYNT.

The malate/aspartate shuttle (MAS) is fully represented with its two ex-
changers, the malate/2-oxoglutarate exchanger T2 (OGC) and the glutamate /
aspartate exchanger T4 (GLAST), the malate dehydrogenases (cytosolic MDH1
and mitochondrial MDH2) and the glutamate- oxaloacetate transaminases (cy-
tosolic GOT1 and mitochondrial GOT2). A detailed representation of MAS
was necessary because the MAS enzymes are not always used with the stoi-
chiometry of MAS for exchange of NADHc for NADHm i.e. MAS compo-
nents are not always used to run the MAS as such.
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Figure 1: HSM13-3 metabolic network. The abbreviations are given in appendix A.

The synthesis of fatty acids starts with citrate lyase (CL) and is represented in
the case of palmitate by the reaction PL1. Finally, the oxidative phosphoryla-
tions are represented by RC (respiratory chain) AS (ATP synthase), ANT, the
ADP/ATP exchanger, T5 the Pi carrier and L the membrane leak of protons.
ATP usage is symbolized by ATPASE. Because all the metabolites involved in
these last reactions are considered as external, these reactions are not actually
involved in the model.
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Several entries are considered: entry of glucose (GLUCUP), of glutamine
(GLNUP) and of aspartate (ASPUP). The outputs are serine (SEROUT), bases
(BASES) and palmitate (Palmitate). LACIO symbolizes the possible input /
output of lactate in cytosol.

HSM13 Model contains 27 Internal metabolites (constrained to steady-
state), 23 external metabolites that do not participate to steady-state and 50
reactions (24 reversible and 26 irreversible).

2 The Elementary Flux Modes (EFM) of the model leading to
Serine biosynthesis as a function of Carbon entry

Introduction
An elementary flux mode (EFM) [3, 4] is a minimal set of enzymes that can
operate at steady state with all irreversible reactions used in the appropriate
direction. All flux distributions in the living cell are non- negative linear
combinations of elementary modes. The decomposition is not necessarily
unique.
A related concept was defined by the group of Palsson: Extreme pathway [5]
in which every reversible internal reaction is split in two irreversible reactions
(one is the forward reaction, the other is the reverse reaction). The number
of EFMs is finite but can be great. Their comprehensive description gives all
possibilities to browse the metabolic network. As we will see below, some of
them are not trivial. Considering EFM is useful because they represent extreme
simplest situations of metabolic pathways.

The analysis of HSM13 with metatool [6] gives 7018 EFMs among which
3978 lead to serine biosynthesis. We will focus our analysis on those EFMs
leading to serine biosynthesis. They will be classified according to the carbon
entry in the metabolic network: aspartate alone, glucose alone, glutamine alone
(via purine pathway or via mitochondria entry), glutamine + glucose. From a
general point of view there are several possible pathways for serine biosyn-
thesis. In all cases, serine synthesis requires 3PG (3 phosphoglycerate) as a
precursor and a transamination reaction involving the conversion of glutamate
to 2-oxoglutarate (AKG). It is thus necessary either to have a recycling of AKG
to glutamate or to have a continuous glutamate synthesis (from glutamine entry
for instance with an output of AKG or of one of its derived products).

Serine biosynthesis from Aspartate (Fig. 2) Aspartate is a good precursor
of glutamate through the activity of aspartate aminotransferase (GOT1 gene
in cytosol or GOT2 gene in mitochondria). 1011 EFMs with aspartate entry
(ASPUP) are counted in the 3978 EFM involving a serine output (SEROUT).
Among these 1011 SEROUT-ASPUP 640 also include an input of glucose
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Figure 2: Simplified representation of serine biosynthesis from aspartate in cytosol
(EFM 5141)

GLUCUP. The shortest pathway for serine biosynthesis is observed with as-
parte input (EFM 5141 involving 6 reactions). Aspartate gives glutamate and
the AKG produced in serine biosynthesis is recycled in OAA by GOT1 which
gives PEP (PEPCK1) and then 3PG. The 4 carbon atoms of aspartate are
transformed in the 3 carbon atoms of serine and in CO2 (PEPCK1). The
maximal yield is 1 Asp => 1 Ser. The common motif ASPUP PEPCK1
SEROUT SERSYNT ENOMUT emerges from all these EFM.
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The GOT reaction followed by PEPCK may occur either in cytosol (EFM
5141) or in mitochondria (EFM 5126) or both (EFM 5127 and 5140). In the
case of a mitochondrial GOT-PEPCK (EFM 5126), some of the transporters
of the Mal/Asp shuttle are used in the reverse direction (it does not mean that
the Mal/Asp shuttle is reversed, only some transporters are used in the reverse
direction). In addition, the exchanger Pi/Mal is necessary to recycle the Mal
involved in the Mal/AKG exchanger.

Figure 3: Simplified representation of serine biosynthesis from glucose alone (EFM
1047)
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Serine biosynthesis from glucose alone (Fig. 3) We get 2669 EFMs
SEROUT-GLUCUP and among these, 2500 SEROUT-GLUCUP- GLNUP. The
most obvious pathway to serine synthesis from glucose alone is with glycolysis
synthesizing 3PG. The AKG produced in serine synthesis has to be recycled by
glutamate dehydrogenase activity (in the reverse reaction) in the mitochondria.
In this process the 6 carbon atoms of glucose gives 2 molecules of serine
(3C) and one NH3 is consumed. The maximal yield is: 1 Gluc + NH3 => 2
Ser. The shortest EFMs is EFM 1047 (10 reactions). Many variations around
the common motif G1 G2 GLUCUP (2 SEROUT) (2 SERSYNT) (2 G3) (-2
GLUD1) exist (see below the ACoM analysis)

Serine biosynthesis from glutamine (Fig. 4 and 5)
3726 SEROUT-GLNUP are sorted from the SEROUT EFMs and among these,
2500 also involve an input of glucose (SEROUT-GLNUP-GLUCUP). The len-
gth of these EFMs is greater than the one of the above EFM indicating a more
tortuous pathway for serine synthesis from glutamine.

Glutamine can give glutamate in two ways: either by glutaminase (GLS1)
in mitochondria or in cytosol via purine biosynthesis. In all cases the AKG
formed in serine synthesis is converted to OAA (-Got1 for instance but also by
many other pathways) and then to PEP (PEPCK) and 3PG

-Serine biosynthesis with glutaminase in mitochondria alone EFM 72,
is the shortest such EFM with 11 reactions (see Fig. 4) but also EFMs 52,
73 and 1615 with 13 reactions) evidencing the common motif GLNUP GLS1
K567 PEPCK2 SEROUT SERSYNT ENOMUT MDH2 -T9. 3PG for serine
synthesis comes from AKG (=> OAA => PEPc). The maximal yield is 1 Gln
=> 1 Ser.

-Serine biosynthesis via purine biosynthesis in cytosol alone Among
the 3726 EFMs leading to serine from glutamine, 3273 involve the PUR reac-
tion. Among them, 876 EFMs use T8 indicating an additional glutamine entry
in mitochondria and, correspondingly, the remaining 2397 EFMs incorporate
glutamine through the PUR reaction only. Among these, EFM 816 and EFM
5463 are the shortest with 13 reactions (Fig. 5). The PUR aspartate is either
furnished by a direct entry (ASPUP in EFM 5463) or synthesized by GOT 1
from one of the two glutamate produced in PUR (EFM 816). In this EFM, the
oxidative pentose phosphate pathway is used to make R5P from glucose.

Most of the EFMs involving PUR reaction involve also a direct input of
glutamine through GLNUP. Only three do not, EFMs 5214, 5217 and 5402. In
these cases, their necessary glutamine is synthesized from glutamate through
glutamine synthase (GLS1) with aspartate and lactate uptake.
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Figure 4: Simplified representation of serine biosynthesis via glutamine entry in
mitochondria.
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Figure 5: Simplified representation of serine synthesis from glutamine uptake in
purine biosynthesis.

Note that in all these cases with purine synthesis, it is necessary to form 3PG
for serine biosynthesis but also G3P and G6P to R5P synthesis.

Several other EFMs could be described. They are generally more complex
with several entries and outputs. Their classification has be done using ACoM.
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3 ACoM classification of the Elementary Flux Modes (EFM) of
HSM13 leading to Serine biosynthesis

ACoM, is a bi-clustering method especially developed for the classification
of the huge number of EFMs [7]. The application of ACoM to the set of
the 3978 EFMs leading to serine biosynthesis leads to 13 common motifs of
length greater than 8 with a similarity ≥ 12 (Table 1). We find the common
motifs already mentioned but also some others. We note the absence of motif
involving ASPUP, probably because these motifs and the EFMs involving this
reaction are too short. We get several motifs with glucose entry, glutamine
entry in mitochondria or in PUR reaction, but also several motifs with entry of
lactate.

The importance of PEPCK1 or PEPCK2 must be stressed. These reactions
appear in 5 common motifs on 13.

COMMON MOTIF SIZE # EFMs Phenotype – Biological Meaning

PEPCK2 SEROUT SERSYNT T6 ENOMUT
- LACIO - LDH - T7 8 412 Serine synthesis from lactate via PEPCK2

PEPCK2 SEROUT SERSYNT ENOMUT
- GLUD1 - LACIO - LDH - T7 - T9 9 43 Serine synthesis from lactate via PEPCK2

PEPCK1 PYC SEROUT SERSYNT T6 ENOMUT
- GLUD1 - LACIO - LDH MDH1 T2 - T9 12 14 Serine synthesis from lactate via PEPCK1

SEROUT SERSYNT ENOMUT
GOT2 - LACIO - LDH T4 - T9 8 59 Serine synthesis from lactate

GLNUP GLS1 SEROUT
SERSYNT - GOT1 GOT2 T4 T8 8 327

Serine synthesis from glutamine
in mitochondria

G1 GLUCUP PP1 SEROUT
SERSYNT T6 G3 PP2 - T9 9 157

Serine synthesis from glucose,
part of glycolysis and PPP

G1 GLNUP GLUCUP K567
PUR SEROUT SERSYNT T2 8 1094

Serine synthesis fromglucose and
glutamine entry in PUR

G1 GLUCUP SEROUT SERSYNT
G3 - GOT1 GOT2 T4 8 336 Serine synthesis from glucose

G1 GLUCUP PYC SEROUT SERSYNT
T6 G3 - GLUD1 T2 - T9 10 162 Serine synthesis from glucose

CL GLNUP GLS1 PL1 SEROUT
SERSYNT T1 T8 8 968

Serine and FA synthesis from glutamine
in mitochondria

PEPCK2 SEROUT SERSYNT T6 ENOMUT
- GOT2 ME1 T2 - T4 - T7 10 145 Serine synthesis via PEPCK2

PEPCK1 PEPCK2 SEROUT SERSYNT
- GOT2 T2 - T4 - T7 8 70 Serine synthesis via PEPCK1 and PEPCK2

G1 GLUCUP PP1 SEROUT SERSYNT
G3 LACIO LDH PP2 9 148

Serine synthesis from glucose, part of
glycolysis, PPP and lactate output

Table 1: Common motifs of length≥ 8 (and similarity≥ 12) calculated with ACoM.
The table describes successively the common motif, its size, the number of EFMs
including this common motif and their biological meaning.
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4 Flux-Balances-Analysis (FBA) and Flux-Variability-Analysis
(FVA) for serine biosynthesis from glutamine

Flux Balance Analysis (FBA) is a method developed by the group of Palsson
[8] aiming at optimizing the flux values in a metabolic network to fulfil a pecu-
liar objective such as cell growth or ATP production for instance. The objective
is formalized under the form of an “objective function” (a rate equation of ATP
consumption in the case of optimizing ATP production). Known constraints
on the fluxes can be added such as minimal and maximal values (otherwise
maximizing a flux will lead to infinity). FBA can be applied in many other
contexts to analyze the phenotypes and capabilities of organisms upon dif-
ferent environmental and genetic perturbations (KO genes for instance). The
optimization is directed at the metabolic fluxes values, without any knowledge
of the underlying rate functions so that it can be applied to big genome scale
networks for which not all steps are known in detail. We will apply this
approach to our simple model with maximization of serine output as objective
function. For that we use FAME software [9]. Note that in general the solution
of the optimization is not unique. Several values of different flux can lead to
the same optimized value. Flux-Variability- Analysis (FVA) gives the variation
of each variable flux giving the same optimized value. Adding the constraint of
minimizing all the fluxes, gives a unique solution which is in general a simple
one. In all cases we will impose this last constraint of minimal fluxes.

4.1 Maximal flux of serine synthesis in the case of aspartate supply

Applying FAME with the constraint 0<ASPUP< 1 and the other entry fluxes
(GLUCUP, GLNUP, LACIO) equal to zero, we obtain the following result in
maximizing the reaction SEROUT:

Reaction ID
Flux
value

Lower
bound

Upper
bound

Reduced costs
(scaled RC)

Reaction info
(corrected for flux direction)

ASPUP 1 (1) 0 1 0.0 (0) ASPUP - 1 ASP ==> 1 ASPc

ENOMUT 1 -50 50 0.0 (0) ENOMUT - 1 PEPc ==> 1 s 3PG

GOT1 -1 -50 50 0.0 (0) 1 ASPc 1 AKGc ==> GOT1 - 1 GLUTc 1 OAAc

PEPCK1 1 0 50 0.0 (0) PEPCK1 - 1 OAAc 1 ATPc ==> 1 PEPc 1 ADPc

SEROUT 1 0 50 0.0 (0) SEROUT - 1 SERc ==> 1 SER

SERSYNT 1 0 50 0.0 (0)
SERSYNT - 1 s 3PG 1 GLUTc 1 NADc

==> 1 SERc 1 AKGc 1 NADHc

Table 2: Minimal fluxes maximizing serine synthesis from aspartate at steady-state

which is exactly the EFM 5141 of Fig. 2, meaning that EFM 5141 is not only
the simplest EFM leading to serine, but also an EFM with the maximal yield
serine/aspartate.
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We will continue exploring the synthesis of serine from other supply such as
glucose and glutamine looking for minimal flux still maximizing the reaction
SEROUT.

4.2 Maximal flux of serine synthesis in the case of glucose supply

In this case we fix the entry of glucose (GLUCUP = 1) and the other entry
ASPUP = GLNUP = LACIO = 0. The minimal fluxes giving the maximum of
serine synthesis is represented below and corresponds to EFM 1047:

Reaction ID
Flux
value

Lower
bound

Upper
bound

Reduced costs
(scaled RC)

Reaction info
(corrected for flux direction)

G1 1 0 100 0.0 (0) G1 - 1 GLUCc 1 ATPc ==> 1 G6P 1 ADPc

G2 1 0 100 0.0 (0) G2 - 1 G6P 1 ATPc ==> 2 G3P 1 ADPc

G3 2 -100 100 0.0 (0)
G3 - 1 G3P 1 NADc 1 ADPc 1 Pic

==> 1 s 3PG 1 NADHc 1 ATPc

GLUCUP 1 (1) 0 1 0.0 (0) GLUCUP - 1 GLUC ==> 1 GLUCc

GLUD1 -2 -100 100 0.0 (0)
1 AKGm 1 NADHm 1 NH3

==> GLUD1 - 1 GLUTm 1 NADm

SEROUT 2 0 100 0.0 (0) SEROUT - 1 SERc ==> 1 SER

SERSYNT 2 0 100 0.0 (0)
SERSYNT - 1 s 3PG 1 GLUTc 1 NADc

==> 1 SERc 1 AKGc 1 NADHc

T2 2 -100 100 0.0 (0) T2 - 1 AKGc 1 MALm ==> 1 AKGm 1 MALc

T3 -2 -100 100 0.0 (0) 1 MALc 1 Pim ==> T3 - 1 MALm 1 Pic

T9 -2 -100 100 0.0 (0) 1 GLUTm 1 Hm ==> T9 - 1 GLUTc 1 Hc

Table 3: Minimal fluxes maximizing serine synthesis from glucose at steady-state

4.3 Maximal flux of serine in the case of glutamine supply

In this case we fix the entry of glutamine (GLNUP = 1) and the other entry
ASPUP = GLUCUP = LACIO = 0. The minimal fluxes giving the maximum of
serine synthesis is represented below and corresponds to EFM 72 (see Table 4)

4.4 The effect of PEPCK on serine biosynthesis

We noticed the frequent occurrence of PEPCK 1 or 2 in the EFMs leading
to serine. There are also some experimental evidence that PEPCK regulates
the central carbon metabolism [10]. In order to check this point, we study
the effect of decreasing the PEPCK1 activity (with PEPCK2 = 0) on the maxi-
mization of serine biosynthesis using FAME. The result is represented in Fig. 6
which shows an inversely proportional decrease in serine synthesis with the
inhibition of PEPCK1. A transient accumulation of palmitate is evidenced.
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Reaction ID
Flux
value

Lower
bound

Upper
bound

Reduced costs
(scaled RC)

Reaction info
(corrected for flux direction)

ENOMUT 6 -100 100 0.0 (0) ENOMUT - 1 PEPc ==> 1 s 3PG

GLNUP 6 (6) 6 6 4.0 (4) GLNUP - 1 GLN ==> 1 GLNc

GLS1 6 0 100 0.0 (0) GLS1 - 1 GLNm ==> 1 GLUTm 1 NH3

K567 6 0 100 0.0 (0)
K567 - 1 AKGm 1 NADm 1 Pim 1 ADPm

==> 1 MALm 1 NADHm 1 CO2 1 ATPm

MDH1 6 -100 100 0.0 (0) MDH1 - 1 MALc 1 NADc ==> 1 OAAc 1 NADHc

PEPCK1 6 0 100 0.0 (0) PEPCK1 - 1 OAAc 1 ATPc ==> 1 PEPc 1 ADPc

SEROUT 6 0 100 0.0 (0) SEROUT - 1 SERc ==> 1 SER

SERSYNT 6 0 100 0.0 (0)
SERSYNT - 1 s 3PG 1 GLUTc 1 NADc

==> 1 SERc 1 AKGc 1 NADHc

T2 6 -100 100 0.0 (0) T2 - 1 AKGc 1 MALm ==> 1 AKGm 1 MALc

T8 6 -100 100 0.0 (0) T8 - 1 GLNc ==> 1 GLNm

T9 -6 -100 100 0.0 (0) 1 GLUTm 1 Hm ==> T9 - 1 GLUTc 1 Hc

Table 4: Minimal fluxes maximizing serine synthesis from glutamine at steady-state
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Figure 6: The glutamine entry is fixed at 6 (no glucose nor aspartate entry).
The maximal activity of PEPCK 1 is 7 (PEPCK2 = 0). The PEPCK1 inhibition
leads to a parallel inhibition of serine production (dark blue curve) since the value
of 6. The carbon accumulation due to glutamine entry fixed at 6 is as a matter of
priority eliminated in lactate output (pink). Because lactate output is limited to 1, the
extra carbons are then dissipated in CO2 in the Krebs cycle (turquoise). A transient
palmitate production (green) occurs.
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5 A dynamical (ODE) approach of the serine biosynthesis with
HSM13

(COPASI http://www.copasi.org ;
Berkeley Madonna http://www.berkeleymadonna.com).

In the case of the simplest synthesis of serine from asparte (EFM 5141),
the dynamical system of our metabolic network can be written:

d/dt(SER) = vSEROUT
d/dt (SERc) = vSERSYNT - vSEROUT
d/dt (s3PG) = vENOMUT - vSERSYNT
d/dt(PEPc) = vPEPCK1 - vENOMUT
d/dt(OAAc) = - vGOT1 - vPEPCK1
d/dt(GLUTc) = - vGOT1 - vSERSYNT
d/dt(AKGc) = vSERSYNT + vGOT1
d/dt(ASPc) = vASPUP + vGOT1

We take mass action laws as rate functions, with the only dependence upon the
internal metabolites (the external metabolites concentrations are equal to one):

vSEROUT = kSEROUT*SERc
vSERSYNT = kSERSYNT *s3PG*NADc*GLUTc
vENOMUT = kENOMUT*(PEPc - s3PG/KQENOMUT)
vPEPCK1 = kPEPCK1*OAAc*ATPc
vGOT1 = - kGOT1*(ASPc*AKGc - GLUTc*OAAc*KQGOT1)
vASPUP = kASPUP*ASP

The kinetic parameters are:

kSEROUT = 0.1
kSERSYNT = 0.1
kENOMUT = 0.1
KQENOMUT =1.056
kPEPCK1 = 0.1
kGOT1 = 0.03125
KQGOT1 = 3.2
kASPUP = 0.01

KQENOMUT = 1.056 and KQGOT1 = 3.2 are the equilibrium constants of
the two reversible reactions of this network.
kSEROUT = 0.1, kSERSYNT = 0.1, kENOMUT = 0.1, kGOT1 = 0.03125 and
kASPUP = 0.01 are the rate constants of the forward reaction.

The results are given on the Fig. 7 below which shows how the steady-state
is reached. In this case the aspartate entry controls entirely the fluxes through
the network (control coefficient = 1). All fluxes are equal to 0.01 or -0.01
(Fig. 7A). Figure 7B shows how the concentrations at steady-state are reached.
The red curve represents the production of serine after a lag.
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(A)

(B)

Figure 7: Trajectories to steady state of (A) the fluxes and (B) the concentrations.

6 Conclusion

The great interest of a simple model of metabolism is that it can be approached
by different methods: description of the minimal pathways (EFMs), FBA
and FVA, dynamical behavior and control. We have shown that FBA and
minimization of the fluxes give the simplest EFMs. The great number of
EFMs (7018) despite the small size of the network (50 reactions and 27 in-
ternal metabolites) must be stressed. This helps to understand that it will be
impossible to calculate all the EFMs of genome- scale models (GSM). In our
case, not only are all the EFM describable but also they can be dynamically
studied according to reasonable hypotheses on their kinetics.
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It is obvious that a simple model cannot retain all the complexity of a GSM.
Furthermore in the construction of the simple model some reactions may have
been discarded without consequence in most of the conditions. However they
could play an essential role in some peculiar conditions. For this reason, it
is important to compare the behavior of the human-scale model (HSM) to the
GSM as often as possible with the only method applicable to both models, i.e.
the FBA

Our model HSM13 gives relevant results for central carbon metabolism. It
will be completed by adding a simplified model of oxidative phosphorylation
allowing to take into account the ATP usage and the redox balance of the cell
and the mitochondria.
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APPENDIX 1: Abbreviations

ANT: ADP/ATP exchanger.
AS: ATP Synthase.
ASPUP: Uptake of aspartate.
ATPASE: ATPusage.
CL: Citrate Lyase.
CS: Citrate Synthase.
ENOMUT: Enolase + Phosphoglycerate Mutase.
G1: hexokinase + phosphoglucose isomerase.
G2: phosphofructokinase + aldolase + triose-phosphate isomerase.
G3: Glyceraldehyde-3P Dehydrogenase+ phosphoglycerate kinase.
GG3: triose phosphate isomerase + aldolase + fructose-1,6-biphosphatase.
GG4 :phosphogluco isomerase + glucose-6-phosphatase.
GLS1:Glutaminase.
GLNUP: Uptake of Glutamine.
GLUCUP: Uptake of glucose.
GLUD1: Glutamate Dehydrogenase.
GOT:Glutamate Oxaloacetate Transaminases.
K4:Aconitase + Isocitrate dehydrogenase +.
K567: 2-oxoglutarate dehydrogenase + succinate thiokinase + succinate
dehydrogenase + fumarase.
L: Leak of the membrane to protons.
LACIO : Input/Output of lactate.
LDH: Lactate Dehydrogenase.
MAS:Malate/Aspartate Shuttle.
MDH: Malate Dehdrogenase
PDH: Pyruvate Dehydrogenase.
PEPCK: PhosphoEnolPyruvate Carboxy Kinase.
PK: Pyruvate Kinase.
PL1: Synthesis of PhosphoLipids.
PP1: Oxidative part of PPP.
PP2: non-oxidative part of PPP.
PPP: Pentose Phosphate Pathway.
PUR: Purine Synthesis.
PYC: Pyruvate Carboxylase.
RC: Respiratory Chain.
SEROUT: Output of serine.
SERSYNT: Serine Synthesis= Dehydrogenase + Transaminase and Phosphatase.
T2(OGC): Glutamate/Aspartate exchanger.
T4(GLAST): Malate/2-oxoglutarate exchanger.
T5: Pi carrier.
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APPENDIX 2: METATOOL entry file of RR13-3

-ENZREV
AS ANT ENOMUT G3 GLUD1 GOT1 GOT2 K4 LACIO LDH MDH1
MDH2 ME1 ME2 NN PP2 T1 T2 T3 T4 T5 T7 T8 T9

-ENZIRREV
ASPUP ATPASE CL CS G1 G2 GG3 GG4 GLNUP GLS1 GLUCUP
GS1 K567 L PDH PEPCK1 PEPCK2 PK PL1 PP1 PUR PYC RC
SEROUT SERSYNT T6

-METINT
3PG ACoAc ACoAm AKGc AKGm ASPc ASPm CITc CITm G3P G6P
GLNc GLNm GLUCc GLUTc GLUTm LACc MALc MALm OAAc
OAAm PEPc PEPm PYRc PYRm R5P SERc

-METEXT
ADPc ADPm ASP ATPc ATPm BASES CO2 CoAc GLN GLUC Hc Hm
HCO3 LAC NADc NADHc NADm NADHm NADPc NADPHc NH3
Palmitate Pic Pim SER

-CAT
ANT : ATPm + ADPc = ATPc + ADPm .
AS : ADPm + Pim + 3 Hc = ATPm + 3 Hm .
ASPUP : ASP = ASPc .
ATPASE : ATPc = ADPc + Pic .
CL : CITc + ATPc + CoAc = ACoAc + OAAc + ADPc + Pic .
CS : ACoAm + OAAm = CITm .
ENOMUT : PEPc = 3PG .
G1 : GLUCc + ATPc = G6P + ADPc .
G2 : G6P + ATPc = 2 G3P + ADPc .
G3 : G3P + NADc + ADPc + Pic = 3PG + NADHc + ATPc .
GG3 : 2 G3P = G6P + Pic .
GG4 : G6P = GLUCc + Pic .
GLNUP : GLN = GLNc .
GLS1 : GLNm = GLUTm + NH3 .
GLUCUP : GLUC = GLUCc .
GLUD1 : GLUTm + NADm = AKGm + NADHm + NH3 .
GOT1 : GLUTc + OAAc = ASPc + AKGc .
GOT2 : GLUTm + OAAm = ASPm + AKGm .
GS1 : GLUTc + NH3 + ATPc = GLNc + ADPc + Pic .
K4 : CITm + NADm = AKGm + NADHm + CO2 .
K567 : AKGm + NADm + Pim + ADPm = MALm + NADHm
+ CO2 + ATPm .

L : Hc = Hm .
LACIO : LACc = LAC .
LDH : PYRc + NADHc = LACc + NADc .
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MDH1 : MALc + NADc = OAAc + NADHc .
MDH2 : MALm + NADm = OAAm + NADHm .
ME1 : MALc + NADPc = PYRc + NADPHc + CO2 .
ME2 : MALm + NADm = PYRm + NADHm + CO2 .
NN : NADHc + NADm = NADHm + NADc .
PDH : PYRm + NADm = ACoAm + NADHm + CO2 .
PEPCK1 : OAAc + ATPc = PEPc + ADPc + CO2 .
PEPCK2 : OAAm + ATPm = PEPm + ADPm + CO2 .
PK : PEPc + ADPc = PYRc + ATPc .
PL1 : 8 ACoAc + 7 ATPc + 14 NADPHc + 7 HCO3 =
Palmitate + 7
ADPc + 7 Pic + 14 NADPc + 8 CoAc + 7 CO2 .
PP1 : G6P + 2 NADPc = R5P + 2 NADPHc + 2 Hc + CO2 .
PP2 : 3 R5P = 2 G6P + G3P .
PUR : R5P + 2 GLNc + ASPc + 3 ATPc = BASES + 2 GLUTc
+ 3 ADPc + 3 Pic .
PYC : PYRm + HCO3 + ATPm = OAAm + Pim + ADPm .
RC : NADHm + 10 Hm = NADm + 10 Hc .
SEROUT : SERc = SER .
SERSYNT : 3PG + GLUTc + NADc = SERc + AKGc + NADHc .
T1 : CITm + MALc = CITc + MALm .
T2 : AKGc + MALm = AKGm + MALc .
T3 : MALm + Pic = MALc + Pim .
T4 : GLUTc + ASPm = GLUTm + ASPc .
T5 : Pic + Hc = Pim + Hm .
T6 : PYRc = PYRm .
T7 : PEPc = PEPm .
T8 : GLNc = GLNm .
T9 : GLUTc + Hc = GLUTm + Hm .
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Hybrid Gene Networks: a new Framework and a Software
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Abstract

The modelling framework of René Thomas allows one to design abstract mod-
els of gene regulatory networks. In this formalism, time is also abstracted
and dynamics are represented by the succession of discrete events. However,
for numerous gene networks, the delay between two events is of first inter-
est (circadian clock, cell growth, etc). In this chapter, we present a hybrid
Thomas’ formalism allowing us to take into account chronometrical informa-
tion. We give the definition of the formalism and we present a first version of
a user-friendly software platform named HyMBioNet. The main difficulty of
an hybrid framework resides in the identification of the numerous parameters
it involves. We illustrate our approach with an extremely simplified network
of the mammalian circadian clock. For this example, we show how to deter-
mine accurate parameters. Finally, we show some simulations obtained via
HyMBioNet.

1 Introduction

Modelling a gene network consists in designing a virtual representation that
provides a basis for the prediction of behaviours of interest. In a majority of
cases, the key problem is the identification step which aims at determining the
parameter values allowing a good representation of the known biological be-
haviours. A lot of network parameters are hard to identify and the larger the
network, the more difficult the experimental determination of parameters. To
overcome this difficulty, we gather information about the global behaviour of
the biological complex systems, and we deduce some constraints on the param-
eters. Among information that can be experimentally measured, the elapsed
time between two observed states is easy to evaluate and is often underused to
model biological systems. In this article we propose a new hybrid formalism
which gives the possibility to reflect the durations of regulations. Thus, mea-
sured elapsed times become a way to constrain the set of admissible models.

The differential equation frameworks [2, 13] rely on the hypothesis of con-
tinuity and homogeneousness of concentrations and provide very precise time
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information. However, the domain of parameters is infinite. Thus, an au-
tomatic formal identification of parameters is very difficult especially when
the differential system is not linear. On an other hand, the purely discrete
formalisms [22, 14] make the reverse hypothesis: The concentration space is
sliced into a small number of intervals, which reduces considerably the number
of states and also reduces the number of values that the parameters can take.
Thus the research space for parameters becomes finite and computer aided ap-
proaches based on formal logic help the modeller to find parameter values.
For example, the Thomas’ modelling framework [21] admits a completely au-
tomated identification step: The known behaviours are expressed in temporal
logic formulas, all parameterisations are then checked by model-checking al-
gorithm in order to select only the ones that are compatible with biological
knowledge [6, 7]. Between these two classes of formalisms, some others ex-
ist [15, 1, 10] and finding a modelling frameworks that allow an automated
reasoning and simplify the parameter identification step is an active research
field.

The formalism presented in this chapter is an extension of the Thomas’ for-
malism [21, 22]. Intuitively, whereas models of original Thomas’ framework
allow only discrete changes, the hybrid formalism presented here, in addition,
mimics continuous evolutions of concentration inside each discrete state. Here,
parameters can be thought as an evolution speed inside the discrete states, and
the time to walk across the discrete state (at the considered speed) represents
the delay mandatory inside the system to go through the discrete state.

We illustrate this formalism with the example of the mammalian circadian
clock. It regulates a lot of important physiology mechanism [8]. Consequently,
chronometrical time plays an important role in circadian cycle models. The
circadian clock is well studied in mammals and it is often modelled with dif-
ferential equations [17, 12, 3]. Each cell contains a clock which oscillates
with its own period (approximately 24 hours) without stimuli. To oscillate in
exactly 24 hours and synchronize with the others, cells receive zeitgeber in-
puts (synchronizers as light, temperature and food intake). The light is a very
important zeitgeber and we will focus on it for the rest of this article.

The mammalian circadian clock is based on a gene regulatory network
present in all cells. Here, we focus on the core of the molecular clock, com-
posed of 4 elements: Per genes (Per1, Per2, Per3), Cry genes (Cry1, Cry2),
Bmal1 gene and Clock gene (or its homologue Npas2). Proteins of Bmal1 and
Clock form a complex CLOCK-BMAL1 which activates the transcription of
Per and Cry genes. PER and CRY proteins are synthesized in the cytoplasm
where they form complexes PER-CRY and accumulate. Once these complexes
are phosphorylated, they move to the nucleus [24], where they are bound to
CLOCK-BMAL1 and inhibit the activation of Per and Cry genes.
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The presence of light induces an activation on Per1 and Per2 genes [19] by
acetylation of the chromatin [5, 11] and an accumulation of PER-CRY com-
plexes in the cytoplasm.

The chapter is organised as follows. In Section 2, we define our hybrid
framework and the simplify circadian clock model on which we apply it. Sec-
tion 3 presents a software platform to simulate our hybrid networks. Section 4
illustrates how one can build, in our running example, the constraints on the
parameters. Section 5 shows some simulation results obtained with parame-
ters satisfying the previous constraints. Finally, we discuss the adequacy of the
approach.

2 A new hybrid formalism for gene networks

Our hybrid formalism is based on the René Thomas theory, enriched with mul-
tiplexes [16]. Section 2.1 gives the formal definitions and we explain the link
between our parameters and the ones of Thomas. Section 2.2 presents the hy-
brid states and the notion of resources. Finally, Section 2.3 defines the hybrid
state space of a network.

2.1 Hybrid gene networks

As shown in Figure 1, a gene network is visualized as a labelled directed graph
(interaction graph) in which vertices are either variables (within circles) or
multiplexes (within rectangles). Variables abstract genes and their products,
and multiplexes contain propositional formulas that encode situations in which
a group of variables (inputs of multiplexes, dashed arrows) influences the evo-
lution of some variables (output of multiplexes, plain arrows). A multiplex can
encode the formation of molecular complexes, phosphorylation by a protein,
competition of entities for activation of a promoter, etc. To illustrate our for-
malism, we use a very simple abstraction of the mammalian circadian clock
firstly defined in [9]. According to this abstraction, the main role of Per and
Cry is to produce PER-CRY complexes and the effect of these complexes is
to inhibit the Per and Cry genes. Thus, the model contains 2 variables, g rep-
resents the genes Per and Cry, and pc represent the complexes PER-CRY in
the nucleus. The variable g has a positive action on pc (since the presence of
pc is a consequence of the activation of the clock genes) whereas pc inhibits
the variable g. During the day, light induces an accumulation of PER-CRY
in the cytoplasm, preventing PER-CRY to enter the nucleus. This inhibits the
inhibitory effect of pc on g.

Figure 1 shows this model: the formula associated with the multiplex mpc

is (g > 1) which means that, when the expression level of g reaches a certain
value 1, it can help the activation of the variable pc. The other multiplex, mg
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is associated with the formula ¬(pc > 1) which means on the contrary that
pc is an inhibitor of g when it reaches the value 1. The variable L (as Light)
is a zeitgeber, an external variable that will be controlled during simulations.
Consequently, it has no predecessor.

g pc L

g > 1 ¬(L > 1)

¬(pc > 1)

mLmpc

mg

Figure 1: Interaction graph of the simplified gene regulatory network of the molecu-
lar circadian clock

Notation 1. [sign function] The function sgn : IR → {−1, 0, 1} is defined
by:

sgn(x) =

 -1 if x < 0
0 if x = 0
1 if x > 0

Definition 1. [Hybrid gene regulatory network] A hybrid gene regulatory net-
work (GRN for short) is a tuple R = (V,M,E, C) where:

• V is a set whose elements are called variables of the network. Each
variable is associated with a boundary bv ∈ IN∗

• M is a set whose elements are called multiplexes. Each multiplex m ∈
M is associated with a formula ϕm belonging to the language L induc-
tively defined by:

– If v ∈ V and n is an integer such that 1 6 n 6 bv, then v > n is
an atom of L

– If ϕ and ψ are two formulas of L, then ¬ϕ, (ϕ ∨ ψ), (ϕ ∧ ψ) and
(ϕ⇒ ψ) also belong to L

• E is a set of edges of the form (m→ v) ∈M × V .

• C = {Cv,ω,n} is a family of real numbers indexed by the tuple (v, ω, n)
where v, ω and n verify the three following conditions:

1. v ∈ V
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2. ω is a subset of R−(v) where R−(v) = {m | (m→ v) ∈ E}, that
is ω is a set of predecessors of v.

3. n is an integer such that 0 6 n 6 bv

Cv,ω,n is called the celerity of v for ω at the level n.

Moreover, values of Cv,ω,n are constrained as in Figure 2. For each v ∈ V
and for each ω ⊂ R−(v):

• Either all celerities Cv,ω,n with 0 6 n 6 bv have the same non null sign,

• or there exists n0 such that Cv,ω,n0 = 0 and for all n such that 0 6 n <
n0, we have sng(Cv,ω,n) = 1 and for all n such that n0 < n 6 bv, we
have sng(Cv,ω,n) = −1.

In the classical Thomas’ formalism, a parameter Kv,ω is a value such that
0 6 Kv,ω 6 bv. They represent the value toward which the variable v is at-
tracted whereas celerities represent, in addition, the speed inside states. Celer-
ities give more informations about the local dynamic of the model whereas
the original Thomas’ parameters only give global information. There exists a
strong connexion between the original Thomas’ parameters and our celerities
(see Figure 2):

• If for all n, Cv,ω,n have a negative (resp. positive) sign, then Kv,ω = 0
(resp. Kv,ω = bv)

• else Kv,ω = n0 (according to the previous definition)

0

A

0

B

0

C

v
Cv,ω,n < 0

bv

Kv,ω

v
bvCv,ω,n > 0

Kv,ω

v
n0 bv

Cv,ω,n > 0

Kv,ω

Cv,ω,n < 0

Figure 2: Signs of celerities according to the value of Thomas’ parameter

Running example

Table 1 gives the network associated with Figure 1. This network has 8 qual-
itative states: 4 states (g, pc) = (0, 1), (0, 1), (1, 0) and (1, 1) in presence of
light (L = 1) and 4 other states in absence of light (L = 0).
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V : M : E : C :
g (bg = 1) mpc : ϕmpc (mg → g) Cg,{},0 Cpc,{},0 Cpc,{mL},0
pc (bpc = 1) mg : ϕmg (mpc → pc) Cg,{},1 Cpc,{},1 Cpc,{mL},0
L (bL = 1) mL : ϕmL (mL → pc) Cg,{mg},0 Cpc,{mpc},0 Cpc,{mL,mpc},0

(see Figure 1) Cg,{mg},1 Cpc,{mpc},1 Cpc,{mL,mpc},1

Table 1: Simplified GRN of the molecular circadian clock, following Figure 1.

2.2 Hybrid state and resources

Definition 2. [State of a GRN] Let R = (V,M,E, C) be a GRN. A hybrid
state of R is a tuple h = (η, π) where

• η is a function from V to IN such that for all v ∈ V , 0 6 η(v) 6 bv;

η is called the discrete state of h.

• π is a function from V to the interval [0, 1] of real numbers,

π is called the fractional part of h

We denote H the set of hybrid states of R. When there is no ambiguity, we
often use η and π without explicitly mentioning h.

The hybrid states combine two kinds of “states:” the discrete states (those
of Thomas represented by η) and continuous positions inside the discrete states
represented by π. As the width of a discrete state is 1, the domain of π is the
continuous interval [0, 1].

Definition 3. [Resources] Let R = (V,M,E, C) be a GRN and let v ∈ V .
The satisfaction relation h � ϕ (where h = (η, π) is an hybrid state of R and
ϕ a formula of L) is inductively defined by :

• If ϕ is the atom v > n with n ∈ [1, · · · , bv], then h � ϕ iff η(v) > n

• If ϕ is of the form ¬ψ, then h � ϕ iff h 2 ψ

• If ϕ is of the form ψ1 ∨ ψ2, then h � ϕ iff h � ψ1 or h � ψ2

• If ϕ is of the form ψ1 ∧ ψ2, then h � ϕ iff h � ¬(¬ψ1 ∨ ¬ψ2)

• If ϕ is of the form ψ1 ⇒ ψ2, then h � ϕ iff h � (ψ2 ∨ ¬ψ1).

The set of resources of a variable v for a state h is defined by: ρ(h, v) = {m ∈
R−(v) | h � ϕm}, that is, the multiplexes predecessors of v whose formula is
satisfied.
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The notion of resources is important because it defines which celerity has to be
considered in each discrete state: For our example, the celerityCpc,{mpc},1 (see
Table 2) is used for the evolution of pc in the discrete states where η(pc) = 1
and the set of resources of pc is {mpc}, that is where η(g) > 1 and η(L) > 1.

Remark 1. The values of celerities are not proportional to the actual reaction
speed in biology because we consider all discrete states with the same size
(from 0 to 1) whereas, from a concentration point of view, the intervals of
concentration can be of very different sizes.

2.3 Hybrid trajectories

We now define the trajectories of the model, both inside a discrete state and at
the crossing of thresholds (between two discrete states). We firstly define the
touch delay, measuring the time necessary to touch the boundary of the current
discrete interval.

Notation 2. [Touch delay] Let R = (V,M,E, C) be a GRN, v be a variable
of V and h = (η, π) be a hybrid state, we note δh(v) the touch delay of v in h
for reaching the border of the discrete state. More precisely, δh is the function
from V to IR+ ∪ {+∞} defined by:

• If Cv,ρ(v,η),η(v) = 0 then δh(v) = +∞

• If Cv,ρ(v,η),η(v) > 0 then δh(v) = 1−π(v)
Cv,ρ(v,η),η(v)

• If Cv,ρ(v,η),η(v) < 0 then δh(v) = π(v)
|Cv,ρ(v,η),η(v)|

If the celerity is null, the variable cannot evolve, thus the touch delay is
infinite. Else, the touch delay depends on the associated celerity and the value
π(v).
δh(v) = 0 means that the trajectory arrived on a border of the discrete state.

Let us notice that v may never reach its border: It is the case when another
variable reaches its border before v (that is with a shorter δh).

Definition 4. [Black wall and boundary] Let R = (V,M,E,C) be a GRN,
let v ∈ V be a variable, let h = (η, π) and h′ = (η′, π′) be two hybrid states
such that η and η′ are neighbour states w.r.t. v,
that is η′(v) = η(v) + sgn(Cv,ρ(v,η),η(v)) and η′(u) = η(u) for all u 6= v.

1. v is said on a black wall if the two following conditions are satisfied:

• δh(v) = 0
• sgn(Cv,ρ(v,η),η(v))× sgn(Cv,ρ(v,η′),η′(v)) = −1
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2. v is said on a boundary if the two following conditions are satisfied:

• δh(v) = 0
• At least one of the following conditions holds:
• Cv,ρ(v,η),η(v) < 0 and η(v) = 0
• Cv,ρ(v,η),η(v) > 0 and η(v) = bv.

We note slide(h) the set of variables that are either on a black wall or on a
boundary.

We can remark that for each hybrid state, the continuous component takes
its values in the interval [0, 1], leading to a sort of a “double threshold” between
two neighbour discrete states, as h(v) = (n, 1) differs from h(v) = (n+1, 0).
The behaviour of the system will use this “double threshold” for sliding states.

For example, it becomes possible to slide on a “black wall” (Definition 4.1).
The trajectories from one of these discrete states do not cross the threshold
(because on the opposite side, the celerities make impossible an entering tra-
jectory). See Figure 3A.

BA

Cv,ω,bv

bv

Cv,ω,n+1

n n + 1

Cv,ω,n

v v

Figure 3: (A) Example of a black wall. (B) Example of a boundary

Also, in a discrete state such that η(v) = bv (resp. η(v) = 0) where Cv,... > 0
(resp. Cv,... < 0), the variable v cannot cross the boundary (there is no state
on the other side). Then, other variables can allow the trajectory to slide on the
boundary. See Figure 3B.

Definition 5. [Knocking variables] Let R = (V,M,E,C) be a GRN and
h = (η, π) be a hybrid state, the set of knocking variables is defined by :

first(h) = {v ∈ V r slide(h) | δh(v) < +∞ and ∀u ∈ V r slide(h),
δh(u) > δh(v)}
The set first(h) represents the set of variables whose qualitative value can
change first. If the variable is on a sliding wall, it cannot evolve as long as
other variables do not change. Similarly, if the celerity of a variable v in the
current state is null, its qualitative value cannot change because of its infinite
delay.
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Definition 6. [Hybrid state space] Let R = (V,M,E,C) be a GRN, we note
R = (H,T ) the hybrid state space of R where H is the set of hybrid states
and T is the set of transitions: There exists a transition from (η, π) to (η′, π′)
iff there exists a variable v ∈ first(h) such that

1. Either δh(v) 6= 0 and

(i) η′ = η

(ii) π′(v) = 1+sgn(Cv,ρ(v,η),η(v))

2 for all v′ ∈ first(h)
(i.e. 0 if Cv,ρ(v,η),η(v) < 0 and 1 if Cv,ρ(v,η),η(v) > 0).

(iii) For all variables u 6= v, if u /∈ slide(h) then π′(u) = π(u) +
δh(v)× Cu,ρ(u,η),η(u), else π′(u) = π(u).

2. or δh(v) = 0 and

(i) η′(v) = η(v) + sgn(Cu,ρ(v,η),η(v))

(ii) π′(v) = 1−sgn(Cv,ρ(v,η),η(v))

2 (i.e. 0 if Cv,ρ(v,η),η(v) > 0 and 1 if
Cv,ρ(v,η),η(v) < 0).

(iii) For all variables u 6= v, η′(u) = η(u) and π′(u) = π(u)

There are two different kinds of transitions:

1. Inside a discrete state: The idea is to determine a next hybrid state which
could give rise to a qualitative change. Thus, from a hybrid state, one has
to determine the variables which first reaches the border of the discrete
state. The resulting hybrid state is then the one where the fractional part
of v is equal to 0 or 1 (see 1.ii), and other variables are changed accord-
ingly. Inside a given discrete state, all trajectories of the hypercube are
parallel ones because all hybrid states have the same celerities.

2. Between two discrete states: If the system cannot evolve anymore within
the current discrete state, the trajectory goes through a border: The dis-
crete part is computed according to the sign of the celerity (see 2.i) and
the fractional part is either 1 or 0 according to the sign of celerities (see
2.ii). Other variables are not changed.

This semantics has been inspired by the trajectories produced by the usual step-
wise linear ordinary differential equation systems [20]. In the neighbourhood
of a black wall, the trajectories on one side of the threshold are issued from the
differential system of this side. In other words, even if the trajectory remains
very close to the threshold: the evolution depends on the domain from which
the trajectory comes. This is why in our semantics, all slidings on a black wall,
take place inside the discrete state from which the trajectory comes.
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Running example

To illustrate the transitions, let us consider the hybrid state d of Figure 12B. d
is of the form d = ((1, 0), (0, dy)): the discrete state is (η(g) = 1, η(pc) = 0)
and the fractional part is (π(g) = 0, π(pc) = dy) where 0 < dy < 1.

In this discrete state, both celerities are positive. In the figure, we see
that δd(g) < δd(pc). So first(d) = {g}. Thus, the trajectory reaches the
boundary of g on which g is able to slide (hybrid state d1 in the figure). The
rest of the trajectory follows the same reasoning according to Definition 6: It
slides along the boundary according to the celerity of pc and reaches state f .
The trajectory crosses the pc threshold and enters into the next discrete state.
In the next discrete state, we have δa(g) > δa(pc), thus the boundary of pc
is first reached. The trajectory slides on the boundary of pc according to the
celerity of g to reach the threshold of g and finally reach the hybrid state b.

3 The HyMBioNet software

The main difficulty when modelling GRN lies in the parameter identification.
Model checking has been widely used in purely discrete frameworks to select
parameters allowing the model to fulfil all the known biological behaviours [7].
However, in hybrid formalisms, this method leads to very complex proce-
dures [23]. In practice, we currently use CTL to express known biological
behaviours and we use model checking via SMBioNet [7] to select parameters
of the purely discrete Thomas’ model. We then automatically deduce the sign
of celerities of our hybrid model (see Section 2.1). To go further, we choose
to perform simulations within the hybrid model. In this aim, we developed a
user-friendly software platform to generate and to simulate a network in or-
der to confront the model with biological expertise. The HyMBioNet platform
consists in two tools: The first one allows the construction of a GRN through
a web interface and generates the code of a simulator in the NetLogo lan-
guage [25]. This simulator can then be used ad libitum. We describe these two
tools in this section.

3.1 The HyMBioNet web interface

In order to build a GRN, we first have to list the genes and we also allow the use
of zeitgeber. A zeitgeber is an external variable that influences upon gene(s);
such a variable behaves independently of the rest of the network. For example,
the night and day alternance is a zeitgeber for a circadian clock gene network.
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Adding genes and zeitgebers

Figure 4 shows the main web application. The user is repeatedly invited to fill
a gene name, to indicate the associated boundary and then to press the “Add
Gene” button. Zeitgebers can be added thanks to the same mechanism in the
“Add new zeitgeber” filling zone.

Figure 4: HyMBioNet web interface

Adding multiplexes

When the genes and the zeitgebers have been given, the user is invited to de-
scribe the multiplexes. Figure 5 gives the description step by step of how to
create the multiplex Ml, i.e., the multiplex that explains the influence of the
“Light” zeitgeber on pc in our model. First, the name of the multiplex is filled
in the “Rule name” field (Figure 5A); note that this field appears when there is
at least one gene in the network. Then the user is invited to write the formula
associated with this multiplex thanks to a user friendly interface that prevents
errors by guiding the user along the syntactic tree of the formula (5-B). Here
the formula of the multiplexMl is ¬(L ≥ 1) and it has the gene “pc” as target.
In step 5-C, the user has chosen L as the variable that controls the multiplex
Ml. In step 5-D, the user selects the comparator “>”. Next, (s)he selects the
value of L used for the comparison: only the possible values corresponding
to L are shown (step 5-E). As the formula of this multiplex contains a nega-
tion, the “Not ?” checkbox has to be checked and then the “Not or not Not ?”
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button has to be pressed (see 5-F). To finish multiplex description, the target
of the multiplex is checked (here the variable pc) and the button “Update Rule
Targets” is pressed: the final multiplex is displayed in Figure 5G.

A

B

C

D

E

F

G

Figure 5: Interface for creating a multiplex

Automatically added Celerities

Whereas genes, zeitgebers and multiplexes are acquainted by the user, celeri-
ties described in Section 4 are automatically listed by the application. Figure 6
shows the “display text” version of the simple mammalian circadian model.
The number of celerities associated with a gene depends on the number of
multiplexes that regulate this gene and also on the qualitative levels of this
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gene (see Definition 1). There is a celerity for each subset of regulations (if
g is regulated by n multiplexes, there are 2n possible subsets) and for each
qualitative level. All celerities are produced regarding multiplex targets that
are described in the “REG” part.

Figure 6: Simple model of the mammalian circadian clock

For example, pc is regulated by multiplexesMpc andMl. There are 4 possible
subsets of regulators: ∅, {Mpc}, {Ml} and {Mpc,Ml}. This gives rise to
the celerities C pc[], C pc[Mpc], C pc[Ml] and C pc[Mpc,Ml], but pc
can take two distinct qualitative levels, so we get the 8 celerities of Figure 6
(see green zone).

Features

We added the possibility to save and upload a model. This is very useful to
test different options. As a second enhancement, we offer to delete useless
celerities (that are never used because of the unsatifiability of the associated
multiplex formulas) in order to produce a lighter simulation.

Export your simulation

Lastly, when modelling is complete, one can export the corresponding Net-
Logo simulator with the “Generate NetLogo Simulation” button.

3.2 NetLogo simulation

The NetLogo simulation is shown in Figure 7. The black board is where the
GRN is displayed and animated.

On the left side, there are three buttons. One to “Setup” a simulation, the
second to make a simulation “Step by step” and the third to make a “Loop”
simulation. While running, plots are automatically updated with data, for each

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 69



17/9/2016- page #70

variable: The level of each variable is represented by the algebraic sum of the
current qualitative level and the current position inside this discrete state. Plots
can be exported in CSV format thanks to export buttons.

On the right side of the central black board, it is possible to change the
number of simulation steps per hour: if this slider is set to 1, there is a unique
simulation step for each hour, and if it is set to 60, each step of simulation
corresponds to 1 minute between two clock ticks. Under this slider, three other
sliders allow the user to set the initial gene / zeitgeber values. The current
value is shown on the left of the slider.

Figure 7: Netlogo Simulation

Zeitgeber language description

As zeitgebers are specific variables that are able to influence the network but
are not influenced by it, we propose a small language to describe the time
evolution of zeitgebers.
The Language is the following:

• formula ::== [daylist]

• daylist ::== day | day daylist

• day ::== [pair value list][how many times]

• pair value list ::== pair value | pair value pair value list

• pair value ::== [hours value]
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where hours is the number of hours the zeitgeber will stay in the specified
discrete value and how many times is the number of times the previous de-
scribed cycle is repeated. For example, in Figure 7, the expression
[[[12 0] [12 1]][1]] indicates that the zeitgeber will be at the discrete
level 0 for 12 hours, then it will change to discrete value 1 for the next 12 hours
and finally that cycle is not repeated. When the cycle is finished, i.e., the day
has passed here, the system will restart that cycle from the beginning.

Fixing celerities

The simulator manages delays instead of celerities (delays are easier to han-
dle). Because the length of each qualitative interval is one, the mandatory delay
to cross an interval is equal to 1

celerity . Thanks to sliders varying in [−25; 25]
with a 0.1 increment, one can fix each delay of the described model. Delays
are named in the same manner than celerities. The settings corresponding to
celerities of Table 2 are shown in Figure 8.

Figure 8: Chosen delays

Running example

After delays are fixed, the simulation must be “setup” in order to display genes,
zeitgeber and multiplexes (see Figure 9). Simulation is launched using the
“Loop simulation” button while a step by “step simulation” button is available
to slowly observe transitions.

Figure 10A shows that the length of the mammalian circadian cycle is, as
expected, about 26 hours in constant dark. In Figure 10B, the cycle is 24 hours
when exposed to a 12h/12h alternation of dark and light. In that case, g gene
does not reach the 0 sliding wall.
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Figure 9: Main simulator view after setup

A B

Figure 10: Circadian cycle simulation
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To produce those plots, the formula controlling the time evolution of the zeit-
geber is: [[[26 0][0 0][5][[12 0][12 1]][5]]. Five 12h/12h alter-
nations of dark/light follow five cycles of 26 hours in constant dark.

Drawback
If a network has a large number of parameters, sliders will not all fit into the
screen space and will only be accessible via scroll bars.

4 Identification of celerities

As usual, a key point of the modelling process is the parameters identification.
This identification has to be done taking into account the known behaviours of
the biological system.

On our example, the crucial and the simplest property that the model has
to exhibit is the following: the circadian clock has sustained oscillation, even
if no zeitgeber controls the oscillation. Of course we can make a lot of sim-
ulations using HyMBioNet in order to get an intuition about the celerities al-
lowing the model to behave as expected. However, we would like to provide a
full analysis in order to build constraints on celerities making possible a sus-
tained oscillation in constant dark (in the plane L = 0). Following the prelim-
inary model of the circadian clock [9], we deduce the sign of all celerities and
then the direction of the rotation of the cycle: in counterclockwise direction
((0,0)→(1,0)→(1,1)→(0,1)→(0,0)), see Figure 12.

In this section, we firstly prove that in order to exhibit a unique attractive
limit cycle, the limit cycle has to slide on a boundary. In Section 4.2, we use
the previous property to build a relationship between the different slopes of
the cyclic trajectory. Finally, Section 4.3 uses the known period in order to
constrain celerities.

4.1 Using 2D remarkable properties

Let us note respectively slope00, slope01, slope10, slope11 ∈ IR∗+ the “slope”
of trajectories inside each discrete state (0, 0), (0, 1), (1, 0), (1, 1).

• in (0, 0), slope00 =
−Cpc,{mpcl},0
Cg,{mg},0

> 0

• in (0, 1), slope01 =
Cpc,{mpcl},1
Cg,∅,0

> 0

• in (1, 0), slope10 =
Cpc,{mpcl,mpcg},0

Cg,{mg},1
> 0

• in (1, 1), slope11 =
Cpc,{mpcl,mpcg},1

−Cg,∅,1 > 0
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Let us remark that for geometrical facility, we take the absolute value of the
mathematical slopes.

Proposition 1. Let R = (V,M,E, C) be a GRN where |V | = 2 and the
boundaries of both variables are equal to 1. There exists a unique attractive
limit cycle if and only if there exists a cyclic trajectory that slides on at least
one external boundary.

Proof. Necessary condition: If there is no place where the cyclic trajectory
slides, then because all slopes are constant in each of the four discrete states,
there would be an infinity of different cyclic parallel trajectories (Figure 11A):

g

pc

0 1

0

1

A

g

pc

0 1

0

1

B

g

pc

0 1

0

1

C

Figure 11: (A) State graph with an infinity of cyclic trajectories. (B) State graph
with trajectory inside cycle. (C) State graph with external trajectory

Thus, there is at least one sliding.
Sufficient condition: If there exists a cyclic trajectory that slides on an external
boundary then it is unique and attractive because:

• For any hybrid state inside the cycle, its trajectory after exactly one ro-
tation (Figure 11B) will lead to a state that is strictly closer to the sur-
rounding cycle (divergent red “spiral”). The sequence of such points
after n rotations will cross the limit cycle.

• Similarly, for any hybrid state outside the cycle, its (blue) trajectory will
necessary stay outside the cycle because, in 2D, trajectories never cross
each other. Consequently, its trajectory will necessary slide where the
limit cycle slides, and join the limit cycle after at most one rotation (Fig-
ure 11C).

4.2 Constraints on the slopes of the cyclic trajectory

Here we would like to build some constraints on celerities in order to facilitate
the choice of “valuable” celerities. The high synthesis rate of PER and CRY
proteins leads to an accumulation of PER-CRY complexes in the cytoplasm.
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This accumulation induces a fast crossing of complexes into the nucleus, so,
a saturation of the nucleus by PER-CRY complex [9]. According to these
informations, we impose 2 slidings in our model.

• The cyclic trajectory slides in the discrete state (1, 0) for the maximal
rate of the transcription of clock genes and

• it also slides in (1, 1) for the saturation of PER-CRY complex in the
nucleus.

Figure 12B represents the expected trajectory in constant dark conditions.

g

pc

0 1

0

1

A
���
���
���
���

�
�
�
�

�
�
�
�

g

pc

0 1

0

1

B

d

a
f

b

c

d1

c

1

Figure 12: Trajectories of the simplified circadian clock model in constant dark. (A)
A trajectory with an initial state inside the cycle. (B) The limit cycle.

As we have fixed the slidings on states (1, 0) and (1, 1), we know that the first
hybrid state of the cyclic trajectory in (1, 1) has (1, 0) for fractional coordi-
nates(see Figure 12B). To have a sliding in the state (1, 1), pc must touch its
boundary before g.

1. Constraint for the discrete state (1, 1): The trajectory must slide on the
threshold of pc, so slope11 > 1.

2. Constraints on (0, 1). In this discrete state, the trajectory begins at the
hybrid state b. As the trajectory does not reach the boundary of g, pc
must reach its threshold before g. Thus, we have slope01 > 1.

3. Constraints on (0, 0). The fractional coordinates of the hybrid state c
are (−slope01, 1) and those of the state c1 are (0,−slope01 × slope00).
This leads to the constraints slope00 × slope01 6 1.
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4. Constraints on (1, 0). The fractional coordinates of the hybrid state d
are (0,−slope00 × slope01). As this discrete state contains a sliding on
the boundary of g, the trajectory must reach it before the threshold of pc.
This leads to the constraints slope00 × slope01 > slope10.

Among the constraints, we keep the first constraint slope11 > 1 for the sliding
inside the discrete state (1, 1) and the last constraint slope00 × slope01 >
slope10 for the sliding inside the discrete state (1, 0) depending on the previous
states (0, 0) and (0, 1).

4.3 Using the length of the period of the circadian clock in constant
dark

Notation 3. Let us denote by δg00, δ
pc
01, δ

pc
10, δ

g
11 ∈ IR∗+ the times to cross each

states (0, 0), (0, 1), (1, 0), (1, 1) respectively.

These crossing delays depend on the only variable that can change its qual-
itative value and its celerity. For example, in the state (0, 0), only the variable
pc can evolve because g goes toward its boundary and slides on it. Thus, the
only delay to be taken into account is the delay of pc.

Without the zeitgeber, the clock have a period between 22 and 25 hours
depending of the tissue [26]. Here, we voluntarily chose a longer period of
26 hours to an easier observation of the effect of zeitgeber (the light) on the
synchronisation. Thus we impose: δg00 + δpc10 + δg11 + δpc01 = 26.

• For the discrete state (1, 1), δg11 = 1
Cg,ρ(a,g),1

because the crossing dis-
tance of g is equal to 1.

• For the discrete state (0, 1), for the same reasons, we have
δpc01 = 1

Cpc,ρ(c,pc),1
.

• In (0, 0), the crossing distance is equals to slope01. Thus, we have
δg00 = slope01

Cg,ρ(d,g),0
.

• In (1, 0), the crossing distance of pc equals to slope00 × slope01, so we
have δpc10 = slope00×slope01

Cpc,ρ(e,pc),0
.

At the end, to have a cycle in constant dark, celerities must satisfy the following
constraint :

• slope10 > slope00 × slope01

• slope11 > 1

• 1
Cg,ρ(a,g),1

+ 1
Cpc,ρ(c,pc),1

+ slope01
Cg,ρ(d,g),0

+ slope00×slope01
Cpc,ρ(e,pc),0

= 26

The Table 2 contains the chosen celerities to make the simulations of Section 5.
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g pc

Cg,{},0 = −0.167 Cpc,{},0 = −0.244
Cg,{},1 = −0.08 Cpc,{},1 = −0.262

Cg,{mg},0 = −0.2 Cpc,{mpc},0 = −1.0
Cg,{mg},1 = −0.8 Cpc,{mpc},1 = −0.041

Cpc,{mL},0 = −0.2
Cpc,{mL},1 = −0.167

Cpc,{mL,mpc},0 = −0.4
Cpc,{mL,mpc},1 = −0.16

Table 2: Chosen parameters values according to constrains determined in Section 4.

5 Some results

In the sequel, the couple (η(v), π(v)) where (η, π) is a hybrid state, describes
the qualitative level and the fractional part of variable v, and such a couple
is represented by the algebric sum η(v) + π(v). Thus the real number 1.5
represents the couple (1, 0.5). However the real number 2.0 represents both
couples (1, 1.0) and (2, 0.0). In other words, two points on both sides of a
threshold are merged.

In Figures 13, 14 and 15, red (resp. blue) curves represent the evolution of
pc (resp. g), whereas the grey zones correspond to the dark phases (L = 0).
The dashed line represents the threshold of each variable. Used parameters are
those of Table 2.

5.1 Light as zeitgeber: constant dark vs. equinox

The Figure 13A represents the simulation in constant dark conditions. The
sustained oscillations have a 26-hours period. Each sliding imposed in the
previous section is observable in the figure: It is represented by the horizontal
segments where g = 2 (or where pc = 2). Figure 13B is a zoom on a single
cycle of Figure 13A. Figure 13C, shows the behaviour of the model with the
adding of the dark/light oscillation with 12 hours of light and 12 hours of dark
(equinox). During the light phase, the decrease is stronger than during the dark
phase (B).

This disruption allows the model to reach, before the end of the cycle (be-
tween 23 and 24 hours), a state where neither g (blue) nor pc (red) can move
anymore. We call it the “waiting state” because this state remains stable until
the next dark phase starts and allows the system to synchronise to the stable
period imposed by the zeitgeber.
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Figure 13: (A) Full simulation in constant dark (B) Zoom on a single cycle in con-
stant dark (C) Simulation of the model submitted to a 12h/12h oscillations of dark and
light.

5.2 Circadian clock and seasons

Figure 14 shows the behaviour of the model submitted to different seasonal
conditions. In conditions A and B, corresponding respectively to summer and
winter, in temperate zone, the amplitude of the curves of g and pc changes
slightly but the system is able to maintain a periodic behaviour of 24 hours.
The waiting state plays the role of a “buffer” to make the system robust to the
dark/light alternation disruption.

• In extreme winter condition (D), the waiting state disappears and the
end of the cycle happens after 24 hours. Thus, the system tends toward
a 26 hours period as in constant dark period: The light phase is not long
enough to synchronize the circadian clock with a 24-hours period.

• In extreme summer condition (C), the amplitude of the curves decrease
as inB, but this time, g does not cross its threshold anymore. The system
oscillates between the discrete states (1, 0) and (1, 1) (for (g, pc)) thus
the variable g is not repressed anymore.

Schmal et al. [18] present a theoretical study of seasonality in which they focus
on entrainment of the circadian clock under different conditions. In particular,
they present a “Arnold’s onion” which show the entrainment zone of the circa-
dian clock according to the period and the photoperiod (percentage of dark in
24 hours).
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Figure 14: Simulations of the model submitted to alternation of dark and light. (A)
8 hours dark followed by 16 hours light. (B) 16 hours dark followed by 8 hours light
(C) 4 hours dark followed by 20 hours light (D) 20 hours dark followed by 4 hours
light.

It is worth mentioning that our simulations with a remarkably simple model
(constant dark condition, summer and winter conditions) are all within the
entrainment zone of the onion. At the opposite, the conditions in which the
photoperiod is extreme (4 and 20) are not within the onion.

5.3 Jet lags

Figure 15 shows the behaviour of the model during a 8 hours jet lag. Fig-
ures 15A and 15C represent the behaviour of the model when the circadian
clock is affected by a jet lag toward West. Figures 15B and 15D represent its
behaviours for a jet lag toward East. Cycles before 48 hours and after 104
(for A and C) and 88 (for B and D) are not represented because they exhibit
the same behaviour as in the case of the 12/12 dark/light oscillations of Fig-
ure 13C.

• For light phase elongation (A), the first 24 hours are the same as un-
der the equinox condition. In the next 8 hours, the system stays in the
waiting state until the next dark phase.

• For the dark phase elongation (C), the first cycle is the same as under the
constant dark condition (Figure 13B) where the period is 26 hours, but
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the light phase is sufficient to allow the system to reach the waiting state
and thus to ensure the synchronisation of the clock to a 24-hours period.

 0
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 48  60  72  84  96

A (12/20)
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 48  60  72  84  96

C (20/12)
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 2

 48  60  72  84

D (4/12)

Figure 15: Simulations with 8-hours jet lags. (A) Jet lag toward West during the
day: The light duration is increased from 12 to 20 hours. (B) Jet lag toward East
during the day: The light duration is decreased from 12 to 4 hours. (C) Jet lag toward
West during the night: The dark duration is increased from 12 to 20 hours. (D) Jet
lag toward East during the night: The dark duration is decreased from 12 to 4 hours.
Each simulation is preceded and followed by two 12h dark and 12h light cycles. The
windows contain the cycle of the jet lag and the next one.

Nevertheless, the jet lag toward East has more adverse effects.

• When the light phase is shortened (Figure 15B), it can be not long
enough to synchronize the clock in the first cycle. Moreover, the shift of
the system causes a cycle stop in the next day (the blue curve does not
go under 1).

• When the dark phase is shortened (Figure 15D), one observes the same
kind of stop in the first cycle but it resumes the next day.

Despite the simplicity of our model, it reproduces notably a lot of real be-
haviours of the mammalian circadian clock.
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6 Conclusion

The hybrid formalism presented in this chapter is inspired by the simplicity of
the Thomas’ modelling framework. The celerities of this modelling framework
give the direction and the evolution speed of the system within each discrete
state. This formalism mixes the qualitative trajectories as in the Thomas’ for-
malism, with a notion of delays of transitions from a state to another. Such data
(delays between 2 distant states) is easily measurable during an experiment.

Proof of concept of our hybrid framework is done through a tiny model of
the mammalian circadian clock. The celerities have been identified according
to biological behaviours. We first identified constraints on celerities owing to
a limit cycle of known period. This method is nevertheless dedicated to small
dimensions, so our future work will be dedicated to extensions of the computer
aided identification methods already available for the discrete case.

We equipped this new hybrid framework with a simulator generator. This
generator allows biologist to generate their own models and make their own
in silico experiments. This program assists the user to create the network by a
web interface, a NetLogo file is then generated and can be executed to observe
the behaviour of the model. This interface allows one to choose zeitgebers
behaviour (in our example, a scenario for alternations of light and dark) and to
modify celerities in real time. Moreover, it shows the level of each variables at
each step and the evolution of periods.

Despite its simplicity, our circadian clock model provides interesting be-
haviours: In constant dark, in 12h/12h alternations of light and dark, in differ-
ent seasons (modification of the light proportion within a 24-hours period) and
when jet lags (modification of one cycle) occur. In constant dark and dark/light
alternation conditions, the simulations are very close to the observations. This
adaptation faculty is due to the presence of a stable hybrid state (waiting state)
allowing the synchronization of the system with the cycle imposed by the ex-
ternal light/dark alternation.

In order to go further on more elaborated models, we have to facilitate
the identification of celerities by establishing heuristics able to construct con-
straints on celerities which have to be satisfied to allow the model to behave as
expected. The Hoare logic [4] seems to be a promising first approach.
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abstract

If the classical paradigm of toxicology has been used for centuries, recent tox-
icological findings, soaring experimental costs and an increasing regulatory
pressure have led the toxicology community towards mechanistic toxicology.
This new area of research, focused on molecular envents underlying the tox-
icity of a chemical substance, motivates the emergence of new modelling ap-
proaches for toxicology. In this chapter, we introduce a qualitative rule-based
formalism inspired from BioChAM with semantics adapted to the specificities
of toxicology. Using a simple example of thyroid hormone system, we then
show that this formalism is able to describe the possible toxic disruptions of a
biological system. We finally introduce ToxBioNet, a software platform ded-
icated to toxicology currently under development and we present its already
implemented simulator.

1 Introduction

The study of adverse effects caused by an exogenous chemical substance
(known as a xenobiotic) in biological systems is called toxicology. The classi-
cal toxicology is based on the principle established by Paracelsus in the XVIth

century: “All things are poison and nothing is without poison; only the dose
makes a thing not a poison.” [16] This means that any chemical substance can
cause harmful effects to an organism if the system is exposed during a long
enough time to a high enough dose of chemical. In modern toxicology, this
concept still holds as the basis of the dose-response relationship. In addition,
there is almost always a dose below which no response can be measured and
conversely, once a maximum response is reached, any increase in the dose will
not result in any increased effect. This relationship enables toxicologists to
establish a causality between the exposure to a chemical and its induced ob-
served effects. It also allows to determine the threshold of toxicity, namely the
lowest exposure (in dose and/or time) where an induced effect occurs.

Many experiments carried out recently have questioned the legitimacy of
this paradigm. Indeed, toxicity assessment is quite complex since many factors
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can affect the results of toxicity tests. Some of these factors include variables
like temperature, food, light, stressful environmental conditions and exposure
to other chemical compounds. Other factors related to the test subject itself,
including age, sex, health, hormonal status or window of exposure may also
greatly influence the vulnerability of an organism to a xenobiotic.

Although lethality is often used to measure toxicity, an increasing trend
in toxicology is to focus on the sequence of molecular events occuring during
the toxic response and leading to an observable effect. This approach, called
mechanistic toxicology, aims to explain the whole causal chain of key events
occurring in an organism, from the administration of the compound to its ob-
served adverse effects. In this context, the notion of key event encompasses
events occurring at the molecular, cellular and even at the organ scale.

Two almost identical notions concurrently appeared among toxicologists,
trying to formalise the chains of key events: the Adverse Outcome Pathways
(AOP) [2] and the Modes of Action (MoA) [13]. While only minor parts of
their definitions differ, the main distinction between these two notions lies in
the context of their use. Indeed, the notion of AOP tends to be used pref-
erentially in ecotoxicology while the MoA notion is mainly used in human
toxicology. In this chapter, we only refer to a chain of key events as a pathway
of toxicity for the sake of simplicity.

As mechanistic toxicology allows a better understanding of molecular
mechanisms leading to adverse effects, it can cope with many difficulties men-
tioned earlier, such as the extrapolation of toxicity findings obtained from lab-
oratory animals to humans or the consideration of additional factors in toxicity
assessments. Moreover, as distinct pathways of toxicity can share the same key
events, data obtained when studying one chemical could be reused when as-
sessing other chemicals. By taking all these facts into account, it is very likely
that mechanistic bottom-up approaches will complete classical top-down ap-
proaches in the near future.

Concurrently, as the potential toxicity of chemical exposure became an
area of great concern to both the public [6, 8] and the regulatory authorities [3],
the production of chemical compounds is increasingly regulated in the U.S.
and in Europe. Manufacturers must now conduct more extensive studies to
demonstrate the innocuity of their products, considerably increasing the cost
of development of such products.

This context favours the emergence of different modelling approaches, and
so far, most of these approaches are quantitative and enable either to infer the
toxic threshold of a chemical substance or to confirm its specific pathway of
toxicity. To reach these objectives, quantitative approaches need a lot of in
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vitro or in vivo toxicological data gathered during the early stages of the de-
velopment process of the chemical substance. This necessity can be restrictive
given the current cost of acquiring new biological data. There is therefore an
incentive to develop new approaches that do not focus on toxic thresholds. In-
stead, they aim to describe pathways of toxicity at the qualitative level, namely
by discretising continuous concentrations into intervals of interest. These ap-
proaches try to enumerate all the possible pathways of toxicity included in a
biological system and then check the biological plausibility of these pathways.
Their final goal is to highlight the most probable pathways involved in a given
toxicity.

In this chapter, we present a new qualitative formalism allowing to describe
a biological system with its possible toxicological disruptions. This formalism
was originally inspired from the boolean semantics of BioChAM [5], an envi-
ronment able to model biological systems as networks of chemical reactions.
However, these semantics are somehow too rough for toxicology due to par-
ticular features present in the toxicological models. Our new formalism there-
fore extends the boolean semantics of BioChAM to take into account these
specificities, such as the notion of abnormal concentrations or the presence of
modulating interactions impossible to manage similarly to classical chemical
reactions. The purpose of this new formalism is to help toxicologists in their
search for new pathways of toxicity.

Throughout this chapter, the presentation of the formalism will be illus-
trated by the thyroid hormone system. Indeed, this system is one of the least
sex hormone dependent system and its mechanisms are well described in the
literature. The next section is thus dedicated to the description of the thy-
roid hormone system and the various mechanisms ensuring its homeostasis. In
Section 3, we explain how to use the new formalism to construct a toxicolog-
ical system and the associated semantics. This formalism is then applied to
a simplified thyroid hormone system in Section 4 and finally, we describe the
aim of the ToxBioNet software platform and its first component, a simulator
dedicated to our formalism, in Section 5.

2 Thyroid Hormone Homeostasis

The underlying biological network ensuring the homeostasis of the thyroid sys-
tem is complex and results in a finely regulated system where thyroid hormone
levels only vary subtly during the day [19]. The homeostasis of thyroid sys-
tem is necessary since any perturbation of this system can have major effects
on the health of individuals, especially when it occurs in the earliest stages of
development of an organism [1].
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The hypothalamo-pituitary-thyroid axis (HPT axis) is part of the neuroen-
docrine system involved in the regulation of metabolism and in the thyroid
homeostasis in particular. As suggested by its name, this axis is composed
of three compartments: the hypothalamus, the pituitary and the thyroid gland.
The hypothalamus is a brain structure that controls endocrine glands. Part of
this region secretes a neuropeptide, Thyrotropin-Releasing-Hormone (TRH).
TRH is transported in axonal fluid to stimulate thyrotrophic cells in the an-
terior pituitary gland, stimulation that triggers the synthesis and secretion of
Thyroid Stimulating Hormone (TSH). TSH is released into blood circulation
and stimulates the follicular cells of the thyroid gland, leading to the synthesis
of thyroid hormones (TH) and their secretion into the blood circulation [15].

Thyroid hormones (TH) are derived from the tyrosine amino acid and can be
iodinated at different levels. For example, tri-iodo-thyronine (T3) and tetra-
iodo-thyronine, also known as thyroxine (T4), are respectively iodinated three
and four times. Moreover, the position of iodine residues in the chemical struc-
ture is important for the function of the hormone. Indeed, the reverse tri-iodo-
thyronine (rT3) is as iodinated as T3 but does not have the same effects since
its iodine residues are not located in the same places.

Historically, T3 is considered as the sole active form of thyroid hormone,
T4 only being a pro-hormone that can be activated into T3 by deiodination [9].
Most of the T4 is converted into T3 in the liver. In this classic view, the action
of TH on target genes is mediated by Thyroid hormone Receptors (TR). These
receptors are constitutively located in the cell nucleus of any cell targeted by
the thyroid hormone. TR can bind to T3 and more marginally to T4 [23]. While
TR-T4 complexes are ineffective [23], TR-T3 complexes present the ability to
bind to precise regions of DNA called thyroid hormone response elements.
Once binded to these elements, TR-T3 complexes can then influence the tran-
scription of target genes, either in a positive or a negative manner depending
on the gene [23].

Recent studies have shown that T4, rT3 and other products of TH deiodi-
nation also have a biological activity that does not involve TR [14, 20]. These
actions are currently under further investigations by the endocrinology com-
munity and will not be developed in this chapter.

Several negative feedbacks are present in the HPT axis in order to ensure a
proper regulation of the thyroid system. Actually, the production of TRH and
TSH are repressed by the negative feedback effects of T3 over respectively
the hypothalamus and the anterior pituitary [10, 7]. T3 also stimulates the
production of Pyroglutamyl Peptidase 2 (PP2), an enzyme known to destroy
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the TRH before it can reach the pituitary gland [18]. Those regulatory effects
are mediated by the binding of T3 to TR located in target cells.

Degradation of TH is ensured by two types of enzymes. Specific enzymes
such as the deiodinases (Dio), present in different tissues such as the liver, the
kidney or the brain, inactivate TH by removing one or more iodine residues [11].
In contrast, the non-specific hepatic enzymes such as the glucuronosyltrans-
ferases (UGT) conjugate TH with a residue leading to the biliary excretion of
TH [17]. It should be noted that these non-specific hepatic enzymes are also
generally activated when the organism is exposed to some foreign chemicals
such as drugs or poisons considered as indirect Endocrine Disruptors (iED).
In this context, an over-activation of UGT can cause a major decrease in blood
TH and disrupt indirectly the thyroid hormone homeostasis [17].

Other foreign chemicals, considered as direct Endocrine Disruptors (dED)
can also disrupt the thyroid hormone homeostasis by acting directly on the
production of TH in the thyroid gland [12]. Thus, a direct or indirect disruption
leading to the decrease of TH blood levels will result in the compensatory
increase of both TRH and/or TSH levels. This increase, when it is lasting, may
raise the risk of developping some thyroid cancers [4, 12].

We propose at first a simple representation of the thyroid hormone sys-
tem that can summarise this knowledge about the physiology of the thyroid
hormone system. This representation comprises TRH, TSH, TH, TR, PP2,
Dio, UGT and we can also add a direct endocrine disruptor (abbreviated as ED
for the sake of simplicity) that will interfere with the production of TH (see
Figure 1).

For pedagogical purposes, we will over-simplify this representation. Here,
since TRH only stimulates TSH production, we can abstract it and assume that
PP2 and TR-TH negative interactions directly concern TSH. Since PP2 and
TR-TH negative influences both originate from TH and concern both TSH, we
can also abstract PP2. Moreover, since the ED only disrupts directly TH levels,
we can put aside the TH degradation processes and pull out Dio and UGT
from the representation. In the end, the resulting simplified representation
only includes TH, TSH, TR and the ED (see Figure 2).

3 A New Discrete Framework for Toxicology

A biological system can be described as a set of biological entities interact-
ing with each other at different concentrations. For each entity, there exists a
concentration regarded as normal in standard conditions in a given organism.
For instance, in an adult human, the normal blood concentration of glucose is
1 g/L.
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Figure 1: Simple representation of the thyroid hormone system.

Figure 2: Over-simplified representation of the thyroid hormone system.

In order to represent the evolution of the concentration of each entity and to
detect abnormal concentrations, we introduce four qualitative abstract levels,
which are enumerated here in increasing order:

• ε reflects a negligible concentration of a given entity, that is to say a
concentration too low to trigger any mechanism in the biological system.

• ι conveys an abnormally low concentration, i.e. a relative lack of this
entity that can affect some mechanisms in the biological system.

• ∆ indicates a normal concentration.

• θ shows an abnormally high concentration, namely an excess of this
entity.
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In a given biological system, not all entities have abnormally low or high con-
centrations depending on the studied issue. Therefore in this formalism, only
the levels ε and ∆ are mandatory for each entity, ι and θ are optional. All these
facts are gathered in the signature of a biological system which defines the set
of biological entities present in the system and the levels admissible for each
entity.

Definition 1 [Signature] A signature is a finite set E whose elements are
named entities. Moreover, E is given an application τ : E → P(L) where
L : {ε, ι,∆, θ}, and such that for each entity e ∈ E, {ε,∆} ⊂ τ(e). τ(e)
is the set of admissible levels of the entities e. Moreover, by convention, L is
equipped with the strict total order relation ε < ι < ∆ < θ.

For instance, the signature of the simplified thyroid hormone system corre-
sponds to the set of five entities {TSH, TH, TR, TR-TH, ED} and each entity
has its own set of admissible levels. For example the set of admissible levels
of TH, τ(TH), is equal to {ε, ι,∆, θ} as TH can be in excess or abnormally
low in some cases.

Once the system signature is defined, it is then possible to define the state
of the system as the qualitative levels of all entities of the system. For ex-
ample the simplified thyroid hormone system can be at a state η0 where TSH
is at the level θ, noted η0(TSH) = θ and where η0(TH) = ι, η0(TR) = ∆,
η0(TR-TH) = ι and η0(ED) = ε. This state can then be written:

η0 = (θ, ι,∆, ι, ε) (1)

where the order of variable is TSH, TH, TR, TR-TH, ED.

Definition 2 [State] A signature E being given, a state η is a function E → L
such that for all e ∈ E, η(e) ∈ τ(e).

In order to represent the evolution of the system, we introduce two func-
tions: the incrementation, noted incr, and the decrementation, noted decr.
These functions apply to one entity at a time and return the level of this entity
just above (resp. below) its current level. Because all entities have not the same
set of admissible levels, there is one function defined for each entity. For in-
stance, if τ(TSH) = {ε,∆, θ} and η0(TSH) = ∆, then incrTSH(η0(TSH)) =
θ and decrTSH(η0(TSH)) = ε. It should be noted that the incrementation (resp.
decrementation) function is not defined on the maximal (resp. minimal) level
of the admissible levels. Therefore, in our previous example, incrTSH(η(TSH))
is not defined if η(TSH) = θ.

Alongside these functions, some properties on the entity levels can be de-
scribed by formulas.
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Definition 3 [Formula] A signature E being given, the set of formulas on E
is inductively defined by:

• for all symbols a and b belonging to E or L, the atoms a = b, a > b,
a > b, a 6 b and a < b are atomic formulas.

• if ϕ and ψ are well-formed formulas on E, then ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ,
ϕ⇒ ψ are also well-formed formulas on E.

Definition 4 [Satisfaction relation] A state η and a formula ϕ on a signature
E being given, the satisfaction relation η � ϕ is inductively defined by:

• if ϕ is an atom of the form a = b, then η � ϕ if and only if η(a) = η(b)
where η is the extension of η to E ∪ L by the identity on L. We proceed
similarly for the other comparison predicates.

• if ϕ is of the form ϕ1 ∧ ϕ2 then η � (ϕ1 ∧ ϕ2) if and only if η � ϕ1 and
η � ϕ2. We proceed similarly for the other connectives.

For instance, the formula ϕ stating the presence of TR at a normal level can be
written as: TR = ∆ and the formula ψ stating that the level of TH is strictly
superior to the one of TSH can be written as: TH > TSH. The state η0,
previously described in eq. 1, satisfies ϕ but not ψ.

To determine the evolution of the biological system, a set of rules is given.
This set is interpreted as biological transformations. In short, a rule can be
resumed by the following representation:

A1 + · · ·+Am ⇒ Am+1 + · · ·+An up(ϕ) down(ψ)

Each rule includes two sets of entities, the first one, for all i in [1,m], consti-
tutes the set of “reactants” while the other one, for all i in [m+1, n], represents
the set of “products.” A rule also includes two modulating conditions up(ϕ)
and down(ψ) (ϕ and ψ being formulas) representing respectively a positive
and a negative possible modulation of the rule. The up(ϕ) (resp. down(ψ))
modulation takes only effect if ϕ (resp. ψ) is satisfied and its effects are further
detailed later on. Of course, if no modulation is known for a given rule, it is
not displayed in the rule representation.

Definition 5 [Biological action network] A biological action network on a
signature E is a set of rules where each rule is an expression of the form:

A1 + · · ·+Am ⇒ Am+1 + · · ·+An up(ϕ) down(ψ)
where:

• ∀i ∈ {1 . . . n}, Ai ∈ E.

• ϕ and ψ are formulas on E.
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Notice that a rule can be devoid of any reactant or product. In the previous
definition, the index m can be equal to zero (the rule does not need any reac-
tant) or m can be equal to n (the rule has no product). A rule without reactant
can be considered as the constitutive production of an entity in a given model
and a rule without product can be interpreted as the degradation of an entity.
In either cases, the empty solution is depicted using the _ symbol.

It is worth mentioning that despite the strong resemblance between a rule
and a chemical reaction, a rule must not be interpreted as quanta of reactants
converted into quanta of products but as a possible evolution of levels of enti-
ties present in the rule.

As a basic example of rule, the complexation of TH with TR can be repre-
sented by the following rule:

TH + TR ⇒ TR-TH

Since neither positive nor negative modulating conditions are considered here,
only reactants and products are displayed.

In order to be applicable at a given state, a rule must meet basic criteria
inspired from biology. First, since the level ε is interpreted as a negligible
concentration, a rule is applicable only if all its reactants are present at least
at the level ι. In addition, a rule cannot be applied if the negative regulating
condition down() applies, namely if the corresponding formula is satisfied.

Definition 6 [Applicable rule] Let η be a state and let us consider a rule r of
the form A1 + · · · + Am ⇒ Am+1 + · · · + An up(ϕ) down(ψ). The rule r
is applicable at the state η if and only if:

• ∀i = 1 . . .m, η(Ai) 6= ε.

• η 2 ψ.

For instance, let us consider the deiodination of T4 into T3 by the type 2 deio-
dinase (dio2). If we assume that τ(dio2) = {ε, ι,∆, θ}, the deiodination can
be written as:

T4 ⇒ T3 down(dio2 < ∆) (a)

This rule is applicable if and only if the level of T4 is strictly greater than ε
and the level of type 2 deiodinase is at least ∆, namely if there is T4 in the
system and a normal concentration of type 2 deiodinase. Note that the catal-
ysis, namely the necessary presence of an enzyme to the proper conduct of
a reaction, can be expressed using the down() condition as in the previous
example.

When a rule is applied, part of its entities can vary to a potential next level.
Since a reactant is consumed during the application of a rule, it is possible for
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its level to cross a downward threshold and become lower than its initial value.
Therefore, the next level of a reactant is the one returned by the decrementation
function applied to that reactant, or the current level if the threshold is not
crossed. The next potential level of a product is determined by the levels of
reactants participating in the rule. The idea is simple: a product can increase
only if each reactant is at a level sufficient to allow the considered product
to increase. This is represented here by the condition that the level of every
reactant must be strictly greater that the level of the product. Therefore, the
next potential level of a product is returned by the incrementation function
applied to it only if the level of every reactant in the rule is strictly greater than
the initial level of the product.

The notable exception to this qualitative evaluation is the over-activated
rules, namely, rules where the up() condition applies. If a rule is over-activated,
then the next potential level of a product is always returned by the incrementa-
tion function applied to it, independently of the reactant levels.

Definition 7 [Potential next level] Let η be a state and r be a rule of the form
A1 + · · ·+Am ⇒ Am+1 + · · ·+An up(ϕ) down(ψ), applicable in η,

• for each reactant R ∈ {A1 . . . Am}, the potential next level of R by r is
decrR(η(R)).

• if η � ϕ, then for each product P ∈ {Am+1 . . . An}, the potential next
level of P by r is incrP (η(P )).

• if η 2 ϕ, then for each product P ∈ {Am+1 . . . An}, the potential next
level of P by r is incrP (η(P )) only if

η(P ) < min
R∈{A1...Am}

(η(R)).

with min
R∈{}

(η(R)) = ∆.

Notice that the constitutive production of an entity, represented by a rule de-
void of any reactant, does not inherently lead to an abnormally high level of
the entity. Therefore, when the set R of reactant is empty, its minimum is
considered to be ∆.

The restriction on the possible evolution of product levels (third item of
definition 7) relies on the assumption that the levels of entities do not sponta-
neously evolve towards anormal conditions but, indeed, need an initiating fac-
tor such as a pre-existing disorder in the reactant levels or the over-activation of
the rule to reach abnormal levels. If we keep the T4 deiodination as an exam-
ple, we can also specify that an excess of type2̃ deiodinase can cause trouble
in T3 levels by adding a up() condition to the rule (a):
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T4 ⇒ T3 down(dio2 < ∆) up(dio2 > ∆)

Here, assuming that the rule is applicable at the state η0 and that η0(T3) = ∆,
the potential next level of T3 by this rule can be θ only if η0(T4) = θ or if
η0(dio2) > δ (so, η0(dio2) = θ).

Among all the applicable rules at a given state, only one is applied at a time.
When a rule is applied, one and only one of its entities evolves to its potential
next level. This means that the level of an entity has to change in order to
consider that the rule was applied. Importantly, this also means that neither
reactant nor product levels are updated simultaneously. Similar ideas have
been firstly developed for discrete gene models by Thomas and Snoussi [21,
22]. This behaviour reflects the possibility for the level of a reactant to cross a
threshold without all the other reactant levels having to also cross a threshold.

In brief, starting from a given state, it is possible to determine which rules
of the system are applicable at that state. Among these rules, the application of
one rule changes the level of one entity, modifying the system state. It is then
possible to establish a transition graph, mapping all the possible transitions
between the states of a system.

Definition 8 [Transition graph] A biological action network N being given,
the associated transition graph is the graphG = (V, T ) whose set V of vertices
is the set of states on the signature E of N , and such that there exists an edge
from a state η to a state η′, called transition and noted η → η′, if and only if:

• there exists a rule r of the form A1 + · · · + Am ⇒ Am+1 + · · · + An

up(ϕ) down(ψ) applicable at η.

• there exists a unique index i ∈ [1 . . . n] such thaot the potential next
level of Ai by r is η′(Ai) and ∀e ∈ E r {Ai}, η′(e) = η(e). In other
words,o the only changed level is the level of Ai becoming η′(Ai).

In fact, it is possible to loop on an state even if there is an outgoing transition.
This means that self loops are present on every state but they are not included
here to avoid an overburden of the transition graph.

Once the transition graph of the biological system is established, it can be
used as a basis for testing properties about the system dynamics.

4 Application of the Formalism to the Thyroid Hormone System

According to Figure 2, the signature of the system is the set of entities {TSH,
TH, TR, TR-TH, ED}. The set of admissible levels of each entity is determined
according to the rules where this entity intervenes, so we first detail the rules
of the system representing the different interactions presented in Figure 2:
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1. _ ⇒ TR

2. TR + TH ⇒ TR-TH

3. TR-TH ⇒ TR + TH

4. _ ⇒ TSH down(TR-TH > ∆) up(TR-TH = ε)

5. TSH ⇒ TH down(ED > ε) up(TSH > ∆)

Since TR receptors are formed constitutively in tissues sensitive to TH, the first
rule abstracts the production of TR. Rules 2 and 3 represent respectively the
complexation of TR and TH into TR-TH and their decomplexation. As a re-
minder, TR-TH is the entity that will determine the negative feedback strength
applied on TSH production.

Rule 4 abstracts the molecular machinery allowing the production of TSH.
This machinery is inhibited by the presence of TR-TH (in accordance with the
negative feedbacks paragraph in Section 2), via the down() condition. Con-
versely, when the TR-TH concentration is insignificant, the production of TSH
is over-activated in a compensating effort by the organism, as formalised by the
up() condition. So, TSH is considered to be produced normally only when the
concentration of TR-TH is at an abnormally low level but still significant in
the organism, namely ι.

Finally, Rule 5 represents the TH production preconditioned by the level of
TSH. TSH is considered as a reactant to take into account the inherent degra-
dation of TSH during the TH production. The down() condition introduces the
endocrine disruptor action that blocks TH production and the up() condition
allows for the possibility of TH reaching an abnormally high concentration
when over-stimulated by TSH. These rules induce a precise definition of the
different sets of admissible levels:

• Since TH is the main concern of the model, its level should be as accu-
rate as possible, therefore τ(TH) = {ε, ι,∆, θ}.
• In order to allow an over-activation of the TH production (rule 5), the

TSH level must be able to reach θ. On the contrary, ι is not required
here, thus τ(TSH) = {ε,∆, θ}.
• The same applies to the TR-TH set of admissible level: ι is necessary

to allow a normal production of TSH (rule 4) but not θ. Therefore,
τ(TR-TH) = {ε, ι,∆}.
• In this model, we are only interested in the presence or absence of TR

and ED. We can then assimilate their levels to Boolean values: τ(TR) =
{ε,∆} and τ(ED) = {ε,∆}.
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The complete graph has five dimensions and includes 144 different states (144
= 4× 3× 3× 2× 2). Here we focus only on the specific region of this graph
where the TR level is ∆ (i.e. we consider it constitutively expressed) and the
ED level is ε (because we first want to see the behaviour of the system when
not disrupted). These restrictions limit the graph to 36 states (represented in
three dimensions) and make it representable as in Figure 3.

It is easily observable that the only way to reach the plane where η(TH) =
θ is to go through the dashed green arrows present on the plane η(TSH) = θ.
These arrows represent the transitions allowed by an over-activation of the
production of TH (rule 5) when TSH is in excess. Furthermore, the plane
η(TSH) = θ is only reachable by the dashed red arrows on the the plane
η(TR-TH) = ε corresponding to the over-activation of the production of TSH
(rule 4). Finally, we also see that in order to reach the plane η(TR-TH) = ∆,
the predecessor state must have a TH level of at least ∆, illustrating Defini-
tion 7.

If we introduce an endocrine disruptor to the system and thus put the level
of ED to ∆, we can see that all the green arrows would disappear because of
the down() condition on the production of TH (rule 5). At this point, all the
transitions converge towards the state θεε at the bottom left in the background.
This state corresponds to an excess of TSH combined to a lack of TH and TR-
TH, namely the same condition as observed biologically when an endocrine
disruptor is introduced into an organism.

This example, although simple, shows that the abstraction made by this
formalism is adequate to reproduce known biological behaviours.

5 ToxBioNet, a Software Platform Dedicated to Toxicology

The aim of ToxBioNet is to help toxicologists in their search for potential toxic
pathways explaining the mechanism of a toxicity. One of the main goals is to
be able to extract all the possible pathways between an initiating event and an
adverse outcome, compatible with a particular biological action network. The
resulting pathways can be further filtered if some key events are experimen-
tally known to be involved or not involved in the studied toxicity. Similarly,
some successions of key events are known to be highly unlikely in biology (for
example an event A known to be never followed by the event B). Pathways in-
cluding such successions can thus be also filtered out. Finally, we would like to
develop a heuristic suggesting the most informative and relevant experiences
when trying to determine which remaining pathways are actually involved in
the studied toxicity. To achieve this purpose, our formalism has to be com-
bined with a second language able to express properties such as successions of
key events.
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Figure 3: Partial transition graph of the over-simplified thyroid hormone model. The
states are represented by a 3-letters string where the first one (resp. second and third)
is the level of TSH (resp. TH and TR-TH). The levels of TR and ED are set to ∆ and ε
respectively. A dashed arrow indicates the application of an over-activated rule, where
the up() condition applies.

Formal methods will be helpful to assist toxicologists to construct a mecha-
nistic model. These can reveal previously unsuspected relations between path-
ways or key events. When trying to enumerate the pathways leading from an
event A to an event B, the filtering step is facilitated by the search for incon-
sistencies between existing knowledge and hypotheses. As a trivial example,
if an event of a pathway P from A to B is involved in another pathway which
is certain to lead to B′, and if we know that B never happens alongside B′, the
pathway P can be easily filtered out.

ToxBioNet is currently under development: it is already possible to run
simulations on biological action networks. This simulator, written in Java, is
able to parse an input file containing all the rules describing a biological system
and to create the corresponding toxicological model. As shown in Section
4, the number of states in the transition graph grows exponentially with the
number of entities (a system including n entities can have up to 4n states). This
makes the generation of the state graph technically difficult if not impossible
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for systems including more than fifteen entities (which implies approximately
a billion possible states). In order to avoid the pitfall of the construction of a
huge state graph, the simulator can exhibit as many traces as wanted in the state
graph without constructing it. It was tested using a complex thyroid hormone
system model: this model includes more than fifty rules based on a hundred of
scientific references.

6 Conclusion

In this chapter is presented a new formal framework able to handle several
specificities of toxicology not taken into account so far, such as the possible
presence of a compound in abnormal concentrations or the possibility, for a
reaction, to be modulated. This modelling framework is applied to the simple
model of the thyroid hormone system and its expressive power allows us to
describe the biological system with enough precision to reproduce existing
behaviours such as the disruption of TH levels resulting in abnormally high
TSH levels.

In the future, the current formalism will be combined with a formal lan-
guage able to express properties on successions of key events: a simple idea
would be to adapt classical temporal logics to our toxicological framework.
Formal methods such as model checking, will be useful to find new poten-
tial pathways of toxicity satisfying some given properties. Besides, checking
the successions of key events could also highlight gaps in the current toxi-
cological knowledge. The platform ToxBioNet will therefore be useful as an
experiment-aid tool to select the most informative experiments to conduct.
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UMR 7357), Bd Sébastien Brandt, F-67412 Illkirch Cedex, France

2 Therapeutic Innovation Laboratory (LIT, UMR 7200) Faculté de Pharmacie
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Abstract

We recently demonstrated that it is possible to model and to simulate biological
functions using hardware description languages (and associated simulators)
traditionally used for micro-electronics. The main drawback of these lan-
guages is that they do not support partial differential equations. However, for
several applications in biology, space-dependent quantities are unavoidable.
This paper deals with a new approach to address these problems. Our work is
based on previous investigations on electro-thermal simulations in integrated
circuits. The tool is composed of four main parts: a mesher that divides space
into small cubes (or squares in 2D), a set of interconnected biological models,
a SPICE simulator that handles these models and a Python script that interfaces
the different tools. Simulation results obtained with our tool are compared with
experimental data for a specific case. Results are in good accordance from a
qualitative viewpoint.

Keywords – Compact modeling; Verilog-A; Space-and-Time modeling; mesher;
sytems and synthetic biology

1 Introduction to Synthetic Biology

Synthetic Biology is defined by European experts as “the engineering of biol-
ogy: the synthesis of complex, biologically based (or inspired) systems, which
display functions that do not exist in nature. [...] In essence, synthetic biology
will enable the design of ‘biological systems’ in a rational and systematic way”
(Synthetic Biology: Applying Engineering to Biology: Report of a NEST High
Level Expert Group). By designing biological networks and new molecules,
biologists and engineers want to achieve computing-like behaviors in cells by
rewiring and reprogramming them [1]. Synthetic biology encompasses focuses
ranging from genetic circuit design [2] and synthesis of engineered proteins [3]
to metabolic engineering [4] and minimal cell or protocell [5]. Synthetic
constructions allowed advances in fundamental research and are now being
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applied to solve concrete problems in various domains (biosensing, therapeu-
tics, biofuels [6], novel biomaterials [1]).

Because of their similarities to electronic circuits, our main focus will be
synthetic gene networks. A gene provides DNA-encoded information for the
synthesis of proteins, which cooperate to perform a biological function. With
the help of a standardized database of parts like genes, proteins and devices
(The BioBrick Fundation website: http://bbf.openwetware.org/), it is
possible to rationally design circuits made of genes “wired” to one another
thanks to regulatory proteins (transcription factors). Such proteins are able
to bind DNA on a specific location (e.g. a promoter) and to control (activate
or inhibit) the expression of cognate gene(s). Typical circuits are composed
of regulated genes coding for a regulating protein. It is therefore possible
to design elaborated biological systems performing logic tasks by assembling
such circuits. Up to now, most of logic gates and basic combinatorial functions
have already been realized with genetic networks [7]. However, combinatorial
Boolean gates do not cover all the digital functions. For instance, sequential
systems require memories, whose design is a trickier challenge. The devel-
opment of adapted design tools has therefore become necessary in the field of
gene circuits design.

1.1 The need for multicellular systems

Synthetic gene networks suffer from two main drawbacks that may limit the
complexity of the achievable artificial functions. Firstly, the number of artifi-
cial genes that can be added to a given microorganism is generally quite small
(some units). Secondly, artificial genes designed for the application should be
independent from the genome of the host cell, i.e. any potential interaction
(cross- regulation) between the artificial network and the rest of the genome
should be minimized. A way to overcome these drawbacks is to split the
main function into sub-functions and to implement each one into different host
cells [8]. By this means, some components (regulating proteins, promoters ...)
may be used several times inside different host cells. However, sub-functions
are not completely independent: the signal transfer mechanisms between cells
must also be designed [9]. To reach this aim, acyl homoserine lactone (AHL)
communication systems [10] of the bacteria Vibrio fischeri and Pseudomonas
aeruginosa are often used [11], as AHL is a molecule small enough to diffuse
through the cell plasma membrane and is able to activate gene expression with
the help of a cognate protein. If intercellular exchanges are not systematically
taken into account in modeling a multi-cellular system yet, a focus should
be put on such models since our team showed that the concentration of the
signaling molecule (AHL) is crucially dependent on such exchanges and the
spatiotemporal behavior of the system.
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1.2 The need for spatiotemporal simulators

Moreover, synthetic systems are starting to appear that display specific spa-
tiotemporal behavior [12, 13], which have to be taken into account in the
modeling. Space can be taken into account in biological models and simulators
by different means [14]. Three main approaches exist: particle-centered mod-
eling, space discretization and compartmental modeling. In particle-centered
modeling, each instance of each chemical species is modeled as an entity with
a given position in a continuous space and a given displacement vector. At
every time step, the position of the particle is updated and a new displacement
vector is computed either by a draw or by a deterministic equation which
may depend on physico-chemical properties. When two particles are close
enough, an interaction (binding, degradation, synthesis of another particle)
may occur. HSim is an example of simulator that uses such an approach [15].
The complexity of such algorithm grows linearly with the number of chemical
species but exponentially with the number of potential interactions. As a
consequence, particle-centered modeling can be very useful for the study of
elementary mechanisms but it is not adapted to predict the behavior of complex
circuits with a high number of particles.

An alternative to particle-centered modeling is to discretize space into a
lattice of connected nodes. The concentration of chemical species is computed
at every node and every time step as a function of the concentration at neigh-
bor nodes. Many variants of this approach exist. The lattice can be regular
or adaptive (mesh size depends on the context), quantities can be Boolean
(presence or absence of chemical species in a mesh), discrete (number of
chemical particles in a mesh) or continuous values (concentration of chemical
species over a mesh), fluxes of particles between nodes can be deterministic
or stochastic using partial differential equation (PDE) [16] or cellular automata
(CA) [17]. This approach is an equivalent to a T-CAD simulation (e.g. Silvaco)
used for the design of semi- conductor devices. Alternatively, COMSOL,
which is one of the most used generic PDE solver, has a module dedicated
for the modeling of such chemical reactions. Assets and drawbacks of such a
modeling approach are well known: a high accuracy versus a low computation
time.

The third alternative to model space-dependent biochemical mechanisms
is to split space into compartments. In each compartment, the problem is re-
duced to a space-independent model leading to the use of ordinary differential
equations (ODE). The displacement of particles is modeled through unique
diffusion equations from compartments to compartments. Compartments are
not located in space and the distance and properties of the inter-compartment
medium are integrated as fixed parameters in the diffusion model. By this
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means, the space- and time-dependent problem is reduced to a time only de-
pendent problem. Models are simplified with regards to the computation time
but the price to pay is a decrease of modeling accuracy and the loss of spatial
localization of the particle (the concentration of each species is computed only
in each compartment but not at every point of the space). Most of the biological
simulators, as for instance Virtual Cell [18] use this approach.

In this paper, a mixed modeling approach is described. The main idea
consists in using a mesher that divides the space into compartments to enable
a compartmental approach (in order to have only time-dependent differential
equations). Our mesher is based on two previous studies: a micro-electronics
tool used for simulating electro-thermal behavior of integrated circuits [19]
and a formalism developed to describe and simulate gene regulatory networks
with micro-electronics tools [20]. Those two points are discussed in the first
two parts of the present article. Then, the simulation environment is described.
Finally, simulation results are given in the last part of the paper.

2 Analogy between Biology and Electronics

At the level of a single gene or protein, an analogy can be drawn between
micro-electronics and biology [21]. As a gene can lead to the production of
a protein, it can be seen as a source of protein and protein synthesis can be
represented by a positive current source. Similarly, protein degradation can be
associated to a grounded resistance. Protein consumption (by complexation for
example) would be represented by a negative current source. According to this
analogy, a node in an electronic circuit corresponds to a protein whose con-
centration is calculated as an equilibrium between the electronic components
linked to this node. If the behavior of a cell can be modeled by an electronic
circuit, the motion of molecules between cells does not have direct equivalence
in electronics. However, this kind of diffusion can be compared to the diffusion
of heat in a micro-electronic chip, an issue already tackled in the past.

3 Electro-thermal Simulation

The electro-thermal simulation of an integrated circuit becomes unavoidable
especially for high density integrated circuits, mixed circuits with integrated
power devices or the next generation of 3D integrated circuits. Such a simu-
lation requires two modeling layers: temperature-dependent electronic models
for the devices integrated in the circuit on the one hand and a thermal model
of the circuit itself (including heat sources near heating devices, heat diffusion
inside the silicon, heat accumulation by the chip and heat transfer with the
package) on the other.
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Biological behavior Electronics device

Local molecule concentration Voltage
Constant concentration
for a given molecule Voltage source

Flux of molecules Current
Constant synthesis or
consumption of a molecule Current source

Synthesis or consumption which
depends on another molecule Voltage-driven current source

Molecule decay Resistor

Local accumulation of molecules Capacitor

Table 1: Analogy between Electronics and Biology

There are two main ways to tackle this problem: direct coupling or relax-
ation [22].

In relaxation approach, a first electrical simulation is carried out with all
the devices at room temperature. Then the power dissipated by each device is
estimated and a 2D/3D thermal map of the chip is computed with an outsider
tool. The mean temperature of each device is then computed from this map
and fed back to the electrical simulator. This simulation loop is performed
iteratively until convergence is obtained. This approach is straightforward but
requires two separated tools. Moreover, very fast changes cannot be consid-
ered without the simulation becoming highly time consuming. An alternative
consists in a direct coupling between the electrical models of the devices and
heat diffusion inside the chip in the same simulator. This can be done by
modeling the heat diffusion inside the chip by an equivalent RC network. By
this way the complete electro- thermal model of the chip can be simulated with
SPICE. The model consists in two coupled sub-circuit, one corresponding to
the electrical model of the device (which depends on the temperature) and
the other corresponding to the thermal equivalent one (which depends on the
power consumption of each device). The spatiotemporal biological simulator
presented in this part is based on this approach (Fig. 1).

4 Our Spatiotemporal Simulator for Biology

The designed mesher is composed of a suite of modules written in different
languages (namely C++, python, Verilog-A and SPICE). The complete work-
flow is depicted in Fig. 1 and detailed in the following subsections.
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4.1 Mesher

Firstly, the user has to give a description of the molecule that will diffuse in
the input file (see the grey box in Fig. 1). General parameters concerning
the lattice (its total size, the maximal and minimal size of a mesh) must be
provided, as well as information concerning the biological elements (cells)
influencing the concentration of the diffusing molecule (acting as a source
or a consummator of the said molecule): each element is characterized by
its position, its flux/reaction altering the concentration of molecule and its
influence zone (size parameters). The input file is then read by the core module,
namely the mesher, a C++ algorithm that will create a list of meshes and their
associated nodes, as well as a list of each node’s coordinates. To be simulated
by the electronic simulator (namely Spectre), these lists need to be translated
to a .cir file, which is performed by a Python module. Spectre also requires
the model of an elementary mesh, which is described in a Verilog-A file, as
well as the location and value of each altering flux of the diffusing molecule,
indicated in the input file.

In a 3D space, the algorithm divides first the whole lattice into cubes of
the maximal size. As it is an adaptive mesher, it will then additionally divide
each cube in contact with the influence zone of a cell into 8 sub-cubes, until
only cubes of the desired size are in contact with the influence zone. For
each division, the refinement number n is incremented. In order not to have
important size differences between neighbor meshes, the algorithm checks
whether two neighboring meshes have a n difference strictly superior to 1 and
subsequently divides the bigger mesh. The simulation generates a list of each
node’s value over the total period of simulation. These values can be visualized
using a Python module.

4.2 .cir generator

The .cir file is the netlist that is supported by SPICE simulator (i.e. Spectre in
our case). This file should contain the following elements: i) the definition of
the global parameters of the model; ii) The instantiations of elementary mesh;
iii) initial concentration map; iv) the boundary conditions; v) instantiation of
the biological models of involved cells and vi) simulation command.

The instantiations of elementary mesh is computed directly from the netlist
delivered by the mesher. The Verlilog-A model of the elementary mesh is
encapsulated in a SPICE subcircuit called Mesh unit. A Mesh unit is
instantiated for each line in the netlist file. The k-th mesh is labelled Mk and a
list of the 27 connections (26 nodes of the elementary mesh and the reference
node which is always 0) is provided (Fig. 2). Unconnected nodes are grounded.
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Figure 1: The complete workflow of our simulator

Finally, the parameters that are not equal to their default value are specified:
ID which is a unique name of the instance (parameter required in order to
locate the node inside the Verilog-A model), the degree of refinement n which
is equal to 1 by default, 12 parameters XABwhich indicate whether the point in
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the middle of the edge between cornersA andB is connected and 6 parameters
XF which indicated that the point at the center of the face F is connected (all
the X parameters are set to 0 by default).

By default, the meshed space is not considered as a “closed box” but a part
of an infinite space. As a consequence, species continue to diffuse beyond the
lattice borders. Thus, the default boundary condition consists in connecting
each node on the lattice border to a resistance that models this diffusion and
degradation outside the lattice. This resistance is a parameter of the model and
its value is shared between each boundary node according to border surface
considerations.

The instantiation of cell models is performed according to the content of
the input parameter file which contains the position of each cell that may have
an influence on the local concentration of the species under consideration. The
model of each cell has to be described in an appropriated Verilog-A model
beforehand. For each cell, the .cir generator connects one instance of the model
of a cell to every node in contact with a cell according to the input parameter
file.

 

Figure 2: Elementary mesh with 26 potential connections: 8 corners (always
connected), 12 edge and 6 faces (not connected if the degree of refinement of the
neighbour mesh is the same)

4.3 Verilog-A model of the elementary mesh

In 3D, an elementary mesh is composed of 26 nodes located at each corner (8),
at the middle of each edge (12) and at the center of each face (6). Each node is
not necessarily useful and can be “not connected” i.e. connected to the ground
(Fig. 2).

Each mesh has 26 parameters. In addition of the 20 parameters described
in Sec. IV.B, we define K the capacity, R the decay resistance, D a diffusion
coefficient. These three parameters are scaled on the size T of the mesh. α and
β are two anisotropy coefficients used to compute fluxes inside a mesh.
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In 2D, we define fluxes per mesh along the X and the Y axis. On each axis, we
define 2 fluxes computed from the difference of concentration (i.e. potential in
the electronic model) between the nodes of each side. For instance on axis X
the two fluxes FX1 and FX2 are as follows:

FX1 =
(α · C2 + (1 − α) · C3) − (α · C1 + (1 − α) · C4)

D

FX2 =
(α · C3 + (1 − α) · C2) − (α · C4 + (1 − α) · C1)

D

(1)

(2)

with C1, C2, C3 and C4 being the concentration at the nodes as described on
Fig. 3.

These fluxes are distributed on the nodes of each side of the mesh (left
and right when considering the X axis and up and down when considering the
Y axis). If the node in the middle of the edge of the considered side is not
present, the upper left node (4) receives 100% of FX2 and the lower left node
(1) receives 100% of FX1 (as represented on the blue mesh on Fig. 3). On the
right side, the lower node receives -100% of FX1 and the upper one -100% of
FX2. If there is a connected node at the middle of the considered edge (e.g.
node 41 on the grey mesh of Fig. 3), the upper (4) and lower (1) left nodes only
receive 50% of respectively FX2 and FX1 and the middle node (41) receives
the remaining 50% of the two fluxes. In 3D, four fluxes are defined along each
axis (X, Y and Z). Fluxes are distributed on the nodes of a face.

  
 

C1 C2

C3C4

x

y

½ * FX2
FX2’

FX1’

½ * FX2

½ * FX1

½ * FX1

1 2

34

41

Figure 3: Representation of the flux distribution in the 2D case

To each mesh is attributed a capacitance and a resistance related to its size.
These values have to be distributed to each node present on the mesh. To this
end, we compute the volume attributed to each node, which depends on the
position of the node (corner, edge or face) and its neighboring nodes (whether
they are present or not). In 2D, the repartition is as follows. When only the
corner nodes are present, each receives 1/4 of the total volume (Fig. 4A). If an
edge point is added (point 23 in Fig. 4B), the two zones previously attributed to
its corner neighbors (blue and red zones) are divided into 2. One half remains
attributed to its cognate corner node and the two other halves are attributed to
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the edge node, so that the two concerned corner nodes receive 1/8 of the total
volume and the edge node receives 1/4. If a second edge node is present on an
adjacent edge (node 12 on Fig. 4C), blue zone of node 1 is split into 2, red zone
of node 2 as well and the green square (representing 1/16 of the total volume),
previously attributed to node 23, is distributed to the two edge nodes. In the
end, the edge nodes receive 1/8 + 1/16 + 0.5/16 = 7/32 of the total volume, the
corner nodes which only have one adjacent neighbors (point 1 and 3) receive
1/8 and the corner node with 2 adjacent neighbors receives 1/16. When all
nodes are present (Fig. 4D), corner nodes receive 1/16 of the total volume and
the edge nodes receive 3/16.

This model is extended to 3D space by applying the same rules, except that
the volume distribution to a node depends on: i) the number of adjacent edges
connected for each corner; ii) the number and the position of adjacent edges
and adjacent faces for each edge and iii) the number of adjacent faces for each
face.

5 Simulation

Once the .cir file and the Verilog-A model have been generated, the circuit
can be simulated with every SPICE simulator. In our case, Cadence Spectre
simulator is used. Regardless of the kind of simulation performed, it provides
ASCII file containing the simulation results. This file is postprocessed by a
Python script in order to obtain the graphical results.
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Figure 4: Volume distribution inside the 2D mesh as a function pf the number of
connected edges: none in sub-figure A, one in B, two adjacent in C and all in D
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6 Results

To illustrate our tool, we choose to model and simulate a biological band-
pass system developed by Basu et al. [12]. This system allows to detect an
intermediate concentration of acyl- homoserine lactone (AHL). This system
consists in two populations of cells: the senders and the receivers. The senders
synthesize and emit isotropically AHL inside a Petri dish. AHL is a small
molecule able to diffuse in the gelose of the Petri dish and to enter cells. The
receivers react to the concentration of AHL and produce GFP, a green fluores-
cent protein (the output in this system) if AHL’s concentration is comprised
between two thresholds. In practice, one or many groups of senders are laid on
specific spots on a Petri dish covered with receiver cells.
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Figure 5: Simulation of the Basu system with one (A and B) or three (C and D)
sender cells groups. A and C represent the concentration of GFP per mesh (white: no
GFP; dark green: maximal concentration of GFP at that time step). B and D represent
the lattice configuration: each point is a node of the lattice. Red dot (A and C) or red
cross (B and D) represent the sender cell. Blue rings (in A) show the nodes of which
the time-dependent GFP concentration is shown on E.

Our tool is used to model the diffusion of AHL in space and time and also to
model the synthesis of GFP by the receiver cell depending on the calculated
concentration of AHL. At each time step, diffusion is first computed for each
mesh in the lattice according to the model discussed above; then for each
node of the lattice, GFP expression is calculated according to the Verilog-A
biological model of the receiver. Two configurations are tested: one with only
one group of sender cells in the middle and another one with 3 groups of sender
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cells (Fig. 5). In both cases we use as a base lattice a square of 100x100 units
with 16 divisions per axis. In the first case, we added one circular refinement
zone with a radius of 25 centered at x = 50 and y = 50 where the sender
cells are located, with a refinement coefficient of 3 (each square in this zone is
divided in 4 sub-squares 3 times). Fig. 5B displays all the nodes in the lattice
and shows the linear relaxation imposed on the lattice. The concentration
of GFP according to space at a given time can be observed in Fig. 5A, with
the sender cells represented as a red dot. Time-dependent evolution of GFP
synthesis is monitored at 5 nodes: the sender cells (red dot) and nodes in the
diagonal toward the lower left corner (blue circles). They are represented in
Fig. 5E. It has to be noted that the scale is not the same for each node. We can
see that the peak of GFP is propagating from the center toward the borders of
the lattice and stops at a certain distance from the center, as expected. For the
second configuration, two circular refinement zones were defined per group
of sender cells: one with a radius of 3 and a refinement coefficient of 2 and
another one with a radius of 20 and a refinement coefficient of 4. They are both
centered at their cognate group of senders. Nodes configuration and spatial
map of the GFP for this configuration are also given in Fig. 5C and Fig. 5D.
Simulation results are in accordance with the results provided by Basu in [12].

For both configurations, the number of equations, of nodes and of required
computation time (on a standard computer for a 50 h transient simulation with
182 adaptive time steps) are given in Table 2. In term of computation time,
the second configuration requires less CPU time because of its lower number
of equations. Indeed, its highly refined zones were smaller compared to the
one-group configuration.

1 sender 3 senders

Number of mesh 3868 2 452

Number of receiver models instantiated 4023 2638

Number of nodes in SPICE model 8046 5276

Total number of equation of the SPICE model 32184 21104

CPU time 54.5 s 22.5 s

Table 2: Simulation results
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7 Conclusion and Outlooks

In this paper, a new way to simulate space-dependent biological systems has
been presented. This approach is based on an electronic simulator and a very
simple adaptive mesher. The results, described in the last section, are in
accordance with a case study found in the literature. Compared to existing
approaches, our simulator has three main advantages: 1) it is based on a
very simple algorithm for the discretization of the space, which facilitates
the description of the diffusion phenomena with simple compact models; 2)
it provides a direct interface between the diffusion model of molecules and the
biological model of each cell, and 3) it uses a SPICE simulation core, which
has proven its efficiency for years, especially for systems with a high number
of differential equations.

In the future, this tool will allow the simulation and the virtual prototyping
of artificial biological systems involving several types of cells that communi-
cate between them through chemical messengers. However, several aspects
require further investigations. Firstly, if the generation of the netlist is auto-
mated, the configuration of the tool and the integration of third-party biological
model is a hand-made process. As a consequence, the software cannot be
easily handled by engineers that are not accustomed to SPICE and Verilog-A.
The tool has to be hidden behind a biologist-friendly interface or should ideally
be able to directly support biological descriptions (in a dedicated language as
SBML). Secondly, the issue of validation may arise. The validation of the tool
in comparison with experimental results is very tricky as most of the quantities
provided by the simulator are not biologically observable: in our case, the
spatial distribution of GFP is the only observable parameter. One solution
would be to validate our results in comparison with existing finite-element
simulation tools. This work is ongoing. Finally, the simulation may become
problematic, especially for multi-species problems requiring tightened meshes.
The deployment of the tool on GPU is also worth of investigation.
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Abstract

Biological systems have developed a wide range of mechanisms to respond
to changes in their environment. Biological switches are mechanisms which
drive a change in the functional state of a system in an all-or-none fashion.
Biological switches produce a reliable and robust transition between states,
sometimes generating an irreversible transition.

Current eukaryotic switches usually contain several components with mul-
tiple positive feedback loops. This level of complexity could have been reached
by an evolutionary process from a simple system. The simplest possible system
could have been a single molecule that regulates itself and it can go through
different functional states. Most of the quickly responding switches work on
the post- translational level. Phosphorylation has been proposed as an ancient
post-translational mechanism, which could have defined phosphorylated and
dephosphorylated states.

It was previously shown that simple systems based on single autocatalytic
element could behave like a switch. Therefore, maybe there exist an evolu-
tionary way of obtaining complex networks from simpler ones. We investi-
gate from a computational perspective, the increasing complexity from simple
systems to complex ones and how their key properties could have been kept
through evolution.

1 Introduction

Biological systems have developed signal processing mechanisms to measure
and respond to changes in their environment. To certain stimuli, feedback
mechanisms trigger a readjustment of the stimulated molecule, either directly
or through a number of connected elements. Thus, environmental information
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is used to modify the state of downstream pathways, adapting the system to
generate an appropriate response.

1.1 Feedback loops as building blocks of regulatory networks

Feedback loops (FBL) constitute a basic relationship among molecules to con-
struct complex behaviours [1-7]. There are two classes of FBL, positive or
negative, depending on the number of negative interactions (inhibitions) [1, 2].

Negative feedback loops (NFBL) contain an odd number of negative in-
teractions. These systems counteract the effect of stimuli, sometimes working
like a biological thermostat (homeostasis) [1-5,8]. When there is a long enough
delay in the feedback pathway, NFBL can also create oscillations [1-5,8,9].
Positive feedback loops (PFBL) contain an even number of negative interac-
tions and/or positive interactions only. These systems are forced to choose
between the possible states, and may create switches [1-5, 10]. Biological
switches are able to convert graded inputs into on/off responses, when the input
reaches a certain threshold [1-5, 11-14].

Biological switches present interesting features to take advantage of. Reli-
ability and robustness are key properties. These systems cannot be arrested in
undecided states, they should choose between the possible states and ensure the
selected state will be reached despite small perturbations [15]. Thus, hysteretic
behaviour and bistability are generated: once a state is reached, the system
“remembers” the previous state, and only major changes in the input can return
it to the other state [16]. A related feature is the speed in the transition between
states. The transition should be sufficiently fast to reduce the time the system
is undecided. At the same time, the system should remain in a given state for
a sufficient amount of time to perform any necessary functions.

Reliability, robustness and speed are features also attractive for design-
ing computational algorithms that look to perform efficient all-or-none deci-
sions [17-19]. Recently it was shown how a computational algorithm (the
Approximate Majority) presents similar dynamical features to a key transition
of the cell cycle regulatory network [20].

1.2 The cell cycle and the approximate majority algorithm

The Approximate Majority computational algorithm (AM) is a fast and simple
population protocol of distributed computing [21]. Given an initial population
of elements in either of two decided (or active) states (x0 or x2), AM describes
how to drive the initial population into a final one where all elements are in
the same state (Figure 1, Figure 2A,C). The key piece of this algorithm is
the introduction of a third state, the blank or undecided state (x1). From the
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undecided state both decided states can be reached, attending to a set of rules.
If the undecided state meets any of the decided states, it takes the state of the
decided state (x0 + x1 → x0 + x0;x2 + x1 → x2 + x2); if opposite states
meet each other, they both become undecided (x0 + x2 → x1 + x1) [21].
This system shows three positive feedback loops (two pure positive and one
double negative); each of the decided states activates themselves and prevent
the growth of the other state (Figure 1).

x0 x2x1 x

Figure 1: Approximate majority. Extended (left) and condensed (right) versions
of the AM. x0 activates itself and x2 activates itself, but at the same time inhibits
the other form. The extended wiring diagram can be collapsed into the condensed
version. The dashed line of the condensed wiring diagram indicates the action of x2,
which produces an inhibition (bar-end line) of the x0 state. The solid line indicates
the action of x0, which produces an activation (ball-end line) of the x0 state.

The eukaryotic cell cycle is divided into several phases (G1, S, G2, M). The
transitions between phases are regulated by complex networks of kinases and
phosphatases, generating positive feedback loops [22, 23]. The transition from
late interphase (G2 phase) to Mitosis (M phase) is termed as G2/M transition,
and is driven by Cdk-cyclin complexes (Cdk). At this transition, Cdk is reg-
ulated by two positive feedback loops. Cdk is in a low activation state before
the transition. It is slightly activated by its phosphatase activator, Cdc25, and
mainly inactivated by its kinase inhibitor, Wee1. Once Cdk reaches a critical,
but still low level of activation, the PFBL flip to a state in which the level of
activated Cdk and Cdc25 are high, and Wee1 goes down [23-28]. This state
will be kept until the cell finishes mitosis [23]. The main regulatory network
(Cdk-Wee1-Cdc25) is extended by the presence of the Greatwall kinase and
the phosphatases PP2A and PP1 [29, 30]. PP2A/PP1 indirectly inhibits Cdk
by inactivation of its activator (Cdc25) and activation of its inhibitor (Wee1).
Thus, they set the critical threshold for the flip of the switch. At the same time,
Cdk indirectly inhibits PP2A/PP1 through Greatwall (Figure 2).

The AM algorithm behaves like a reliable, robust and fast switch. This
behaviour has the same characteristic features as biological switches. More-
over, AM, with only one autocatalytic molecule, produces similar dynamical
properties to complex systems like the G2/M transition [20, 31] (Figure 2).
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Thus, it could be expected that early biological switches looked more like the
AM system. This system has subsequently evolved to increase complexity to
reach the G2/M module. We are therefore investigating the possibility of an
evolutionary pathway between AM and more complicated biological networks.

x PP2A/PP1 Gwl

Cdc25

Wee1

Cdk

A

DC

B

Figure 2: Comparison of the AM and an extended cell cycle model. A, B: Model
of AM and the G2/M transition extended with Gwl and PP2A/PP1, C, D: Time-course
simulation of the models on A and B, respectively. Each node in the wiring diagrams
(A,B) is an influence node (see Methods below), so the time-course diagram show for
each node three species.

2 Methods and materials

The presented models are based on the principles of influence networks [4,
31-33]. Influence networks are abstractions of more detailed biological inter-
actions; they capture only the effects between species [32]. These effects can
be of any type, with any biological meaning, but usually they are simplified to
activation and inhibition relationships [32].

Influence networks are represented as a graph of influence nodes (species)
and influence edges (reactions). Each influence node can interact in at most
four ways with another influence node (Figure 3). Two interactions influence
another node (output), and the other two represent the actions on the node
(inputs). Influence edges connect one input (In0 and In2) with one output
(Out0 and Out2).
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xx0 x2x1x1 Out0 Out2

In2

In0

Figure 3: Influence network notation. The triple motif (left) is composed by three
species (x0, x1, x2) connected by four reactions. Only the decided states (x0, x2)
can generate an action over another species. These actions catalyse the reactions to
generate decided states (upper and bottom interaction in the left diagram). The triple
motif is compressed in an influence node (right). Each influence node (x) has four
ways of communication, two outputs (Out0, Out2) and two inputs (In0, In2). The
solid line (Out0) indicates the action that x0 applies over a node; the dashed line (Out2)
shows the action of x2 over a node; the ball-end line indicates the action received from
a “0” species; the bar-end line indicates the action received from a “2” species.

Influence nodes are modelled as a triplet motif: three chemical species (x0,
x1, x2) connected by four reactions (Figure 3). As in the description of AM
(Figure 1), x0 and x2 are the decided or active states; they push other influence
nodes towards their decided states. The intermediate step (x1) represents the
undecided or blank state, and it introduces nonlinearity in the system. The
undecided state is connected just with the decided states, and it does not inter-
act in any other way with the rest of the network [32]. In biological systems,
this intermediary state can represent the multisite modifications of proteins,
leading to their functional states [34, 35].

Influence networks are interpreted as finite sets of irreversible reactions
over a finite sets of species [32]. As example, the conversion of x0 in x1,
which is catalysed by x2, is represented by the reaction x0 + x2 → x2 + x1

(Figure 1). The reaction rates are constants and mass action kinetics are applied
to solve these equations for each triplet motif (influence node). Solving these
mass action equations for each influence node at steady yields a generalized
Hill function of coefficient 2 [32].

Each model is expressed through a set of mass action equations. They
are written in Language for Biochemical Systems (LBS) [36], a programming
language used to generate reaction models and afford molecular descriptions.
This language is implemented into Visual GEC [36, 37]. Visual GEC (http:
//research.microsoft.com/gec/) is an easy, user-friendly interface tool
developed by Microsoft Research for the design and simulation of biological
circuits or devices.
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All the simulations have been running using equal rates (k = 1) for all the re-
actions, highlighting that the qualitative behaviour of the systems is dependent
on the wiring of the network, but not on actual rates. The Chemical Master
Equation (CME) approach of Visual GEC has been used to analyse the state
of chemical systems [38, 39]. The Chemical Master Equation is an equation
that determines, for each species, the probability of having a specific molecular
population at a given future time [40].

3 Results

Phosphorylation has been proposed as the first post-translational modification
in proteins [41, 42]. From a biological point of view, AM could be thought as
an autocatalytic system which resembles phosphorylation/dephosphorylation
events. One active state phosphorylates when it is phosphorylated (kinase ac-
tivity), and the other active state dephosphorylates when it is dephosphorylated
(phosphatase activity) (Figure 1). This AM behaves like a bifunctional enzyme
that can work both as a kinase and a phosphatase. Such molecules are wide
spread in prokaryotes [43].

To keep the same nomenclature, the active state “0” would be the catalytic
state that phosphorylates (kinase), and the active state “2” would be the one that
dephosphorylates (phosphatase). The ball-end edge indicates phosphorylation,
and the bar-end edge represents dephosphorylation (Figure 4).

Setting AM as a possible ancient biological switch (Figure 4A), an event
of duplication (duplicate a node and its edges) and some loss of function
(remove edges) are applied to reach a more complex network (Figure 4). By
a duplication event, the autocatalytic element (x) is amplified (Figure 4B).
The new element (z) has the same interactions as the initial one, but also
both elements are connected, as they are exactly the same. Thus, x and z
phosphorylate (x0 and z0) and dephosphorylate (x2 and z2) both themselves
and each other.

After the duplication event, events of loss of function reduce the number
of interactions between the elements (Figure 4CD). This diminution leads the
system to maintain just one active state per element, so they either phosphory-
late or dephosphorylate. Therefore, instead of having two catalytic states per
element, there will be just one catalytic state per element, which is more likely
to be found in natural systems. The new system resembles a mutual inhibition
network (MI) [3, 32]. In MI, phosphorylation by x0 drives the system to the
x0 and z0 active states (phosphorylated forms of x and z). Thus, x is active
because x0 has catalytic activity, whereas z0 is inhibited (this state does not
have catalytic activity).
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x

x z

x z

A

B

C

D

x z

Figure 4: Evolution from AM to MI. Each row (A, B, C, D) includes the wiring
diagram and two time-course diagrams to show the bistability of the system; the first
time-course diagram exhibits the dynamics when the state that phosphorylates wins
(x0, z0), and the second time-course diagram shows the dynamics when the state
that dephosphorylates wins (x2, z2). The red edges indicate the affected interactions
by the loss of function events. Ribbons indicate the variance per each trace. A:
Approximate Majority (AM); B: duplicated AM; C: loss of dephosphorylation activity
in one molecule; D: Mutual Inhibition.
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Conversely, dephosphorylation by z2 activates z (z2 moves the system to z2,
which holds catalytic activity) and inhibits x (z2 moves the system to x2,
which does not have catalytic activity). Thus, a system of an antagonistic
kinase-phosphatase pair could have evolved from a bifunctional autocatalytic
molecule.
All networks from the initial AM to the MI system show bistability, and the ini-
tial conditions determine which steady state will be reached. As the complex-
ity increases, the dynamics are similar but the noise (variance) changes [39].
When AM is duplicated, the noise is reduced. The loss of interactions in the
intermediary system (Figure 4C) destabilizes it, so one steady state is more
robust than the other (Figure 4C). When the second edge is removed, the
system is symmetric again (Figure 4D), and the original AM behaviour is
restored.

4 Discussion

We have observed that AM-like systems can arise from direct autocatalytic
processes of two differentiated states of a single molecule. Autocatalytic pro-
cesses have been proposed a basis for developing complex interactions [44-
46]. Also, autocatalytic systems are likely to appear by chance [45]; they
can maintain themselves inside a reaction soup of molecules, and stabilize
themselves in time [45].

One of the key parameters suggested for the evolution of prebiotic net-
works is information control [5, 46]. Phosphorylation is one of the oldest
post-translational mechanisms [41, 42]. As AM can represent phosphory-
lation/dephosphorylation events, one external signal that could have driven
the system is the level of environmental phosphate. Current kinase’s activity
depends on the ATP/ADP level [47, 48]. If the ratio is high, kinases use ATP to
phosphorylate their substrates; if the ratio is low, kinases catalyse the reverse
reaction. Thus, a unique molecule, like the proposed AM, can phosphorylate
(acting as a kinase) or dephosphorylate (acting as phosphatase), coupling with
the function of measuring the phosphate level. In an environment of high
phosphate, the element will remain phosphorylated, but if there is an absence
of phosphate, the element will be mainly found as dephosphorylated. AM
acting as a switch could have served as a critical ATP/ADP sensor, switching
only at critical thresholds.

Duplication and mutation events are fundamental in the evolution of bi-
ological networks. Duplication events result in a new copy which retains
the original function, whereas mutation events can cause the loss of the old
function or the gain of a new one. As soon as a new copy appears, one can keep
the original function and the other is susceptible to changes, without reducing
fitness of cells. However, both copies have the same probability of obtaining
mutations [49, 50].
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In the proposed models, after the duplication event, the dynamics of the system
is kept and the noise is reduced. This therefore increases the stability of the
switch. Despite this reduction, the cost of energy needed to keep both copies
is higher, and sometimes it might be not worth it. Thus, if reduction in the
noise level is not enough to keep both copies, mutational events rapidly occur
to silence one of them. However, as both copies could be equally affected, both
could accumulate variations. This could lead to a new system, as the proposed
MI, which keeps similar dynamical properties than the original AM.

It has been proposed that evolution works through building blocks [4,
48,51,52]. From a core mechanism in which layers of complexity are added
(e.g. kinases) [52], to give rise to networks of conserved, molecularly com-
plementary modules (e.g. molecules involved in glucose metabolism) [51].
Eukaryotic kinases have evolved from an initial core [47, 48, 52]; they have
been tracked to find the possible ancestor. RIO kinase, an atypical kinase, has
been proposed as the ancestor of the canonical eukaryotic protein kinases [53,
54]. RIO kinase, apart from its kinase activity, it presents ATPase activity and
the ability of autophosphorylation [53-55].

Our findings, together with these biological evidences, suggest AM as a
possible ancient biological switch of just one element in a direct autocatalysis.
This system could have evolved to other complex systems by events of dupli-
cation and mutations, while always keeping the same dynamical properties of
the ancient one. If AM could have been a bifunctional enzyme, duplications
and mutations could have separated these functions, obtaining monofunctional
enzymes with multiple sites of modifications. Here we have showed a possi-
ble way of evolution, but in the biological context several others could have
appeared, tested and kept or erased.
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Abstract

Most of the biotherapeutic recombinant proteins are currently being produced
in Chinese hamster ovary (CHO) cells. The increasing demand of such bio-
pharmaceuticals has driven major efforts in process optimization. Further
improvements will only be achievable with a proper systems understanding of
CHO cell metabolism. The availability of the genomic sequencing information
for CHO amplified and facilitated a community effort to build a genome-
scale metabolic model. Here, we used this model and flux-balance analysis to
investigate the effect of the amino acid composition of the protein of interest
on its maximal yield for a given host.

1 Introduction

Mammalian cell culture is of major relevance for the production of vaccines,
growth factors, hormones, interferons, enzymes and monoclonal antibodies
for therapeutic applications [1]. The majority of these biopharmaceuticals
are obtained from fed-batch cultures of Chinese hamster ovary (CHO)-derived
cell lines. These hosts have proven to be appropriate expression systems for
complex recombinant proteins due to their capability of performing human-
compatible post-translational modifications (e.g. glycosylation) and correct
folding.

Given the high production needs and elevated costs for many of these
compounds [2], increasing efforts have been focused on optimizing the effi-
ciency and yield of the culture process. Different approaches include media
optimization [3, 4], feeding strategies and genetic engineering [5, 6]. Although
these methods remarkably improved the production yield, there is a lack of
systematic analysis tools for CHO cells.
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Constraint-based reconstruction and analysis (COBRA) approaches were
shown to deliver detailed insight into cellular metabolism of many prokaryotes
and eukaryotes, most prominently E. coli [7] and S. cerevisiae [8]. However, a
prerequisite for any COBRA approach is a comprehensive, organism specific
in silico reconstruction of the corresponding metabolism, i.e. a genome-scale
metabolic model (GSMM). Such a GSMM was missing for CHO and only
recently became available [9].

CHO, a community driven GSMM of CHO

Several research groups joined forces and generated a single, comprehensive
CHO GSMM combining currently available knowledge, data and unpublished
reconstruction work. In a first step the gene-protein-reaction relationship for
a carefully verified reconstruction for Homo sapiens [10, 11], that provides
the basis for the CHO community reconstruction, was manually curated. The
improved annotation was needed to correctly extract CHO homologous re-
actions from the human reconstruction to build an appropriate scaffold for
the CHO GSMM and to be able to compare and merge the research group
specific versions. Another round of manual curation followed the merge pro-
cess. Including CHO specific reactions based on literature data added further
knowledge to the model . Finally strain specific model versions were generated
using metabolomics and RNA-Seq data.

The latest version of iCHO consists of 2,341 unique metabolites, 6,663
reactions and 1,766 annotated genes. Table 1 shows a comparison with other
published GSMMs. The ratio of annotated genes per reaction was found to be
similar for the human GSMM and iCHO, but significantly lower than in the
GSMMs of S. cerevisiae and E. coli. To some extent the lower ratio can be
explained by the huge number of not annotated transporters that are needed to
connect different compartments in mammalian cells. The comparison of the
values suggests that significant efforts are needed to improve the number of
annotated reactions.

Objective

In the following we will use iCHO to study the potential of CHO cells for re-
combinant protein production. Our aim was to investigate for a given cell line
the effect of the product’s amino acid (AA) composition onto its productivity.
It is well known that CHO’s productivity is dependent on the recombinant
protein. This effect is somewhat balanced by optimizing the medium com-
position. However, here we ask the inverse question: What is the (optimal)
AA composition of a hypothetical recombinant protein so that it is maximally
produced under an observed growth characteristic in a known medium?
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Organsim Model Metabolites Reactions Genes Genes/Reactions

E. coli iJO1366 [12] 1,136 2,251 1,366 0.61
S. cerevisiae Yeast 6 [13] 1,458 1,888 900 0.48
H. sapiens Recon 2 [10] 2,626 7,440 1,789 0.24
CHO iCHO [9] 2,341 6,663 1,766 0.26

Table 1: Comparison of number of genes, metabolites and reactions for different
organism-specific GSMMs.

2 Methods

We used the generic, non strain-specific iCHO GSMM and flux-balance anal-
ysis (FBA) [14] in combination with experimental data [15] to model a CHO-
DG44 derived cell line. The cells were characterized by iCHO’s (internal)
stoichiometric matrix S, and subject to the usual steady-state constraint, Sv =
0. The in silico growth rate was fixed to an experimentally determined value
of 0.0247 mmol/(gDW h) observed during the exponential growth phase of
the fermentation [15]. Exchange reactions representing uptake or secretion of
AAs, glucose, lactate, oxygen, carbon dioxide and ammonia were set to the ex-
perimental values reported by Selvarasu et al. [15]. Uptake rates of phosphate,
protons, and water were unconstrained. Other uptake reactions, however, were
all set to zero, while other secretion reactions were left unconstrained. Finally,
we defined a (generic) chemical reaction for a protein of interest, POI,

λATPATP + λalaala+ ...+ λvalval→ POI (1)

whose production was maximized in the FBA. POI required energy in form of
ATP and all AAs. All components were weighted by their respective stoichio-
metric coefficient λi.

Single AA availability. For each AA i ∈ {ala, ..., val}we maximized Equa-
tion (1) setting λATP = 4.306 and λi = 1, while the stoichiometric coeffi-
cients of all other AAs were set to zero.

ATP limitation. We repeated the analysis for single AA availability (see
above) with different energy requirements λATP ranging from 2 to 6.

Maximum yields for typical CHO products. We used actual composition
data for commonly produced biopharmaceuticals in CHO [1, 16, 17] and max-
imized Equation (1), subject to the constraints listed above.
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3 Results and Discussion

We calculated the maximal achievable rate of production for each AA under
given conditions (see Methods for details). The results are shown in Panel A
and C of Figure 1. Black solid lines indicate the AA requirements for biomass
formation at the experimentally measured growth rate. Grey bars indicate the
variability of each AA. We observed that all AAs were available in excess with
serine (ser) and phenylalanine (phe) most and least abundant, respectively.
Unless the POI was extremely low on phe, we expected phe to be a metabolic
bottleneck. In fact, we checked by example that for maximum production of
Immunoglobulin G (IgG) of all AA, only phe had a non-vanishing shadow
price (results not shown). Theoretically reducing the fraction of phe in IgG by
50% (from λphe = 0.04 to λphe = 0.02 in the protein’s composition) resulted
in two-fold higher production rate.

Panels B and D represent the effect of applying an energy burden onto
the AA production for the same experimental conditions as previously used.
For half of the AAs we observed a reduced secretion rate upon an increased
ATP demand. More specifically, the production of proline (pro), glutamate
(glu), glycine (gly), aspartate (asp) and alanine (ala) were energy limited. The
production (secretion) of ser, asparagine (asn), glutamine (gln) and arginine
(arg) were at least partially affected by the ATP settings. The remaining AAs
were unaffected by an increasing ATP demand.

Based on the preceding analysis we expected that proteins high on ser
and pro and low on phe will be efficiently produced. Table 2 lists the AA
composition for several recombinant proteins typically produced in CHO cells.
When comparing Figure 1 and Table 2, we expected a higher productivity
for BMP-2, IgG and EPO than for HBsAg and hGH. This hypothesis was
confirmed by optimizing for product formation in FBA with the corresponding
AA composition (Table 2). More specifically, HBsAg had the highest phe
content and therefore was produced at the lowest rate. The low phe content
in IgG, EPO and BMP-2 resulted in higher productivity. Note, however, that
high levels of pro and ser alone are not indicative of high productivity unless
the phe content is low, as illustrated by HBsAg.

4 Conclusions

COBRA based approaches are commonly used to gain a quantitative insight
into cellular metabolism. A prerequisite for such an analysis is the avail-
ability of a GSMM. Recent publications of sequencing data [18, 19, 20] and
combination of reconstruction efforts of several research groups provided the
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POI % phe % pro % ser
maximum production
rate [µmol/(gDW h)]

EPO 2.1 5.7 6.2 4.32
BMP-2 2.6 6.1 7.0 3.40
IgG 3.1 9.9 9.0 2.85
hGH 6.8 4.2 8.9 1.32
HBsAg 7.1 10.2 10.6 1.26

Table 2: Maximum production rates for different recombinant POI as predicted
by FBA. EPO, Erythropoietin; BMP-2, Bone morphogenetic protein-2; IgG, Im-
munoglobulin G; hGH, human growth hormone; HBsAg, hepatits B surface antigen.

basis for the generation of iCHO, currently the most up to date GSMM of
CHO. Here we used iCHO to study the influence of the protein’s composition
on the maximum production rate of a POI under fixed nutritional conditions
in a given cell line. Although the question is theoretical in nature, it may
have biotechnological implications. We hypothesized that this approach could
identify potential high yield producer cell lines if the cell line specific optimal
AA composition matches the AA composition of the desired recombinant POI
as closely as possible. In fact, our analysis revealed that under the studied
conditions, proteins high on ser and low on phe are particularly well produced.
In CHO, phe is an essential AA. It cannot be synthesized and it is therefore
limited by its uptake rate. This is not the case for either ser or pro; both
biosynthesis pathways are available in CHO and therefore they are flexible in
covering additional demands. Thus, by matching the composition of the POI
to the excess of AAs present in the cell we predicted preferential POIs.

We used FBA to select the best POI for efficient production in a given cell
line under defined conditions. We first identified the limiting component and
then screened for the productivity of all AAs. At the moment our approach
is very simplistic in that it considers only one AA at a time. However, we
are developing an optimization framework that simultaneously accounts for all
AAs.

The work rests on the assumption that the growth characteristics remain
unaffected by the product. In general this is known to be oversimplifying.
However, for proteins similar in compositions, like BMP-2 and EPO, the as-
sumed lack of feedback on growth might be justifiable.
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Figure 1: Panel Aand C: Maximal production rate for each amino acid (grey bars).
Black horizontal lines indicate the amount of each amino acid in the biomass of CHO
using the experimentally determined growth rate in the exponential phase. Panel B
and D: variation of the production rate of each amino acid (y-axis) with respect to the
number of ATP moles (x-axis) needed for the reaction. The solid circles in panels B
and D indicate the ATP values used for the computations in panels A and C (λATP =
4.306). Abbreviations: cys, cysteine; his, histidine; ile, isoleucine; leu, leucine; lys,
lysine; met, methionine; thr, threonine; trp, tryptophan; tyr, tyrosine; val, valine.
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KÉPÈS François (francois.kepes@issb.genopole.fr)



17/9/2016- page #143

KHAN Shawez (shawez.jmi@gmail.com)

KORCSMAROS Tamas (tamas.korcsmaros@tgac.ac.uk)

LE GALL Pascale (pascale.legall@issb.genopole.fr)

LEPAGE Thibaut (thibaut.lepage@ujf-grenoble.fr)
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