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“But technology will ultimately and usefully be better served by following
the spirit of Eddington, by attempting to provide enough time and intellectual

space for those who want to invest themselves in exploration of levels
beyond the genome independently of any quick promises for still quicker

solutions to extremely complex problems.”

Strohman RC (1977) Nature Biotech 15:199

FOREWORD
Systems Biology includes the study of interaction networks and, in particular, their dy-
namic and spatiotemporal aspects. It typically requires the import of concepts from
across the disciplines and crosstalk between theory, benchwork, modelling and simu-
lation. The quintessence of Systems Biology is the discovery of the design principles of
Life. The logical next step is to apply these principles to synthesize biological systems.
This engineering of biology is the ultimate goal of Synthetic Biology: the rational concep-
tion and construction of complex systems based on, or inspired by, biology, and endowed
with functions that may be absent in Nature.

This annual School started in 2002. It was the first School dedicated to Systems
Biology in France, and perhaps in Europe. Since 2005, Synthetic Biology has played
an increasingly important role in the School. Generally, the topics covered by the School
have changed from year to year to accompany and sometimes precede a rapidly evolving
scientific landscape. Its title has evolved in 2004 and again in 2012 to reflect these
changes. The first School was held near Grenoble after which the School has been
held in various locations. It started under the auspices of Genopole R©, and has been
supported by the CNRS since 2003, as well as by several other sponsors over the years.

This book gathers overviews of the talks, original articles contributed by speakers,
subgroups and students, tutorial material, and poster abstracts. We thank the sponsors
of this conference for making it possible for all the participants to share their enthusiasm
and ideas in such a constructive way.

Patrick Amar, Gilles Bernot, Marie Beurton-Aimar, Attila Csikasz-Nagy, Jürgen Jost,
Ivan Junier, Marcelline Kaufman, François Képès, Pascale Le Gall, Jean-Pierre Mazat,
Victor Norris, William Saurin, El Houssine Snoussi, Birgit Wiltschi.
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http://www.iscpif.fr/

• GDR CNRS 3003 Bioinformatique Moléculaire:
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CÉCILE BONNARD Sobios, Boulogne, FR

ANTOINE BRIL Servier, Suresnes, FR

NICOLAS FROLOFF Dassault systèmes, Vélizy, FR
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Systematic study of a metabolic network . . . . . . . . . . . . 143

PART IV LIST OF ATTENDEES 172



2/10/2014- page #12



2/10/2014- page #13

PART I INVITED TALKS



2/10/2014- page #14



2/10/2014- page #15

bioPLM: a global collaborative platform for multidiscipline
scientific innovation

Nicolas Froloff1

1 Dassault systèmes, Vélizy, FR

Abstract

The purpose of the BioIntelligence Program is to develop an integrated soft-
ware environment for the discovery and development of new biological entities
and products (from molecules to biological pathways, cells, organs, including
regulatory aspects) for life sciences industries and research institutes, and in
particular for pharmaceuticals, cosmetics, and agrochemicals.

This digital environment for scientific collaboration and innovation is aimed
at:

• Proposing a unified platform for exploring and analyzing biological in-
formation (which is intrinsically heterogeneous and extremely diverse),
and for formulating scientific hypotheses to be tested in the lab;

• Building in silico models supported by this bioknowledge, that can be
numerically simulated and confronted to experimental data;

• Managing all discovery and development activities of those industries
by relying on the foundations necessary to all involved multidiscipline
R&D teams (collaboration, industrial processes coverage, certification).

The software applications of the BioPLM platform will be presented, and will
be demonstrated on a particular use case in a project of drug discovery in
oncology.

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 15
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Digital Clinic

Cécile Bonnard1

1 Sobios, Boulogne, FR

Abstract

Digital Clinic is a software for modeling and simulation of clinical trials in
oncology, integrated in the BioPLM platform. Using PK models, PD models
and disease models, Digital Clinic can be used to test specific therapies with
specific designs on specific populations.

The session will be focused on the use of Digital Clinic to optimize an
administration schedule. During the development of an anticancer drug, real
clinical trials have shown that patients encountered drug resistance, which
reduce the efficacy of the drug, and therefore the tumor shrinkage. A stronger
dose has been considered but the drug has a neutropenia effect that cannot
be ignored. A neutropenia model was built linked to the PK model of the
drug, and a tumor growth inhibition model was built in previous researches.
A combined model can be built from these three models and then be used in
Digital Clinic, in order to design an administration schedule that allows a better
balance between efficacy and toxicity.

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 17
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Data integration and knowledge management in therapeutic
innovation

Antoine Bril1

1 Institut de recherches Internationales Servier, Suresnes, FR

Abstract

The need to use the right drug at the right dose for the right patient requires
evolution in the therapeutic innovation process and in the approaches used to
understand pathologies. It is commonly said that the therapeutic innovation
carried out in close collaboration between the pharmaceutical industry and
academic laboratories, generates data and knowledge that together need to be
integrated, shared and eventually exploited.

In this talk we will discuss the challenges facing both industry and academia
in the discovery of new therapeutic solutions at a time where the biologi-
cal complexity is investigated in a very sophisticated manner. Some of the
questions that will be addressed are the following: How will it be possible
to understand disease complexity? What is the level of information that will
be shared between scientists to facilitate therapeutic innovation? Key factors
of success will be introduced with particular attention to strategies aimed at
developing integrative knowledge management.
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Module-based Analysis of Complex Networks

Heike Siebert1

1 Freie Universität Berlin, FB Mathematik und Informatik, Berlin, D

Abstract

The idea of modularization of a complex system appeals on several levels.
A structuring of a network into modules and their interactions yields a more
manageable representation and might clarify relations between system com-
ponents. Identifying subnetworks that can be linked to specific functions may
allow us to analyze them in isolation and still derive information valid for the
original system, thus yielding reduction strategies. In general, an understand-
ing of the interplay of subsystems responsible for distinct dynamical effects
giving rise to the overall capabilities of the system opens the door for targeted
control, e.g. in the context of drug design, or even network design in synthetic
biology. Taking into account the different motivations for modularization, it is
not surprising that a whole range of definitions for and related approaches to
identification of modules have been developed. However, to make use of them
one needs a clear understanding of the respective module properties in relation
to the question the module-based analysis is supposed to address in the first
place.

In this talk, we will be interested in exploiting modules to obtain a better
understanding of the network organization in relation to its function and to
reduce complexity for more efficient analysis of the system. Different module
definitions will be introduced, starting with a purely static view based on the
network topology and ranging to system modules related to specific dynamical
aspects. We will look at methods for module identification as well as the
related module-based approaches to network analysis. Lastly, we will critically
discuss constraints and benefit of such methods.
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Inference, organization and evolution of genomic features

Olivier Rivoire1

1 Université Joseph Fourier, Grenoble, FR

Abstract

Genomes are being sequenced at an exponential pace, offering us an unprece-
dented opportunity to study quantitatively the evolutionary processes that shape
their diversity. I will present a statistical framework to extract conserved ge-
nomic patterns from sequence data and investigate their evolutionary origins.
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Computational modeling of the human metabolic
reconstruction and the application to inheritable metabolic

diseases

Ines Thiele1

1 Luxembourg Centre for Systems Biomedicine, University of Luxembourg, LU

Abstract

Metabolism plays a central role in many human diseases, including diabetes,
obesity and cardiovascular diseases. Shifts in metabolism and metabolite lev-
els are often involved in human disease, either as cause or as consequence
of pathogenic changes, and therefore offer great potential for diagnosis and
elucidation of disease processes. Metabolic reconstructions describe the bio-
logical knowledge about a target organism in a structured manner and permit
the conversion into a mathematical format and subsequent computation of
physiological properties. As such, they facilitate the investigation of the mech-
anisms underlying genotype-phenotype relationships and indeed, inheritable
metabolic diseases.

Here, we will present the most comprehensive metabolic reconstruction of
human metabolism, which has been recently assembled in a community effort,
and some promising biomedical applications. In particular, we will illustrate
how this reconstruction and derived cell type specific models can be used to
further our understanding of network wide, metabolic effects of single enzyme
defects that are often associated with inheritable metabolic diseases.

Therefore, we created a detailed compendium of human inborn errors of
metabolism captured by the human metabolic reconstruction. Using constraint-
based analysis, we were able to predict novel biomarkers and to investigate
systemic, metabolic effects of these rare metabolic diseases.

We will illustrate that the human metabolic reconstruction provides a deep
insight into complex human metabolic phenotypes and disease states and rep-
resents a fundamental tool for the study of the systems biology of human
metabolism.
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Simulating the complexity of mitochondrial metabolism in
health and disease by flux balance analysis

Alan Robinson1

1 MRC Mitochondrial Biology Unit, Cambridge, UK

Abstract

Mitochondria not only produce the biochemical energy source ATP necessary
for so many cellular functions, but have a major role in the creation, destruction
and re-cycling of many other key metabolites of central metabolism. They are
also now recognised as having an important role in homeosatis and apoptosis.
Thus it is unsurprising that dysfunction of mitochondrial metabolism occurs
not only in the rarer mitochondrial diseases, but also features in many complex
and common diseases too, including cancer, heart failure, obesity and diabetes,
and neurodegenerative diseases such as Parkinson’s.

New discoveries about mitochondrial metabolism are also still continuing
to surprise us. For example, the unexpected discovery of reductive carboxyla-
tion where parts of bioenergetic metabolism run in reverse to what is expected.

The interconnections of all these metabolic pathways and their control
points makes for a truely complex system. Whilst deterministic methods have
been used to study mitochondrial ATP production, these have often been lim-
ited to only 10’s of reactions including glycolysis, the citric acid cycle and the
electron transport chain.

In the first part of my talk, I will explain how we have built curated models
of mitochondrial metabolism that incorporate 100’s of reactions. To simulate
and so understand mitochondrial metabolism with such large reaction net-
works, I will then explain how and why we use flux balance analysis. Whereas
this technique makes many assumptions, including regarding the system being
at steady-state, it is a powerful method of generating testable hypotheses about
how mitochondrial metabolism changes under perturbations to the system that
may arise during disease. It can also be use to suggest potential therapeutic
options that ameliorate these perturbations.

In the second half of my talk, I will discuss the application of our models
to understand the mechanisms of changes in mitochondrial metabolism in both
rare mitochondrial diseases and in common conditions, such as the hypoxia
experienced by cells during heart failure, stroke, and cancer.
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Engineering bacteria to cooperate, sacrifice, and organize

Lingchong You1

1 Duke University, Biomedical Engineering & IGSP, Durham NC, US

Abstract

A major focus of synthetic biology is the engineering of gene circuits to per-
form user-defined functions. In addition to generating systems of practical
applications, such efforts have led to the identification and evaluation of design
strategies that enable robust control of dynamics in single cells and in cell
populations. On the other hand, there is an increasing emphasis on using
engineered systems programmed by simple circuits to explore fundamental
biological questions of broad significance. In this talk, I will discuss our
efforts along this line of research, whereby we have used engineered gene
circuits to examine the evolutionary dynamics of two common bacterial sur-
vival strategies and to program self-organized spatial pattern formation . I
will also discuss the implications of these systems for medicine and materials
fabrication.

References

1. A. Pai, Y. Tanouchi, and L. You. Optimality and Robustness in quorum
sensing (QS)-mediated regulation of a costly public good enzyme. PNAS
(2012).

2. Y. Tanouchi, A. Pai, N.E. Buchler, and L. You. Programming stress-
induced altruistic death in engineered bacteria. Molecular Systems
Biology 8:626 (2012).

3. S. Payne, B. Li, Y, Cao, D. Schaeffer, M.D. Ryser, and L. You. Temporal
control of self-organized pattern formation without morphogen gradi-
ents in bacteria. Molecular Systems Biology. (2013).
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Genetic Design Automation: engineering fantasy or
scientific renewal?

Jean Peccoud1

1 Virginia Bioinformatics Institute, Virginia Tech, US

Abstract

The hype surrounding the emerging field of synthetic biology has generated
excitement and skepticism. The overarching vision of engineering living or-
ganisms using methods developed in other engineering fields often sounds
naı̈ve to experienced life scientists. However, the spectacular successes of
synthetic biology are impossible to ignore. They challenge commonly ac-
cepted ideas and invite us to reassess the organization of research programs
in biotechnology. In particular, they show that it is possible to organize the
product development cycle in three stages focused on design, fabrication, and
testing. Significant gains of productivity can be achieved by developing a
generic infrastructure that can easily be customized to meet the needs of spe-
cific projects. In the foreseeable future, engineering living organisms will
remain much slower and less predictable than the development of non-living
products. Yet, adapting key engineering concepts to the biotech industry will
make the product development cycle faster and cheaper.
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Modularity as the engineering principle in synthetic biology

Roman Jerala1

1 National institute of chemistry and Centre of excellence EN-FIST,
Ljubljana, Slovenia

Abstract

Modularity is extensively used in engineering to allow rapid and cost effec-
tive construction of different devices and structures. In biological systems
functional modules are often obscured as the functional elements, such as
proteins have been optimized for specific interactions. Construction of com-
plex devices requires large sets of orthogonal elements, which may be difficult
to harvest from nature. Nucleotide sequence provides a large and easily ac-
cessible combinatorial diversity that can underlay programming in biological
systems. Knowledge of the recognition code of the sequence-specific DNA
binding proteins allows us to prepare large number of orthogonal DNA binding
proteins. Those domains can be used to encode the assembly of biosynthetic
enzymes which enhances the yield of biosynthetic production. On the other
hand designable DNA-binding TALE domains can be used to construct ge-
netic logical NOR gates. Application of the single-layer designable NOR
gate allowed us to prepare all 16 two-input functional logic gates and more
complex information processing circuits. The same type of elements allows
construction of dynamic bistable switches where the nonlinearity is introduced
through feedback loops. In terms of the modular construction of structures
designable orthogonal coiled-coil dimers provide the basic building blocks
based on the specificity of interactions between segments of the polypeptide
chain. This principle allows the design of completely new modular protein
folds, composed of a single polypeptide chain where the final structure and
potentially function can be encoded within the designed sequence and can be
produced cost effectively in bacteria.
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Taking a Systems and Control Engineering Approach in
Synthetic Biology

Guy-Bart Stan1

1 Department of Bioengineering, Imperial College London, UK

Abstract

In this talk I will give a brief overview of some of the research activities in my
group, the ”Control Engineering Synthetic Biology” group at Imperial Col-
lege London, where we focus our efforts on developing foundational forward-
engineering methods to mathematically model, and rigorously analyse, design
and control synthetic gene circuits and cellular metabolism so as to endow
engineered cells with novel functionalities. The tools and approaches that we
take rely on concepts and principles drawn from Robust Optimal Control and
Dynamical Systems theory, applied to Synthetic Biology problems.

Some of the topics covered will include (if time allows): (a) Design of in
vivo genetic feedback controllers for automatic robust regulation of branched
and unbranched metabolic pathways, and (b) Exogenous data-based optimal
feedback control of gene regulatory networks.

(a) Among Synthetic Biology’s most prominent applications is the manipu-
lation of bacterial metabolism for the production of high-value chemicals in di-
verse sectors such as energy, biomedicine and food technology. In this regard,
we are developing foundational tools for the analysis and design of feedback
control synthetic biodevices that dynamically regulate bacterial metabolism
according to pre-defined objectives such as stability and robustness. Because
these feedback controllers are intracellular, they have a great potential for
applications where cellular behaviour needs to be controlled without real-time
human intervention.

(b) In the second part of the talk, I will present research results pertaining
to the inference of (close-to) optimal feedback control strategies for exogenous
control of biological systems (natural or synthetic) directly from input-output
measurements, i.e., without the need for identifying a mathematical model of
the system’s dynamics a priori. The examples discussed include data-based
inference of optimal control strategies for regulation and reference trajectory
tracking in synthetic gene regulatory networks such as the toggle-switch or the
generalised repressilator.
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GREAT: Genome REgulatory and Architecture analysis
Tools

Costas Bouyioukos1,2, Mohamed Elati1 and François Képès1,2

1 institute of Systems and Synthetic Biology, Genopole R©, CNRS, University of
Évry, France

2 BioIntelligence Project, Genopole R©, Évry, France

Abstract

Genome expression and layout are expected to be interdependent. Understand-
ing this interdependence is key to whole-genome engineering. Evidence for
non-random genome layout, defined as relative positioning of co-functional or
co-regulated genes, stems from two main approaches. Firstly, the analysis
of contiguous genome segments across species has highlighted the conser-
vation of gene order (synteny) along chromosome regions. Secondly, the
study of long-range regularities along chromosomes of one given species has
emphasized periodic positioning of microbial genes that are co-regulated, co-
expressed, evolutionarily correlated, or highly codon-biased. Tools to detect,
visualise, systematically analyse, integrate and exploit gene position regulari-
ties along genomes have been developed. Here we report on recent advance-
ments of these tools and discuss novel results.

1 Introduction

The way by which genomes are organised influences fundamental biological
processes such as transcription and replication, and through evolution those
fundamental biological processes are affecting genome organisation [5]. As-
certaining the interplay between genome organisation and transcription reg-
ulation will provide key insights into whole genome expression, transcription
control and genome architecture. The latter can contribute into moving towards
rational design and whole genome engineering.

2 Detection of regular positioning of co-regulated genes along
chromosomes

The non-random arrangement of genes, either regulatory genes such as tran-
scription factors (TFs), or TFs targets, has been observed and discussed for
long, however predominantly under an evolutionary and genome synteny ap-
proach [13]. Numerous studies during the last decade have indicated that
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the positioning of various groups of genes demonstrates significant degrees
of regularities. Genes that are co-functional, that is, either co-regulated or
encoding parts of a functional complex, or members of the same pathway [8],
co-expressed [1], evolutionary correlated [15] or highly codon-biased [2] have
been found to be periodically positioned along the genomes in all eubacterial
phyla. The approaches to detect periodicities are generally characterised by the
application of a spectral method, either fast-Fourier transform (FFT), wavelet
analysis or an autocorrelation function. However all these methods have a
particular handicap when it comes to biological sequences where the spectral
signal is weak and poor. Spectral methods cannot take into account the areas
of a genome in which data are very sparse and no signal can be detected. Here,
for all the reported periodicity analyses, we use a basic algorithm that is able
to detect periodic patterns and is taking in to account both regions with strong
periodic signal as well as genomic regions -and the length of these regions-
with weak or no signal at all [7]. In the current report we consolidate and
extend the applicability of this algorithm to detect periodicities, compute its
significance, apply it to multiple chromosomes and improve the TF binding
site predictions.

2.1 Periodic transcriptional organisation of the E. coli genome

The organisation of transcription within the prokaryotic nucleoid both depends
on and determines the structure of the chromosomal fibre [10]. In order to
study this relationship we obtained the TF regulatory network of E. coli from
the Regulon database [14] and clear it from ambiguous TF-target gene pre-
dictions accepting only TF-target pairs that were obtained by at least two
strong evidences or one strong and two weak evidences as they are classified
in the RegulonDB main paper [14]. To detect only long range periodic signal
proximal effects of genes need to be removed. We removed any consecutive
set of genes where two gene start sites are closer than twice the average gene
length in E. coli. The positions of the removed genes were replaced by a single
coordinate located in the barycentre of the removed set. Next we applied the
algorithm to detect periodic patterns of gene positioning in genomic sequences
and it is described in [7]. The first step requires the examination for significant
periods of a typical periodogram of the target genes of a major E. coli TF as it
is illustrated in figure 1.

We apply the same analysis systematically to all the major TFs of E. coli
and we identified (only by using the publicly available transcription start sites
of genes into the genome) that there exist a level of significant periodic posi-
tioning for almost all the target gene sets of all the major regulators in E. coli.

In table 1, 10 out of 12 of E. coli TFs with the highest number of targets
appear to have their target genes periodically organised along the genome with

40 ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY
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Figure 1: Periodograms of target genes of NarL -a major transcription factor
of E. coli. The most significant periods are designated by the vertical dashed
lines. Both the unweighted and the weighted -i.e corrected for multiple testing-
p values are plotted. Two major period areas are observed: one set of periods
that lay very close to 200Kbp and a single period at 600Kbp. (The actual
periodicity calculations were conducted after the removal of proximal target
genes and the replacement with their barycentre, on 16 positions -marked on
the title of the graph-. More details on section 2.1.)

the period designated in the 2nd column of the table. The table comprises TF
genes that are designated by EcoCyc [12] as global transcription regulators,
members of 2-components systems and nucleoid associated proteins.
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TF Period p value

NarL 200,350 6.18E-4**
ArcA 180,888 1.4E-3**
H-NS 744,444 6.1E-3*
Fur 63,148 5.3E-3*
FNR 161,167 9.8E-3*
CpxR 30,915 1.6E-2*
CRP 16,004 1.3E-2*
Lrp 39,797 2.1E-2*
IHF 282,370 2.6E-2*
Fis 56,309 7.2E-2
LexA 17,115 7.5E-2

Table 1: Detected periods of TF targets genes in E. coli sorted by increasing
p value (the period with the lowest p value per each TF is reported in the
table). NarL is the TF whose targets are arranged in the most regular way. The
periods were obtained from the same analysis that generated the periodicity
spectra such the one depicting NarL regulating genes on Figure 1.

2.2 Integrated periodicity analysis for multiple TFs in multiple chromo-
somes.

Then we seek to extend this particular analysis for multiple TFs and in the
genomes of organisms with multiple chromosomes. The first candidate was the
yeast Saccharomyces cerevisiae where a previous study has detected potential
periodic patterns of co-regulated genes [9]. Calculated periods for a single TF
in a single chromosome were consolidated under the view of multiple TFs
or under the view of the whole chromosome. Two novel algorithms were
developed and used for this study (unpublished data) to complete the software
suite for periodicity analysis. One is calculating periods by using a sliding
window along the genome and is able to detect periodic patterns on genomic
domains and regions instead of the whole genome. The second is collecting
and extending different regions of periodicity and integrates them under the
predominant period of a TF and/or under the predominant period of the whole
chromosome. At a final step the algorithm checks and extends the result for
potential harmonics of the predominant period in order to provide “global”
solutions for all the chromosomes. In table 2 we report the results after running
this algorithm to the full yeast TF interaction network and calculate the period
for each TF with more than 4 targets.
The first reading of our results supports that major yeast regulators, such as the
protein RNA polymerase I Enhancer Binding protein Reb1p, (which regulates
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Chrom. TF Period Begin End p value

2 Reb1p 356,048 84,259 568,634 0.03*
4 Dal82p 989,564 155,980 1,490,112 6E-4**
5 Rpn4p 19,091 82,603 504,582 7E-4**
7 Swi6p 21,463 23,935 1,494,578 2E-4**
8 Abf1p 28,557 48,364 498,751 0.01*
9 Cbf1p 20,929 117,818 292,150 6E-3**
10 Abf1p 236,098 36,584 640,819 0.02*
11 Hap1p 61,190 100,676 575,622 0.04*
12 Reb1p 8,291 35,653 976,964 7E-4**
13 Reb1p 81,496 30,209 880,695 0.03*
14 Abf1p 91,949 48,154 718,329 0.02*
15 Cin5p 142,666 52,942 1,049,509 0.02*
16 Mbp1p 522,429 169,337 888,837 0.03*

Table 2: Consolidated periods from all the yeast TFs organised per chromo-
some. The table illustrates the longest stretch (Begin – End columns for each
particular chromosome), that a specific period, or its harmonics, can span. The
longest possible interval of the period with the lowest p value per chromosome
was selected. The spanning of each individual period covers almost all the
chromosome length for many of the 16 yeast chromosomes.

more than 2500 genes according to the Saccharomyces Genome Database
[3]), appear to arrange their targets periodically along a lengthy region of
most of the yeast chromosomes. Additionally, another major regulator, the
Autonomously replicating sequence binding factor 1 (Abf1p, alias Reb2p), a
protein with multiple chromatin binding and gene activation/repression role,
also appears to organise its targets periodically along a sorter interval of three
yeast chromosomes. The results provide some initial preliminary evidence that
global transcription regulators in the yeast genome have their targets regularly
arranged.

3 The compromise between global gene position and local regu-
latory sequences

3.1 Boosting transcription factor binding sites prediction using genes
positions

Current methods for the prediction of transcription factor binding sites (TFBS)
are marginally successful in their ability to discriminate between many alter-
native variants of potential TFBSs. While the data on the consensus sequences
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Figure 2: The receiver operating characteristic (ROC) curve -illustrates the
relationship between specificity and sensitivity- for the prediction of TFBS of
the E. coli TF Lrp. Combining the two predictors with the AdaBoost approach
(PreCiSion curve) improves the area under curve (AUC).

for the corresponding regulatory sites is available, it often contains motifs
with very low sequence conservation (for instance like TCRNNNNNNACG,
where N is R,A or G). This leads to predictions with high false-negative and
false-positive rates. The difficulty lies in the specific nature of DNA-protein
interactions and the promiscuity of the formation of the DNA-protein complex.
Our method PreCisIon [6] address this issue by taking into account a dual view:
a) a direct DNA sequence readout and b) a genome layout readout. All methods
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thus far have solely relied on local DNA sequence information, in addition to
that, PreCiSion introduces gene TFBS position information. The underlying
rationale is based on the observations that co-regulated genes are positioned at
periodic intervals along chromosomes (see section 2.1). The combined classi-
fier is then obtained with an iterative weight update scheme, between position
and sequence information, using a modified version of the AdaBoost algo-
rithm. PreCisIon consistently improves predictions from methods based on
sequence information only. This is shown, by implementing a cross-validation
analysis of the 20 major transcription factors from two phylogeneticaly remote
model organisms. For Bacillus subtilis and E. coli, respectively, PreCisIon
achieves on average an AUC (Area Under the ROC Curve) of 70% and 60%,
with sensitivity of 80% and 70%, and with specificity of 60% and 56% [6]. A
characteristic example is illustrated in figure 2.

3.2 Position sequence interdependence

PreCisIon (presented in section 3.1) operates a boosting algorithm to select
the classifier that improves prediction in each iteration of the AdaBoost. As
this feature utilises both the sequence score of a TFBS (based on the weight
matrix of the site) and the position score (based on the genomic coordinate of
the site) allow us to collect these two individual scores and check how they
are correlated. The position score and the sequence score are unrelated and
measured with two independent processes. However what we find interesting
is that there exist cases where the position score and the sequence score are
negatively correlated.

Period 149,652 bp

Sequence ID Spearman corr. coef.

Seq1 -0.007
Seq2 -0.111
Seq3 -0.132
Seq5 -0.518*
Seq6 -0.398*
Seq8 -0.233
Seq9 -0.153
Seq10 -0.314*

Table 3: Correlations table between position score and sequence score for a
set of eight predicted Lrp binding sites and a period of 149652 bp. Negative
correlation implies compromise between TFBS sequence quality and its
position in the genome (the asterisk * designates significant correlation)
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Table 3 summarises the Spearman correlation coefficients between the po-
sition score and the sequence score for several iterations of the boosting algo-
rithm in PreCisIon. The observation of the negative correlation between these
two scores provides some initial evidence that it is possible that the position
of a TFBS in the genome affects the binding of the regulatory protein as well
as the quality of the sequence motif. The negative correlation implies that it is
possible for a “weak” TFBS sequence to be compensated by a very favourable
position in the periodic arrangement and therefore become a real TFBS, or
vice-versa. Not withstanding that this intriguing hypothesis of sequence vs.
position interplay requires further study and corroboration with more data
analysis as well as bench experiments.

4 Conclusions

We present a set of analytical tools and approaches to detect regularities in
genomes of prokaryotes (E. coli) as well as multichromosome eukaryotes (S.
cerevisiae). We report on the evidence that connects the periodic organisation
of co-regulated genes with the fundamental processes of transcription and gene
expression as it was firstly conceived in [9] and further supported by [5]. The
area of detecting effective regular arrangements in genome architecture and
connect them with transcription, as well as with the dynamic folding of the
chromosome, together with the latest advances in experimental biology that
are able to measure the contact probabilities of chromatin fibres [4] can reveal
a more systematic view about the dynamic arrangement and organisation of
the nucleoid and the nucleus. Understanding the epigenetic control of gene
expression will pave the way for designing whole genomes in an informed
rational way [11].
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Abstract

Engineering production cell factories to efficiently synthesize novel therapeu-
tics and biofuels involves the development of strategies for constructively im-
porting pathways into industrial strains. Here, we will learn the basics of
RetroPath, a retrosynthesis-based pathway design framework, to enumerate
and rank identified candidate pathways leading to the production of the tar-
get chemical. The retrosynthesis approach performs a backwards search for
biosynthesis routes leading from a target compound to host metabolites through
the iterative application of a defined set of biochemical transformation rules.
To that end, RetroPath implements a method that codes reactions into molecu-
lar signatures, which are atomic subgraphs contained in molecular structures.
Individual performances for the list of predicted pathways need to be char-
acterized in order to prioritize the engineering of the most promising routes
into the chassis organism. We introduce a ranking function of heterologous
biosynthesis pathways based on several factors such as host compatibility,
cytotoxicity, enzyme efficiency, and estimated steady-state fluxes. We discuss
the practical aspects and challenges of implementing our constructive strategy
into hosts organisms.

1 Introduction

Small molecules have become indispensable to our life. They can be used as
therapeutics, fuels, building blocks for the chemical industry..., and for many
other applications. Their production at the lowest cost and in environment
friendly conditions, thus, is one of today’s challenge. To address this issue,
microbial fermentation is a key technology [6, 8, 10]. Bacteria and yeast
were from the very beginning an obvious choice for large-scale production
as early compounds of interest were endogenous metabolites of those microor-
ganisms and, with the help of systems biology, the metabolic engineers were
able to transform those natural producers into industrial strains. However a
large number of value-added compounds are naturally synthetized by higher
eukaryotes instead of microorganisms. Producing them through microbial
fermentation might seem a straightforward method requiring “only” importing
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the pathway from the natural producer organism into the industrial strain. But
host engineering is a challenging process requiring time and deep knowledge
about the biochemical reactions and enzymes needed at each step and relying
on the availability of part characterizations in the literature or in databases.
In addition, for each enzymatic step, multiple protein sequences from various
organisms may exist and some may be more efficient than others in a given
cellular host chassis. This represents a source for pathway improvement, but
also leads to a combinatorial explosion of possible pathway variants to be
implemented (and tested) into the chosen strain. Moreover, different path-
ways (i.e. different intermediates and biochemical reactions) may exist for the
synthesis of each compound, making the choice even more difficult.

To cope with all these limitations and in order to rationalize the strain
engineering process, we developed RetroPath that is an integrated framework
for automated pathway design in metabolic engineering projects [3]. In its full
deployment version, the system is able to fulfill the engineering cycle going
from modeling to design, construction and validation. Such type of system is
much sought in the biotechnological sector, as it should accelerate the process
of bringing a metabolic engineering project into reality from its conception to
the cell factory.

2 RetroPath outline

Here, we will outline the basic steps that are implemented in a retrosynthesis-
based pathway design. We start first by picking a target molecule of interest
and a chassis organism for which RetroPath will generate the metabolic map
containing heterologous biosynthesis routes to the host organism. We will
analyze how to enumerate and rank them and, in particular, how to evaluate
aspects influencing the efficiency of the pathway. Finally, we discuss practical
aspects to be considered for construction of the selected pathways.

Requirements: a computer with internet connection in order to access the
RetroPath server and online metabolic databases: KEGG, MetaCyc, BRENDA.
Additional modeling tools: CellDesigner, OptFlux, EcoliTox, and Copasi.

3 Genome-scale metabolic models of the chassis organism

In order to start our design, we need a genome-scale model of the host or
chassis organism. In biological databases, we can find basically two types
of models that are widely-used for metabolic engineering, being both imple-
mented in RetroPath. Such models can be classified depending on the way
they were originally built:
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1. From genome-wide annotations: This first model is mostly based on
homology annotations and gap-filling analysis. Its objective is to have
a full annotated genome of the organism’s metabolism. MetaCyc and
KEGG [1] are the main sources of information for these type of organ-
ism’s models. Retropath uses this type of models in order to search and
enumerate all potential pathways producing a desired compound.

2. From experimental data: This second approach searches for models
that can reproduce as much as possible experimentally observed pheno-
types (measured fluxes). This second model is generally less detailed
than the first one. BioModels database is a main source of information
for this type of reconstructed models. Retropath uses this model in
order to simulate the achievable steady-state fluxes of the engineered
organism.

4 Pathway enumeration

In order to produce exogenous compounds, the corresponding metabolic routes
containing heterologous enzymes that start from endogenous metabolites must
be found. We should note that not always the shortest pathway is the best
solution in terms of the cost associated with the pathway, as other factors
such as enzyme efficiency or toxicity need to be taken into account. To eval-
uate all possibilities, the problem of performing a complete enumeration of
the possible heterologous pathways leading to target production needs to be
solved. This problem can be computationally approached by using a well-
known technique in metabolic engineering, i.e. by computing the elementary
modes present in a metabolic network [2]. By definition, any pathway produc-
ing a target compound can be formed by some positive linear combination of
the elementary modes in the metabolic network. Here, such metabolic network
is formed by the scope of reactions that can link endogenous precursors to the
target compound.

In Figure 1, the output of the RetroPath interface is shown for the enu-
meration of pathways producing resveratrol (KEGG id: C03582), a natural
product with reported health benefits that is found in plants, in particular in
the skin of red grapes. RetroPath enumerated in total 4 pathways. For each
pathway, gene constructs were determined by a machine-learning procedure
that predicts performance of the reaction for the set of sequences in the KEGG
database [3]. Pathways were ranked based on the scores of the best constructs,
which consists in the net sum of the smallest costs in terms of scored gene
sequences associated to each enzymatic step.
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Figure 1: Enumerated pathways predicted by RetroPath for producing resver-
atrol in E. coli. Ranking is shown at the bottom and pathways are represented
from left to right in ranking order.

5 Pathway steady-state simulation

After selection of the desired gene construct corresponding to a pathway, Retro-
Path provides the possibility of exporting the pathway into SBML format.
Many software tools are available that accept SBML format for simulation.
In particular, we are interested in inserting the pathway into a genome-scale
metabolic model so that we can simulate the steady-state flux distribution of
the engineered strain through flux balance analysis (FBA). To that end, we have
to import the additional metabolites and reactions contained in the pathway
into an E. coli model.

Here, we perform flux balance analysis simulations by using OptFlux [11].
Once the model of the engineered strain is loaded into the program, we select
the objective function of the cell that we want to maximize. In our approach,
we compare two types of competing objectives: a) growth, expressed as a
linear combination of fluxes, which is the objective that naturally is found
in a wild-type strain; b) compound production, which is our biotechnology
objective. In most cases, we cannot expect the engineered cell to naturally
optimize production as most likely it does not provide a selective advantage
to the strain. Therefore, we consider that the first objective of growth is the
natural objective, while the second is the synthetic objective that we want to
implement. In a practical situation, the actual observed metabolic phenotype
for our engineered strain would lie in between both objectives (see Figure 2).
Several metabolic interventions are possible to shift the state of the cell in order
to favor the biotechnology-oriented second objective of target production [7].
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Figure 2: Flux variability analysis from OptFlux showing the tradeoff frontier
lying between target production and biomass objectives.

6 Pathway toxicity

Another aspect to be considered on pathway design is toxicity of intermedi-
ates and by-products that might be accumulated in the cell. Our EcoliTox
server [9] addresses this issue by providing an estimate of metabolites’ IC50
(half maximal inhibitory concentration, i.e. minimum concentration of that
specific metabolite that will inhibit growth by half). We can consider as a first
approximate that pathway toxicity is the average toxicity of metabolites in the
pathway.

7 Pathway ranking and selection

An overall score of the pathway may finally be obtained by combination of
construct, flux and toxicity scores. The way each term is weighted in the
global score is nontrivial. A first approach has been determined by considering
the optimal case as the one that ranks at the top those scores that correspond
to natural pathways [3]. In that way, we prioritize pathways that have been
selected and optimized during natural evolution.

8 Pathway implementation

As described above, RetroPath provides a top-list of enzymes available for
each step of the highest-ranking metabolic pathway. The genes of these en-
zymes can be PCR-amplified from the genome or cDNA of the natural host,
or can be synthesized by a commercial service. The possibility of codon opti-
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Figure 3: Metabolite toxicity prediction from the EcoliTox web server.

mization and the avoidance of restriction sites favor the latter choice, despite
its currently higher price. The enzyme scores of the RetroPath output can
be thought of as probabilities for a certain type of activity; therefore testing
multiple enzyme candidates for each enzymatic step is highly recommended.
Physically, this means building the chosen pathway using multiple gene combi-
nations (referred to as constructs), which requires the use of rapid and efficient
plasmid assembly techniques. We divide these tools into three large categories
(for a more detailed comparison of assembly techniques, see current reviews
written on this topic [4, 5]):

• The first group uses restriction endonucleases and ligation to stitch
appropriate genes together. These classical methods have been much
developed in the past decades to overcome the problems of internal
restriction sites, repetitive use of restriction enzymes or sequence scars
remaining in the joints. The most promising member of this category is
GoldenGate cloning, which allows the high efficiency fusion of even ten
DNA segments in a simple reaction.
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• The second group of tools applies in vitro enzymatic reactions on over-
lapping DNA fragments for their assembly. These can be based on
DNA-polymerase extension of the overlaps such as Circular Polymerase
Extension Cloning, or can use the “chew-back and anneal” strategy, as
in the case of Ligation Independent Cloning, or Gibson assembly.

• The third pool of construction techniques also utilizes overlapping DNA
fragments, but uses homologous recombination to fuse them. The
Red recombinases of phage Lambda, or the endogenous recombination
machinery of yeast cells have both been applied successfully for this
purpose.

Once all constructs are assembled, they are transformed into bacterial cells,
induced, and production of the target compound, as well as some pathway
intermediates are quantified. The most efficient constructs can go through
further optimization to increase production titers with the help of FBA. Poten-
tial bottlenecks can be identified in the pathway, which can be eliminated by
increasing the expression of the respective enzyme. Gene expression is usually
modified by re-assembling the construct using altered regulatory sequences
(e.g. promoters or ribosome binding sites), which further emphasizes the
importance of using rapid and efficient plasmid construction techniques.

9 Conclusions

As metabolic engineering and synthetic biology progress into well-established
biotechnology disciplines, more precise and rational protocols for designing
and constructing metabolic pathways are required by the community. Here,
we provided an introductory glimpse into RetroPath, a retrosynthesis-based ap-
proach that integrates state-of-the-art modeling techniques in order to stream-
line the otherwise challenging process of pathway design and construction.
Our goal here was to showcase the promising capabilities for rational pathway
design that are present in the proposed computational framework. As such,
we believe that our retrosynthesis-based approach will progressively become
in next years a first-stop reference for implementing advanced and innovative
metabolic engineering and synthetic biology projects.
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Abstract

The way living organisms work and develop themselves is controlled by large
and complex networks of genes, proteins, small molecules, and their inter-
actions, called biological regulatory networks. Confronting time-series gene
expression data with models may allow us to examine and characterize the
dynamics of elements that compose such regulatory networks. In this work, we
propose a way to model and simulate large-scale regulatory networks, by using
the Process Hitting (PH) framework, in order to verify if the model can predict
the experimental measures. The preliminary work presented here proposes:
(1) a semi-automatic method to build a PH from a regulatory network of bio-
chemical reactions, (2) a discretization scheme of the continuous time-series
measurements, and (3) an approach to estimate the PH stochastic simulation
parameters in an unbiased manner.

1 Introduction

The comprehension of the mechanisms involved in the regulation of a living
cell is a fundamental issue. These mechanisms can be modeled as biological
regulatory networks, which analysis requires to preliminary build a mathemat-
ical or computational model. By just considering qualitative regulatory effects
between components, biological regulatory networks depict fairly well biolog-
ical systems, and can be built upon public repositories such as the Pathways
Interaction Database [8], and hiPathDB[10] for human regulatory knowledge.

This work aims to propose a dynamical model of large-scale systems based
on the formal integration (complete validation/invalidation) of high-throughput
experimental time-series data. So far this idea has been addressed separately
by approaches that either: (a) focus first on modeling at small-scale the system
and then on refining or improving it through the fitting with some data points,
such as methods based on differential equations [9, 1, 6], or (b) integrate
in an efficient and complete fashion large-scale models and high-throughput
∗Corresponding author: Louis.Fippo-Fitime@irccyn.ec-nantes.fr
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data regardless of the system dynamics [3, 5], or (c) fit dynamical data to
middle-scale networks using stochastic approaches, and therefore without the
guarantee of finding global optima [4]. Therefore, with this work we intend
to fill the gaps between the previously cited methodologies and converge to a
more realistic model of biological behavior.

For modeling and analyzing the biological system we rely on the Process
Hitting (PH) framework[7], since it is especially useful for studying systems
composed of biochemical interactions, and provides stochastic simulation as
well as efficient static methods to model dynamical properties of the system.
The PH framework uses qualitative and discrete information of the system,
without requiring enormous parameter estimation tasks for its stochastic sim-
ulation. So far, this method has been successfully demonstrated only on very
well-known systems and without exploiting high-throughput measures. We
believe, however, that the use of high-throughput data has become unavoidable
with the advent of massive, publicly available data sets in the form of well-
standardized DNA microarray data and, more recently, in the form of phospho-
proteomics data.

The main methodological and preliminar results of this work are: (i) semi-
automatic PH generation from a biological system composed of biochemical
reactions, extracted from public databases; (ii) discretization approach of time-
series expression data, so we can reproduce these traces by using in a first
attempt the PH stochastic simulation, and afterwards perform static reacha-
bility analyses to satisfy these data; and (iii) estimation of the the temporal
and stochastic parameters of the simulation, based on statistical analyses of
the full-compendium of time-series expression data. The biological system
used as a case-study for this work is a cell-based model of skin differentiation,
which is of key importance in wound healing.

2 Methods and data

2.1 The Process Hitting Framework

Process Hitting (PH) gathers a finite number of concurrent processes grouped
into a finite set of sorts. A sort stands for a component of a biological system
while a process, which belongs to a unique sort, corresponds to a unique state
of the system components(sorts). At any time, exactly one process of each sort
is present. A state of the PH corresponds to such a set of processes. We denote
here a process by ai where a is the sort and i is the process identifier within the
sort a. The concurrent interactions between processes are defined by a set of
actions. Actions describe the replacement of a process by another of the same
sort conditioned by the presence of at most one other process in the current
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state. An action is denoted by ai → bj � bk, which is read as “ai hits bj to
make it bounce to bk”, where ai, bj , bk are processes of sorts a and b, called
respectively hitter, target and bounce of the action.

Definition 1 (Process Hitting) A Process Hitting is a triple (Σ, L,H), where:

• Σ = {a, b, . . . } is the finite set of sorts;

• L =
∏

a∈Σ La is the set of states with La = {a0, . . . , ala} the finite
set of processes of sort a ∈ Σ and la a positive integer, with a 6= b ⇒
La ∩ Lb = ∅;
• H = {ai → bj � bk ∈ La×Lb×Lb | (a, b) ∈ Σ2 ∧ bj 6= bk ∧ a = b⇒
ai = bj} is the finite set of actions.

Given a state s ∈ L, the process of sort a ∈ Σ present in s is denoted by s[a].
An action h = ai → bj � bk ∈ H is playable in s ∈ L if and only if s[a] = ai

and s[b] = bj . In such a case, (s ·h) stands for the state resulting from the play
of the action h in s, with (s · h)[b] = bk and ∀c ∈ Σ, c 6= b, (s · h)[c] = s[c].

Modeling cooperation. As described in [7], the cooperation between pro-
cesses to make another process bounce can be expressed in PH by building a
cooperative sort. Fig. 1 shows an example of a cooperative sort ab between
sorts a and b, defined with 4 processes (one for each sub-state of the presence of
processes a1 and b1). For the sake of clarity, processes of ab are indexed using
the sub-state they represent. Hence, ab01 represents the sub-state 〈a0, b1〉, and
so on. Each process of sort a and b hit ab, which makes it bounce to the
process reflecting the status of the sorts a and b (e.g., a1 → ab00 � ab10 and
a1 → ab01 � ab11). Then, to represent the cooperation between processes a1

and b1, the process ab11 hits c1 to make it bounce to c2 instead of independent
hits from a1 and b1. The same cooperative sort is used to make a0 and b0
cooperate to hit c1 and make it bounce to c0. Cooperation can be used to
model protein-complex biochemical reaction. For instance a molecule a that
cooperates with a molecule b to activate a molecule c, Fig. 1 (left), We model
this interaction by four sorts Fig. 1 (right) a, b, c and ab. Sorts a, b and c
represent components a, b and c. We introduce the cooperative sort ab to
characterize constraints on components a and b. Cooperation can be a way to
model protein-complex formation.

Example 1 Fig. 1 represents a PH (Σ, L,H) with Σ = {a, b, c, ab}, and:

La = {a0, a1}, Lb = {b0, b1},
Lab = {ab00, ab01, ab10, ab11}, Lc = {c0, c1, c2}.

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 59



2/10/2014- page #60

This example models a Biological Regulatory Network (BRN) where the com-
ponent c has three qualitative levels, components a and b are Boolean and ab is
a cooperative sort. In this BRN, ab inhibits c at level 2 through the cooperative
sort ab (e.g.ab00 → c2 � c1, ab00 → c1 � c0) while a and b activate c through
the cooperative sort ab (e.g. ab11 → c0 � c1 ab11 → c1 � c2 ). Indeed,
the reachability of c2 and c0 is conditioned by a cooperation of a and b, as
explained above.

a

b

c
+

+

a
0 1

b
0 1

c

0

1

2

ab
00 01 10 11

Figure 1: (left) Biological pattern example. Nodes are components and edges
are interactions For instance, components a and b cooperate to activate c.
(right) equivalent PH model. A PH example with four sorts: three components
(a, b and c) and a cooperative sort (ab). Actions targeting processes of c are in
thick lines.

2.2 Time-series microarray data

To illustrate our approach, we used the time series microarray data from cal-
cium stimulated keratinocyte cells measured at 10 time-points. 200 transcripts
were selected for their dynamic patterns, that is, their fold expression with
respect to the non-stimulated cell was significant in at least one time point.
We included in our model a subset of 12 of them: MKP3, MKP1, UPAR,
HES5, ILB1, A20, SM22, IL8, ET1, TNF-a, TFR, DKK1. This subset was
selected because we were able to automatically retrieve the regulatory mech-
anisms upstream of these 12 genes from public repositories of biochemical
reactions. The full dataset (data not shown) was produced by the German
Cancer Research Center (DKFZ) and is currently in the process of getting
published.
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Figure 2: RSTC network

2.3 Interaction network

The interactions of the studied biological system were represented in a RSTC
network, which stands for multi-layer receptor-signaling-transcription-cell state
network, generated from the Pathway Interaction Database (PID). In order to
build this network, we selected a set of seed nodes related to the biological
process studied. The seed nodes for our case study were: (1) E-cadherin, which
is a protein having Ca binding domains and which plays an important role in
cell adhesion; (2) the 12 significantly differentially expressed genes accross
the 10 time-points; and (3) the cell states of keratinocytes-differentiation and
cell-cycle-arrest. The network was extracted automatically from the whole
content of the NCI-PID database by using a subgraph algorithm to link the
seed nodes[2]. Fig.2 shows the RSTC network obtained.

3 Results

3.1 Modeling the RSTC network as a PH model

In order to model the RSTC network with a PH model we selected known
biological regulatory patterns (atomic set of biological components and their
interacting roles), represented as biochemical reactions in the RSTC network,
and proposed their PH representation. For instance a molecule a that cooper-
ates with a molecule b to activate a molecule c, Fig. 1 (left), is a regulatory pat-
tern because it is a protein-complex biochemical reaction that appears recurrent
times. We model this pattern by four sorts Fig. 1 (right) a, b, c and ab. Sorts a,
b and c represent components a, b and c. We introduce the cooperative sort ab
to characterize constraints on components a and b. In our RSTC network, we
found 11 regulatory patterns (see Appendix 4).
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3.2 Integrating time-series gene expression data

3.2.1 Discretizing times-series data

Because PH simulation is discrete we need to discretize continuous experimen-
tal data, so we can compare our simulation outputs. The goal of this method
was to better determine, according to the gene expression level, when a given
molecule is activated or inhibited. To do this, we introduced the new analog
concept of Significant Increase or Decrease to characterize the fact that a level
of a molecule increases or decreases when crossing a threshold of significance;
We limited the possible expression levels for a molecule to {0, 1, 2}. Algo-
rithm 1 underlines the main steps of the proposed discretization method. For
more details about the functions used in this algorithm see Appendix 4

Algorithm 1 Discretization of experimental data
Require: X a table of experimental data
Ensure: Y a table of discretized data

for all gene i in X do
threshold← computeThreshold(X[i, ]);
Y [i, 0]← initialState(threshold,X[i, ]);
for all j in numberExpression do

if Increase(X[i, j], X[i, j + 1]) then
computeSignificativityOfIncrease(threshold,X[i, j], X[i, j+
1]);
fixSTATE(Y [i, j], Y [i, j + 1]);

else
computeSignificativityOfDecrease(threshold,X[i, j], X[i, j+
1]);
fixSTATE(Y [i, j], Y [i, j + 1]);

end if
end for

end for

To illustrate the result of the discretization algorithm 1 we plot in Fig. 3 the
expression of the TFRC and IL8 genes from the times-series data with their re-
spective discrete plots. On the discrete plot, one can clearly differentiate when
a molecule is active or not, which is of extreme importance when modeling
these steps in the PH framework since we want to have coherent simulation
results.
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Figure 3: Illustration of discretisation of Experiment Data

3.2.2 Estimating the parameters for the PH-simulation

The simulation of the execution of the PH actions is done stochastically. There-
fore, we need to relate each action with temporal and stochastic parameters,
introduced into the PH framework to achieve dynamic refinement [7]. This
is an important aspect of the modeling when taking into account the temporal
and stochastic dimensions of biological reactions by performing simulations.
On the one hand, we consider the probability of a reaction to occur, and on
the other hand, we consider stochastic parameters in the aim at observing
an expected behavior. In the PH framework, to play an action we need two
essential parameters: the rate r or the temporal parameter because t = r−1

and the stochasticity absorption sa. These two parameters will be estimated
according to the expression profile of time series data of the experiment. To
avoid overfitting in the estimation of these parameters, we propose that each
component of the PH, representing a measured gene in the network, will take
the estimated values of the parameters of its respective cluster in the experi-
mental data.

1. The first step is to cluster the data set. The goal of the clustering process
is to partition the genes into groups such that the profiles contained in the
same group (cluster) are similar to each other and as different as possible
of the profiles assigned to the other clusters. The particularity here is to
choose the best clustering criteria.

2. For each cluster obtained in the previous step, estimate the value of r
and sa associated to the cluster.
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3. For each component of the PH model associated to the measured gene,
determine its cluster, and assign it the previously estimated parameters,
r and sa.

In our time-series data, the components of the PH which need to be as-
sociated specific parameters (step 3) are the 12 genes present in our RSTC
network.

3.3 PH code generation

To simulate of the model, we generated a PINT code to be simulated by the
PINT simulator†. For the PINT code generation we first list all the selected
patterns in the biological reaction into a file. In this file, each line contains the
name of the nodes belonging to the current reaction and the reaction type num-
ber. The list was then parsed, line by line and, after renaming the nodes using
numbers (for readability and in conformity with the PINT language syntax) the
corresponding PINT code for the PH process equivalent to each reaction was
generated. This was implemented in the Java programming language.

4 Conclusions

This work describes the preliminary steps towards the integration of time-
series data in large-scale cell-based models. We proposed a semi-automatic
method to build a PH from a biological system composed of biochemical reac-
tions, extracted automatically from public databases, relevant to keratinocyte
stimulation induced by calcium. We then proposed a method to discretize time-
series gene expression data, so they can be confronted to the PH simulations
and logically explained by the PH static analysis. Finally we described a
method to automatically estimate the temporal and stochastic parameters for
the PH simulation, so this estimation process will not be biased by overfitting.
As concrete perspectives of this work, we intend to (i) validate the RSTC
network topology by confronting its in-silico simulation with real measure-
ments of its components; (ii) compare the stochastic simulation results with
reachability static analysis over the same PH components mapped to the 12
measured genes; and finally (iii) search for key-regulators up-stream the 12
genes which will control the dynamics of the system, to provide our biologist
partners concrete hypotheses to test experimentally.

†Available at http://process.hitting.free.fr
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Appendix A

Biological Pattern no 1 PH Model

Figure 4: (left) Biological pattern: Molecules A and B cooperate to activate
molecule C. After the activation of C, A remains active and B is desactivated.
(right) equivalent PH model. AB and BC are regular sorts, while the sort delta
models the reaction beginning or end.

Biological Pattern no 2 PH Model

Figure 5: (left) Biological pattern: A and B cooperate to activate C. Both A
and B remain active after end of reaction (right) equivalent PH model
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Biological Pattern no 3 PH Model

Figure 6: (left) Biological pattern: different types of activation. (right) equiv-
alent PH model

Biological Pattern no 4 PH Model

Figure 7: (left) Biological pattern of an inhibition reaction: the inhibitor
presence leads to the desactivation of its target, while its absence leads to the
activation of the target (right) equivalent PH model

Biological Pattern no 5 PH Model

Figure 8: (left) Biological pattern. Molecule C is either activated by A, or
inhibited by B; (right) equivalent PH model where A and B are not cooperating
to modify C, each one has independent, opposite action on C.
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Biological Pattern no 6 PH Model

Figure 9: (left) Molecule C is activated by either A, or B, independantly one
from other. (right) equivalent PH model

Biological Pattern no 7 PH Model

Figure 10: (left) Complex A decomposes in components B and C. At the end
of the reaction, A no longer exists/ is no longer active. (right) equivalent PH
model. ABC is a regular cooperative sort and delta models the reaction, as
explained in Pattern 1. For clarity purposes, the hits from A, B and C to the
cooperative sort ABC have not been drawn.

Biological Pattern no 8 PH Model

Figure 11: (left) B0 and B1 represent the same biological entity.
(right) equivalent PH model, B0 and B1 are different process of the same
sort; A create B, which then activates itself.
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Biological Pattern no 9 PH Model

Figure 12: (left) A modification reaction: A activate B, then dissapears; The
reaction begins when A is present, and ends when A has replaced by B.
(right) equivalent PH model, AB is a cooperative sort and the delta sort models
the reaction.

Biological Pattern no 10 PH Model

Figure 13: (left) A composite modification: A and B cooperate to create C,
then disappear. (right) equivalent PH model. For clarity purposes, hits to
cooperative sorts have not been drawn.

Biological Pattern no 11 PH Model

Figure 14: (left) Activation of non-binary sort: similar to Pattern 1, except
for the non-binarity of the target source. B0 and B1 represent the same
entity. Unlike pattern 8 (the other pattern dealing with non-binary sorts), entity
B is already present, via the condition on B0, it just needs to be activates.
(right) equivalent PH model.
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Appendix B

Functions Specifications

computeThreshold(X)
compute the threshold of
the profile of expression
represent by X

initialState(X)

fixe the initial state of the
expression represent by X
according to the initial
value of X and the
threshold

Increase(X,Y)
Test if the measure
increases between the
two times points X and Y

computeSignificativityOfIncrease(s,X1,X2)

compute the significance
of the increase according
to the threshold and X1
and X2

computeSignificativityOfDecrease(s,X1,X2)

compute the significance
of the decrease according
to the threshold and X1
and X2

fixSTATE(X1, X2) fix the current state

Figure 15: Functions(first column) and Specifications(second column)
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Appendix C

Figure 16: RSTC Network
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Abstract

Synthetic biology is a new science, at the interface between biotechnology 
and engineering sciences.  It  tends to  create  new organisms by a  rational 
combination of standardized biological components that are decoupled from 
their  natural  environment.  The  work  presented  in  this  paper  focuses  on 
aspects of in-silico design of these artificial biosystems and is a summary of  
the work done by our team. Biosystem design assistance has been identified 
as necessary for the development of the complexity of these systems but is 
rarely addressed in a general context by the scientific community. Unlike 
existing  tools  for  synthetic  biology,  our  work  is  based  on  the  design 
methodology used in microelectronics and consists in adapting the tools of 
EDA (Electronic design automation). Their adaptation is based on three key 
elements:  the  structuring  of  the  design through a  design flow,  reuse  and 
standardization mechanisms through the use of biobricks and finally fast and 
accurate models understandable by electronic tools.

Design flow for synthetic biology

A design flow is a methodology for structuring stages of system design to 
ensure  the  effectiveness  and  reliability  of  the  system  achieved  while 
reducing the time and cost of designing. The design flow used in the design 
of  microelectronic  circuits is  a  well-tried  method,  in  particular  the  steps 
dedicated to digital parts. During 40 years, thanks to the combined evolution 
of technologies and design tools, processors have gone from just over 2,000 
transistors integrated in 1970 to over 2 billion in 2010 [1].

Synthetic biology can be seen today at the same stage of development as 
microelectronics was in the 60’s. Nevertheless, the outlook for this area is at 
least as promising [2] as the one experienced by microelectronics in recent 
years. Although the complexity of artificial biosystems developed today is 
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modest  (in terms of features),  the development of CAD (Computer-aided 
design)  tools  is  required  straight  away  to  follow  the  technological 
developments in this field. To carry out this task, we can find several tools,  
such as BioJADE, GenoCAD, SysBioSS and Tinkercell [3,4], which seem to 
be effective in some cases, but correspond only to some stages of a complete 
CAD tool. The assembly of these tools seems complex and several elements 
are  missing  in  order  to  have  an  automated  software  suite.  The  original 
approach  developed  in  this  paper  is  to  reuse  existing  tools  from 
microelectronics,  and  to  adapt  them  to  biological  material,  rather  than 
recreating the entire design environment.

The proposed design flow developed in [4]  includes  the  following steps. 
Starting from the specifications of a biosystem, the first step is to achieve 
high-level system description. Then, a functional synthesis is made from this 
description.  It  provides  a  netlist  of  elementary  functions  of  the  system. 
During the next  step,  a  search is  made in  a  biobricks  database  (like  the 
Registery of  Standard Biological  Parts,  http://parts.igem.org)  to  transform 
this netlist into a concrete virtual biobricks assembly. Finally, the last steps 
intend to validate the biosystem through multi-abstractions simulations, thus 
requiring the development of associated models and post-design analysis.

These steps are based on the existence of a design library, called "design 
kit",  which  is  effective  and  complete,  including  the  biological  functions 
used,  their  characteristics,  the  logical  equivalent  and  the  corresponding 
biobricks and models in several levels of abstraction. Models of biological 
mechanisms  have  been  especially  developed  in  two  main  levels  of 
abstraction, high-level and low-level.

High-level modeling for design automation purpose

It has been shown [5] that most of the biological processes can be modeled 
as electronic functions and in particular as logic gates thanks to a digital 
abstraction (illustrated Figure 1.A). This property is very important because 
it can allow the reuse and adaptation of digital design tools (such as logic 
synthesizers, compilers, etc.) [6].

Two open-source tools used to perform the step of functional synthesis in the 
microelectronic design flow (composed of a register transfer level synthesis 
step and a step of mapping abstract functions and optimization) have been 
adapted to the constraints of biological material. We tested this step on two 
examples [6]: a state machine, which is an abstract machine that can switch 
between  several  defined  states  (the  state  machine  is  used  to  regulate  a 
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protein concentration) and a biological microprocessor that demonstrates the 
effectiveness of our approach on very complex systems.

Figure 1: Representation of the various models of a set of biobricks.  
A. High-level model, B. Signal flow model, and C. Conservative model.

Low-level modeling for validation purpose

Biological  mechanisms  are  usually  modeled  by  mathematical equations 
linking the chemical species involved. These equations can be transformed 
into coupled ordinary differential equations (ODEs). This system can then be 
simulated on dedicated tools. If the different species involved don’t interact, 
the systems can be described in the form of block diagrams and therefore 
simulated by flow signal  type simulators  (e.g.  MATLAB-Simulink).  This 
type of model (illustrated Figure 1.B) is easy to develop but has limitations,  
especially  with  the  increase  of  the  necessary  number  of  couplings  and 
feedbacks between blocks, which is the case when a mechanism consumes a 
species created by another mechanism.

To overcome this problem, we use an alternative modeling approach, called 
conservative (illustrated Figure  1.C),  to solve all  differential  equations in 
parallel.  To  facilitate  the  formalization  of  this  model,  we  converted  the 
ODEs into an electrical network [7]. We started from the premise that all  
ODEs can be written as terms of synthesis/consumption and degradation. 
Then, we made  the analogy with a parallel RC transient electronic circuit. 
The comparison between these equations enabled us to transform any set of 
ODEs into an electronic diagram, involving sources of positive current (for 
terms of  synthesis),  sources  of  negative  current  or  variable  resistors  (for 
terms  of  consumption),  parallel  resistors  (for  natural  degradation)  and 
parallel capacitors (to store the species). This analogy allows us to have a 
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conservative  model  much  easier  to  instantiate  in  the  case  of  a  complex 
biosystem, and then to simulate the conservative model using an electronic 
simulator.

Both types of models have been implemented with two hardware description 
languages (HDLs)  commonly  used  in  electronics  and  more  generally  in 
systems engineering. The first one is the VHDL-AMS [8], highly prevalent, 
which shows the advantage of having a multi-nature type well suited for the 
modeling of  living.  It  is  very efficient  to model  hybrid systems but  it  is  
dependent on commercial compilers. The implementation using the second 
language, SystemC-AMS [9], which consists in a set of C + + open-source 
classes,  was  motivated  by  the  existence  of  several  types  of  model  of 
computation corresponding to the two types of low-level models developed 
(TDF  for  signal  flow  models  and  ELN  for  conservative  models).  The 
advantage of SystemC-AMS is also that it includes a simulator, which is not 
the case for VHDL-AMS.

The various models presented have been validated on experimental results of 
the most  advanced artificial  biosystems published in the literature,  which 
have confirmed the relevance of our models, as well as highlighted some 
limitations [4].

Fuzzy logic, a promising intermediate description level

Unlike  for  microelectronics,  where  the  link  between  high  and  low-level 
models is straightforward, in biology, biobricks behavior may vary even if it 
corresponds  to  the  same  digital  function.  An  intermediate  level  of 
description between the behavioral and the quantitative levels is required. 
This is the reason why new models, using the principles of fuzzy logic, have 
also  been  developed  [10].  Fuzzy  logic  is  a  field  of  mathematics  whose 
concept  was  developed  by  Zadeh  in  1965,  and  which  approximates  the 
probability field.

Since its introduction,  the concept of  fuzzy logic has been used in many 
areas but remains undeveloped for the application on biological material to 
model biosystems. A computational core was developed specifically for this 
application  in  order  to  have  flexible  models,  to  tend  either  to  a  digital 
abstraction  or  to  a  nearby  low-level  model  behavior.  It  is  a  quantitative 
model  but  it  remains  somehow  discrete  in  that  the  system  behavior  is 
described with a finite number of rules.
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The fuzzy logic models leads to accurate and predictive results with very fast 
time  simulation,  which  was  illustrated  on  complex  biosystems  [10]. 
Moreover, description of biobricks through fuzzy rules is more reliable than 
through digital ones. We can take advantage of this property to improve the 
classification of biobricks which can be very helpful for the optimization of 
the choice of biobricks used for targeted logic functions.

Conclusion and perspectives

Finally, this work represents an important contribution to the structuration 
and  the  automation  of  design  steps  for  synthetic  biosystems.  It  helps  to 
outline  a  complete  design  flow,  adapted  from  microelectronics,  and  to 
highlight its interests. From preliminary work, a number of obstacles have 
been identified. The first one is the development of a library of models with 
their associated components. At this level, the various works presented have 
allowed  the  development  of  models,  their  formalization,  and  their 
implementation with tools traditionally used in microelectronics. The library 
of these models has been developed using an open source language in order  
to reuse it in other projects without having to use commercial tools.

Improvement of these models is still in progress. We are developing a more 
accurate  representation  of  the  binding  mechanism  using  a  binding 
polynomial,  unifying  the  various  existing  modeling  approaches.  The 
integration of biological noise in the models is also under investigation, as 
well  as  the  development  of  stochastic  models  for  the  study  of  a  single 
organism, rather than a population, as it is the case in the current low-level 
models.
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Abstract

The existence of a memory in plants raises several fundamental questions.
What might be the function of a plant memory? How might it work? Which
molecular mechanisms might be responsible? Here, we sketch out the land-
scape of plant memory with particular reference to the concepts of functioning-
dependent structures and competitive coherence. We illustrate how these con-
cepts might be relevant with reference to the metaphor of a travelling, avant-
garde theatre company and we suggest how using a program that simulates
competitive coherence might help answer some of the questions about plant
memory.

1 Introduction

The operation of a memory in plants was observed at the beginning of the
1980’s [1]. Since then, several other examples of plant memory have been
described. Moreover, two different aspects of plant memory have been dis-
tinguished [2]. After exposure to the first stimulus or stimuli, one aspect of
memory is proposed to entail the plant modifying the pathway that transduces
those stimuli and responding immediately; this modification affects the way
the plant responds to exposure to the stimulus on subsequent occasions. In this
aspect of memory the initiation of the response to the stimulus is immediate.
The other aspect of memory is proposed to entail the plant storing information
and recalling that information at a later time. In this aspect of memory the
response to the stimulus using the memory is delayed.

The existence of a plant memory raises some fundamental questions. How
and where does a plant encode information from the environment? How does
the plant reconcile what appear to be very different aspects of memory? More
specifically, what molecular mechanisms might a plant use to store information
without immediately using it? And what mechanisms might it use to recall it?
How does a plant integrate the environmental information it has stored along
with its own capacities to respond in a final commitment to a growth strategy?
In trying to answer these questions, two concepts that have been developed
recently may be useful.
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One is the concept of competitive coherence which has been implemented
in an artificial learning program [3]. In competitive coherence, the overall op-
eration of the memory depends on a competition between biological elements
(such as genes and proteins) leading to their selection for membership of an
active subset of elements from the vast set available to an organism [4,5]. This
competition is based on the two patterns of discrete links possessed by each
element, where such links include those between a transcription factor and its
target genes, a protein kinase and its target, two enzymes in the same structure
etc. One of the patterns of links, the Now links, connects those elements
that are active at the same time as one another. The other pattern of links,
the Next links, connects those elements that are active at one time with those
that are active at the following time(s). Competitive selection between these
patterns of elements for the inclusion of an element in the active subset might
therefore help a plant find a coherent solution to (1) the need for a plant to
have a phenotype that is consistent with its internal and external milieus at the
present time with (2) its need for a phenotype that is consistent with its milieus
at previous times.

The other concept is that of functioning-dependent structures, FDSs, which
are assembled (or are disassembled) in response to their activity, such as the
metabolizing of a sugar [6]. This activity reflects the environment, and hence
the FDSs and their bigger relatives, the functioning-dependent hyperstructures,
constitute a measure of the plant’s response to the environment [7]. Given the
activity-dependent interaction of enzymes with the cytoskeleton, the concept
of FDSs can be taken even further to include the enzyme-decorated cytoskele-
ton as a metabolic sensor [8].

Here, we bring together ideas about FDSs and competitive coherence in a
new approach to plant memory. We discuss both concepts in the framework
of the metaphor of a theatre as previously used in the case of an influential
model [9]. In our version of this metaphor, plant memory can be viewed as a
travelling theatre in which the actors must be chosen and the play itself adapted
in response to feedback from an audience representative of the different audi-
ences who will pay to see the performance.

2 A unifying, theatre management model of plant memory

Our model of plant memory is the metaphor of a peripatic, avant-garde the-
atre. Management of this theatre entails casting to fill different roles in a
play, rehearsing and adapting this play to the tastes of the audience, and,
finally, performing the play. The casting process requires a cast of actors –
a subset of genes, macromolecules and ions – to be chosen from a large num-
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ber of unemployed candidates – unexpressed genes, unsynthesized or inactive
macromolecules, and ions at ineffective concentrations. This casting continues
through rehearsals. The play is dynamic and interactive: the plot, roles and
cast change in response to feedback from a non-paying, invited audience,
who represent the environment. The group of actors onstage at any one time
changes in a meaningful sequence. An actor can be either onstage playing a
role or waiting backstage (or in the wings) ready to come on.

2.1 Competitive coherence – choosing the cast

The casting process is described by competitive coherence, which is a learning
strategy for choosing a subset of elements to determine the state of the system
from a larger set of inactive elements [3, 5]. In the context of the theatrical
model of plant memory, competitive coherence allows the management to
select actors to be on onstage based on two sets of requirements. The first
requirement is that the actors have a coherent relationship to the present scene;
this corresponds to the requirement for memory to be immediate. The sec-
ond requirement is that these actors have a coherent relationship to the actors
present in the preceding scene; this corresponds to the requirement for memory
to be sequential in order to take into account temporal changes. Taking the
two requirements together, the metaphor translates into the developing plant
storing a pattern of activity of elements (genes, macromolecules, ions etc.) that
is coherent with both its present internal and external milieus and its preceding
internal and external milieus.

2.2 The elements of memory – the actors

There are two classes of elements in our model. In the cytosol, functioning-
dependent structures, FDSs (see below), mainly comprise the immediate as-
pect of memory. Cytosolic FDSs capture – indeed constitute – the state of
the cell at any one time. Such FDSs include those involved in metabolism
and signalling and may comprise both enzymes and cytoskeletal proteins. In
the nucleus, the positions and modification status of certain genes reflect the
history of the cell and hence the sequential aspect of memory. These genes
may include those involved in sensing temperature, mechanical stimuli, signals
from competitors etc.

2.3 The mechanisms for creating memories – the decisions of the di-
rector

The candidate mechanisms responsible for the immediate aspect of memory
include the processes determining the dynamics of FDSs, which are assembled
(or are disassembled) in response to their activity, such as the metabolizing of
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a sugar; this activity reflects the immediate response of the plant to the envi-
ronment. These FDSs exist in the cytosol and inside organelles, and the laying
down of the immediate aspect of memory may be based on the interactions
of these FDS with one another, with the membrane and with the cytoskeleton.
Note that FDSs can exist at several levels of organization and, for example,
include not only structures within the organelles but also the structures made by
organelles in association with the cytoskeleton. FDSs may be stabilised by the
post-translational modification of their enzyme and cytoskeletal constituents.

The candidate mechanisms that may be responsible for the inclusion of
an element such as a gene in the sequential aspect of memory include: (1)
the methylation and demethylation patterns of the DNA and nucleosomal his-
tones and (2) the binding of transcription factors to the gene. Certain of these
mechanisms also favour the selection of a coherent set of STO genes because,
for example, transcription factors may themselves interact with one another
to increase the chances of the genes to which they bind becoming memory
genes. The temporal coherence of the successive patterns of memory genes
is achieved by coupling the selection of these genes to the expression of the
genes controlling circadian and other rhythms.

Laying down the memory, that is, choosing the elements, is a learning
process that involves reward and punishment. A part-time or unemployed actor
who has just played a scene is more likely (than one who has never been called
on) to hang around backstage and therefore be called on again to play another
scene. A protein or gene that has been recruited temporarily to the memory to
be expressed may undergo a modification that increases its chance of staying
available in the ensemble of the memory (i.e., the equivalent of onstage and
backstage); in general, modifications to elements, such as the methylation of
genes or the phosphorylation of proteins, can increase or decrease the proba-
bility that these elements become part of the memory. An actor who has just
come offstage from playing in one scene is likely to be followed by an actor
who plays in the chronologically next scene in the play (and the first actor
may phone this second actor to remind him that his scene is likely to be next).
Here, the metaphor means that the genes that have just been expressed (or
proteins that are recruited to an FDS) are modified to increase or decrease the
probability that the following set of genes (or proteins) will be expressed (or
recruited) again.

Competition for inclusion in the memory means that the plant can combine
the coherence of the set of FDSs assembled and genes expressed in response
to a specific environment at a particular time (i.e., immediate memory) with
the temporal coherence of the sets of FDSs assembled and genes expressed
as an environment changes over time (i.e., sequential memory). Candidate
mechanisms for the competition between candidate elements in the immediate
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and sequential aspects of memory include: (1) the coupling of the chromatin –
via the nucleoskeleton and the cytoskeleton – to the cytosolic FDSs and (2) the
redistribution of calcium via the condensation and decondensation of calcium
onto and from the chromatin and FDSs that constitute the memory [10–12].

3 Examples of the immediate aspect of plant memory

In Arabidopsis thaliana, cold shock and hyperosmosis result in a transient in-
crease in cytosolic calcium; in the former case, cold pre-treatments reduce this
increase [13] whilst a hyperosmotic-stress pre-treatment heightens it [14]. In
Nicotiana plumbaginifolia seedlings, a wind stimulus also results in a transient
increase in cytosolic calcium but repeated wind stimuli lead to a reduction in
the amplitude of the corresponding calcium transients [15]. Other examples
include the summing of electrical stimuli in the Venus flytrap [16], the in-
terpretation of gravitropic stimulation in graminean coleoptiles [17] and the
adaptation of the phosphate uptake system by the history of phosphate levels
in Anabaena variabilis [18].

4 Examples of the sequential aspect of plant memory

Pricking the cotyledons of Bidens pilosa seedlings shortly after germination
(Desbiez et al 1987), followed days later by transfer to a nutrient medium with
a very low concentration of mineral ions results in a reduction of the hypocotyl
growth, a reduction that does not occur in a standard nutrient medium [19]. Re-
moval of the terminal bud (”decapitation”) of Bidens pilosa seedlings in certain
conditions of light and mineral concentrations allows one of the cotyledonary
buds to start growing before the other; the selection of the bud that grows first
is random unless one of the cotyledons is pricked, in which case the other bud
grows first; the information leading to the preferential growth of the bud at the
axil of the non-pricked cotyledon is stored and is only revealed if the plants
are subjected to a particular treatment, such as a change of temperature, at a
time that can be days later [20]. Abiotic stimuli such as the manipulation of
flax seedlings followed at a later time by a temporary depletion (e.g., for one
day) of calcium in the nutrient medium leads to a production of epidermal
meristems in the hypocotyl; without either the abiotic stimulus or the calcium
depletion, the meristem production does not occur [21].

5 The implication of calcium in plant memory

In most cases, plants rapidly react to stimuli by raising transiently the concen-
tration of free calcium in their cells [22]. This transient elevation of cytosolic
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calcium sets off a series of processes such as the opening of transmembrane ion
channels, post-translational modifications of some proteins and the expression
of certain genes. This chain of processes leads to the final response of the plant,
which may involve leaf movements, morphogenetic changes and metabolic
modifications. Moreover, the kinetics and magnitude of the transient increase
of cytosolic calcium (which are different for the different stimuli) are proposed
to orient the system towards a response appropriate to the particular stimulus
that has been perceived [14, 23–25]. Consistent with this importance of cal-
cium, plant memory is perturbed by treatment with pharmacological agents
that are known to affect cytosolic calcium and hence any transient increase of
cytosolic calcium that might follow stimulus perception [15, 26].

With its multiple bridging roles, calcium might increase the probability
of colocalisation of specific proteins, nucleic acids and lipids and hence con-
tribute to the formation and the stabilisation of FDSs. The condensation of
calcium onto charged membranes and linear polymers and might also underpin
the organisation of FDSs and chromatin and their putative action in memory.
In many of our experiments, changes in the level of calcium are responsible
for triggering what we have termed the recall of stored information and, sig-
nificantly, calcium variations are central to diurnal rhythms in plants [27–31]
and possibly to seasonal ones [32–34]. This is consistent with such variations
playing a role in the sequential aspect of memory.

6 Implication of functioning-dependent structures or hyperstruc-
tures in memory

It is conceivable that the entire cytoskeleton with its associated enzymes acts as
an FDS that can integrate intracellular and extracellular information [8]. Such
metabolic sensing would put the enzyme-decorated cytoskeleton in a strong
position to be a central player in memory. In higher plant cells, MAPs play
a major role in the dynamics of the MT network [35] and the association of
certain enzymes with the cytoskeleton contributes to these dynamics. The
cytoskeleton binds some enzymes when they are active, that is, catalyzing
their reactions, whilst it binds others when they are inactive. In plants, protein-
protein interactions have been found between actin and enzymes that include
cytosolic aldolase, three GAPDH isoforms and two enolase isoforms, as well
as between tubulin and enzymes that include aldolase, GAPDH and sucrose
synthase [36]. Dynamic interactions between microfilaments and MTs also
occur in A. thaliana [37]. In line with the processing of information that
is central to memory, in maize, the presence of sucrose is required for the
association of sucrose synthase with microfilaments in vitro and probably in
vivo [6].
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FDSs can also include those found within mitochondria and chloroplasts
and, at a higher level, those between the organelles and the cytoskeleton.
In chloroplasts, association between glyceraldehyde-3-phosphate and phos-
phoribulokinase leads to the latter’s activation which persists even after the
enzymes separate [38]. An FDS comprising the Krebs Cycle enzymes might
form via increased affinities of enzymes for one another in the presence of
substrates and/or calcium and, in line with a role for calcium in FDS-mediated
memory, the activities of three Krebs cycle dehydrogenases – pyruvate, isoc-
itrate, and α-ketoglutarate dehydrogenase – are modulated by calcium (for
references see [39]). The information concerning increasing demands for ATP,
which is coded in calcium transients, is stored in the mitochondria of Hela
cells and is proposed to involve changes in the activity of mitochondrial en-
zymes [39] which may in turn promote FDS assembly. Ilv5p, a mitochondrial
protein that catalyses the synthesis of branched chain amino acids, has been
implicated in the formation of mtDNA nucleoids in S. cerevisiae [40]. Also in
this organism, a subunit of α-ketoglutarate dehydrogenase, Kgd2p, is one of
twenty proteins found by cross-linking to be bound to mtDNA whilst double
mutants affected in this protein and another DNA-binding protein, Abf2p,
produce cells lacking mitochondria [41] and, for other references, see [42].

In our hypothesis, plant memory is also based on changes in the organi-
sation of the chromatin during the learning period. Chromosome territories,
for example, can be regarded as FDSs. If FDSs in the cytosol and nucleus
do indeed constitute the molecular basis of memory, there should be systems
that link them. This is the case: in animals and plants, the Sad1/UNC-84
(SUN) domain proteins are part of a complex that bridges the nuclear envelope
to connect cytoskeletal elements to the nucleoskeleton and chromatin [43].
These complexes allow transmission of cellular signals to the nucleus and are
essential in various cell functions such as the movement of the nucleus and
movement within it. SUN domain proteins such as AtSUN1 and AtSUN2 are
also found in plants [44].

7 Discussion

In our vision of plant development, the early stages of growth entail the plant
receiving, processing and storing diverse information from the environment for
use at later stages of development. This information comprises the temporal
dynamics of factors that therefore include temperature, light, rainfall, wind,
nutrients, competitors, predators and pests. To optimise its chances of survival,
growth and reproduction, the plant must integrate these factors together with
its own capacities. In other words, a plant must learn and a memory is therefore
essential.
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There are two opposed learning strategies that a plant might adopt based on
the immediate and delayed aspects of memory. One strategy would be for the
plant to grow immediately and to try to alter its particular pattern of growth
during the acquisition of new information; this would have the advantage
of the plant getting started but the disadvantage of the high probability of
the selected growth pattern being far from optimal. The alternative strategy
would be for the plant to learn about its environment for an entire year (or
even longer!) before committing itself to a particular pattern of growth; this
would have the advantage of a high probability of the pattern being right
but the disadvantage that the plant would have left the field wide open to its
competitors (which would change the environment that needed to be learnt).
An attractive compromise solution would be for a plant to grow initially in a
reversible pattern before committing itself to a growth pattern relatively early
in the growing season.

In a computer simulation of the competitive coherence model of learning,
competition between the equivalent of the processes responsible for the imme-
diate and sequential aspects of memory (Now and Next processes, respectively)
for inclusion in an active subset of elements is fundamental to learning. We
have argued here that the Now and Next processes have their counterparts
in plant memory. If so, it would mean that it is essential for the plant to
respond to its environment in order for it to learn. It would therefore mean that
the same molecular mechanisms would have to be involved in the immediate
and sequential aspects of memory because the underlying processes would be
competing for the same final mechanistic space. With this reasoning, if FDSs
in the cytosol and nucleus are involved in memory, both types of FDS are
involved in each of the processes.

An apparently different possibility would be if the immediate and sequen-
tial aspects of memory were to depend on, for example, cytosolic and nuclear
FDSs, respectively. Here, the competition at each step of learning by the plant
might entail finding coherent cellular solutions to the problem of integrating
FDSs in the cytosol and nucleus. This is aesthetically attractive. Moreover, a
shift in the importance given to structures in, say, the nucleus, might underpin
the commitment step.

The feasibility of the above possibilities might be tested using a program
that simulates competitive coherence. The role of cyclically activated proteins
and cyclically expressed genes might be tested using elements in the program
that are activated cyclically (i.e., selected cyclically for membership of the
active subset of elements). The value of separating cytosolic and nuclear FDSs
might be tested by dividing the elements of the program into two classes and by
treating them differently. Such differential treatment could include a change in
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the relative weighting given to the elements such that, at the time representing
commitment, the Next process (representing the sequential aspect of memory)
takes on a greater importance in determining the behaviour of the system.
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Abstract

In this paper, we investigate the possibility of modelling the concomitant re-
sponse of multiple bacterial genes to environmental factors by using fluores-
cent whole cell biosensors. An experimental procedure is proposed to obtain
three-way data sets by synchronous fluorescence spectroscopy (SFS). A Can-
decomp/Parafac algorithm (CP) is then proposed to separate simultaneously
all the fluorescence signals of reporter proteins and to interpret the response of
the corresponding promoters. The joined estimation of several gene responses
is the main original point of this blind identification procedure. The method
proves to be more powerful than the traditional principal components analysis
(PCA) or the singular value decomposition (SVD) and provides a promising
multi-way strategy for in vivo monitoring of gene expression in system biology
studies.

1 Introduction

One of the essential aspects to understand cellular systems is to identify the
topology of gene regulatory networks from which the metabolic networks are
organized and which reflect the functional and adaptive response of the system
to its environment [1,2]. A popular method consists of coupling a reporter
gene encoding a fluorescent protein with an environmentally responsive pro-
moter [3]. A single wavelength measurement is then realized to detect and
quantify the resulting fluorescence. However, monitoring simultaneously the
expression of several genes using fluorescent reporters becomes increasingly
challenging due to possible overlaps of their excitation/emission spectra. It is
therefore necessary to choose compatible, spectrally distant reporter proteins
to avoid fluorescence crosstalk. Consequently, only a limited number of re-
porters can be used despite the wide range of fluorescent proteins currently

∗Corresponding author: damien.parrello@univ-lorraine.fr

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 91



2/10/2014- page #92

available. Moreover auto?uorescence of culture media and bacteria cells may
hamper the use of fluorescent reporters for in vivo or in situ approaches.

Traditional data analysis approaches just allow to study a system by ana-
lyzing its parts in pairs. For instance, data from a gene expression experiment
will be organized in matrices such as gene 1 x analyte 1, gene 2 x analyte 1,
gene 1 x condition 2, etc. Some properties of the system can depend on these
two-way interactions but all properties depending on higher order interactions
cannot be revealed and understood. Several studies show the limit of two-
way models to detect the underlying structures in multi-way arrays, i.e. in
complex systems [4,5]. The development of multi-way models was performed
through the generalization of the standard two-way methods to higher order
datasets. With increasing number of application areas, multi-way data analysis
has become popular as an exploratory analysis tool but its potential is still
largely unexploited in biology [6]. One of the most well-known and commonly
applied multi-way models in literature is the Candecomp/Parafac (CP) model,
a powerful multi-way data analysis which can also be used as a blind sources
separation technique [7].

This paper proposes an original approach able to produce three-way mod-
els from CP decomposition of synchronous fluorescence spectra datasets. Mod-
els describe the dynamic expression of a set of genes of interest as the function
of two crossed environmental parameters. Coupling synchronous fluorescence
spectroscopy (SFS) and CP decomposition allows extending the potential of
fluorescent whole-cell biosensors to the study of the relationship between sev-
eral genes in a systemic and non-destructive fashion.

2 Materials and Methods

2.1 Bacterial strains

E. coli TOP10 strain was engineered to constitutively produce fluorescent pro-
teins. Plasmid pPROBE-NT’ [8] served as a backbone for the construction of a
new promoter probe plasmid series where the gfp gene was switched by three
others reporter genes encoding turboYFP, E2orange, and dsRed express2. The
expression of each reporter gene is controlled by the lac promoter (not shown).
These new plasmids were introduced in E. coli TOP10 by transformation to
yield four fluorescent bioreporters strains:

• (gfp), i.e. E. coli TOP10- pPROBE-NT’lac constitutively producing
green fluorescent protein GFP

• (yfp) E. coli TOP10-pPRlacY538 constitutively producing the green-
yellow fluorescent protein turboYFP
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• (E2or) E. coli TOP10 -pPRlacO561 constitutively producing the orange
fluorescent protein E2orange

• (dsRx) E. coli TOP10-pPRlacX591 constitutively producing the red flu-
orescent protein dsRed express2.

These whole cell bioreporters covered a large domain of fluorescence rang-
ing from blue-green (490 nm) to orange (over 560 nm) and from green (510
nm) to red (590 nm) in excitation and in emission respectively. On the contrary,
the untransformed TOP10 strain displayed a very low basal fluorescence.

2.2 Culture conditions

E. coli TOP10 strains were cultured at 37◦C overnight in Lysogeny broth
(LB, Sigma, pH 7) supplemented with kanamycin (30 mg.L-1) at 260 rpm.
Before dispensing and patterning in microplate, fluorescent cell suspensions
were rinsed twice in a saline solution (NaCl 9h) and their optical density
(OD600nm) was adjusted to 2 (≈ 4.108cells.ml−1)

Cells suspensions were finally dispensed in black polypropylene 96-well
microplates (Eppendorf Microplate 96/U) with an automated pipetting system
(Eppendorf epMotion 5070) according to the pattern described below.

2.3 Microplate Patterning and Three-way dataset generation

We simulated the response of 4 genes following two arbitrary parameters by
mixing several serial dilutions of cell suspensions of bioreporters in a black
96-well microplate according to the experimental matrix presented in figure1.
This special patterning generates a three way dataset useable by signal process-
ing method (CP). In a “real” experiment, the dispensing pattern must constraint
experimental diversity, e.g. by varying gradually or randomly specific environ-
mental factors, in order to identify and estimate the transcriptional response of
the studied genes. It is quite similar to iterative refinement, a multi-way data
production strategy used in systems biology.

Three-way experimental patterns (A, B and C) were developed to study
the characteristics of CP separation profiles of known sources corresponding
to general gene expressions patterns. Experimental Pattern A was developed
to test CP decomposition efficiency on a trilinear dataset of four overlapping
fluorescent signals, evolving independently. In addition, patterns B and C
were designed to study the CP decomposition according to colinear or partial
collinear response of reporter genes to the parameters of interest. For pattern
B, TOP10- pPRlac-Y538 [yfp] and TOP10-pPRlac-O561 [E2or] strains were
mixed to produce a trilinear dataset presenting a colinearity in one mode.

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 93



2/10/2014- page #94

For pattern C, the same bioreporters [yfp] and [E2or] were mixed to design
a trilinear dataset presenting a partial colinearity in mode 1 and independent
behavior on mode 2 but similar to one in mode 1.

Figure 1: Generalized experimental matrix to produce three-way dataset for CP
decomposition. S (x,y) represents spectra following the variation of parameters x and
y.

In details, to generate the pattern A, [gfp] and [yfp] suspensions were
diluted six times in a 2ml Eppendorf deepwell plate according to a dilution
factor of 2/5 and [E2or] and [dsRx] suspensions according to a dilution factor
of 1/3. The genuine TOP10 strain was used as a diluent to maintain a constant
cell concentration in the wells. Cell suspensions were then distributed in the
microplate as described in figure 2. From column 1 to column 7 and from
line A to line E, the density of fluorescents reporters (gfp, yfp, E2or and
dsRx) varied whereas the total cell density remain constant (OD600nm = 2).
Thus, the contributions of GFP, turbo-YFP, E2orange and dsRed express2
fluorescence signal decreased or increased as a function of the dilution rank
(parameter x) or of the mixing ratios (parameter y).

Before fluorescence reading, cell suspensions (36 wells) were shortly mixed
with vortex mixer (Mixplate Eppendorf). Synchronous Fluorescence Spectra
(SFS) were performed in 96 well microplate with two-grating monochromator
spectrofluorometer FLX-Xenius R© (SAFAS, Monaco), equipped with a 150
W Xenon lamp as excitation source. The Synchronous Fluorescence Spec-
tra (SFS) analysis of biosensors suspensions was measured in the excitation
wavelength range of 400-700 nm at constant offset ∆λ of 20 nm. Spectra were
recorded with a spectral step of 2 nm, a mean scan speed of 600 nm.min-1. The
excitation and emission slits width were 10 nm and the photodiode detector
was operating at a voltage of 750 V. Raw fluorescence data (without filtering
or smoothing) were collected and exported for further signal processing with
CP algorithms running under Matlab software.
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Figure 2: Microplate dispensing pattern (A) to simulate biosensors expression
following two arbitrary parameters. Numbers 1 to 7 represent the rank of dilution
of E.coli TOP10 bioreporters (GFP, turbo-YFP, E2Orange and dsRed Express2).
Dispensed volume of each bioreporters (microliters) are given in parenthesis.

Figure 3 summarizes characteristics of GFP, turbo-YFP, E2orange and dsRed
express2 SFS spectra expressed in TOP10 strains according to the spectral
acquisition described above.

Figure 3: Normalized SFS spectra of GFP, turbo-YFP, E2Orange and dsRed
Express2 (A) and their spectral characteristics (B). Wavelength shift ∆λ = 20nm.

2.4 Candecomp/Parafac (CP) decomposition

The estimation of CP decomposition of the three way SFS data is achieved by
an optimized non- negative ALS algorithm. The code was developed by Bro
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and Anderson and is available in the Matlab N-way toolbox [9]. The R order
CP decomposition of a three-way array X (three-order tensor) can be written
as:

χ =
R∑

i=1

aibici + E

where R is the number of factors (i.e. the number of fluorescence sources)
ai, bi and ci the three component matrices and E a residual three-order tensor
representing signal noise or behaviour that could not be included in the decom-
position model. CP method approximates the three-way datasets as the sum of
the tri-linear behavior of each identified factor.

With SFS data set presented herein, performing the CP decomposition
yields the three factors representing both the spectra of each bioreporters and
their responses to the cross parameters (x,y) (figure 4).

Figure 4: CP decomposition of a three-order tensor χ composed of R fluorescent
sources ; Vectors ai, bi, ci given respectively an estimation of the SFS and of responses
versus the two modes, i.e. corresponding to parameters x,y.

3 Results and Discussion

3.1 Benefits of coupling synchronous fluorescence spectroscopy with
CP decomposition

We combined the synchronous fluorescence spectroscopy with the CP decom-
position in order to simultaneously analyze the expression of multiple genes in
multi-parametric experiments.

On the one hand, SFS facilitates the data acquisition and improves the
quality of the spectral information. The commonly used technique to col-
lect the entire fluorescent signals is to perform an excitation-emission matrix.
However this procedure is time consuming and bleaches fluorescent signals.
Another alternative is to vary simultaneously (in a synchronous manner) the
excitation (λex) and emission (λem) wavelength while keeping a constant in-
terval ∆λ between them. This procedure was proposed by Lioyd (1971) and
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leads to numerous advantages compared to classical fluorescent spectroscopies
as demonstrated by Tuan Vo-Dinh (1978) [10,11]. SFS records the diversity of
fluorescent signals (e.g. mix of biosensors) in a single multimodal spectrum,
improves the sensibility and the spectral resolution, simplifies spectra, re-
duces interference signals, and gives the ability to select spectral information.
This last property is particularly powerful when several genes are tagged or
when biosensors are used simultaneously. Indeed the wavelength shift (∆λ =
λemission−λexcitation), can be tuned in order to amplify signals of interest (e.g
close) or to limit interference signals [11,12]. A suitable approach consists to
set this value close to Stoke’s shift of fluorescence proteins.

On the other hand, CP decomposition solves the fluorescence overlapping
issue without a priori about the source signals and reveals if any, the multi-
linear relationship between spectral components [7,13,14,15]. Generally, in-
terferences and overlaps between emission bands (spontaneous ?uorescence
from metabolites or medium) limit the interpretation of fluorescence data.
Thus, the simultaneous monitoring of gene expressions remains complicated
and lead to work with limited set of fluorescent proteins or reporters. The
identification of spectral sources is a classical but difficult problem in signal
processing, needing blind and powerful identification procedure. Traditional
data analysis methods such as Partial Least Square projection (PLS) or Single
Value Decomposition (SVD) require an extended knowledge of source spectra
(Database) or are limited to bi-linear approaches. Two-way analysis methods
do not take into account more than two parameters at the same time with-
out disrupting the inner structures of datasets [16,17]. Moreover, the two-
way identification procedures of unknown sources assume that the spectra
are independent (orthogonal).These methods applied to a non-negative SFS
data set would likely yield negative values in estimated spectra. Nevertheless,
statistical approaches are especially useful for generating single dimensional
solutions for multidimensional biological data.

Performing the CP decomposition yields the three factors representing re-
spectively the fluorescence spectra of each bioreporters and their responses to
the studied environmental parameters. Multi-way CP decomposition is, thus, a
promising tool to study complex systems such as microorganisms interacting
with their surrounding and is able to integrate multiple variables in a criss-cross
fashion.

3.2 CP decomposition of SFS datasets

CP decomposition is sensitive to the behavior of the identified sources. Char-
acterizing the separation profiles of known sources corresponding to general
cases (independence, colinearity, partial colinearity behaviors) is essential to
correctly interpret gene relationships in real studies.
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The results of CP decomposition on three experimental three-way datasets (A,
B and C) are presented hereafter. They are compared to the expected behaviour
of gene response (set by dispensing pattern) and to reference spectra of the
fluorescent proteins (figure 3).

Figure 5 displays the results of the CP decomposition with 4 sources cor-
responding to the experimental pattern A (presented in Figure 2). Taking into
consideration pipetting variations, source behaviours estimated by CP decom-
position are in concordance with the expected variations of fluorescence versus
parameters x and y (figures 5 A & B, Mode 1 and 2 respectively). Moreover,
the spectral identification of the 4 bioreporters (gfp, yfp, E2or et dsRx) is
faithful with the recorded references (figure 5C). Peak positions and half-
bandwidths of estimated spectra are accurate and spectral overlaps between
fluorescent reporter proteins are not an issue. For example, in spite of their
narrow emission peaks (18 nm), spectra of E2orange and dsRed express2 may
still separate.
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Figure 5: Concordance of CP decomposition results (dotted lines) with
expected ones (solid lines) for pattern A. Mode 1 (parameter x) and Mode
2 (parameter y) are presented in box A and B. Box C showed the identified
sources spectra (SFS).
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Figure 6 shows the results of the CP decomposition with 2 sources corre-
sponding to the experimental pattern B, designed to study the effect of co-
linearity on one mode. The decomposition identified without any error the co-
linearity on the first mode, but the estimated spectra do not perfectly match
the references. Slight shoulders appear symmetrically on the right side of
turbo-YFP spectra and on the left side of E2orange spectra. In details, the
decomposition is incomplete and CP algorithm attributed randomly a part of
the turbo-YFP signal to E2orange signal and vice versa. As a consequence, if
two or more responses of genes are co-linear in one mode, their spectra will
be supplemented by secondary bands corresponding to the collinear sources.
Particularly in the case of full co-linearity, only one spectrum including an
amalgam of the sources will be identified.

Figure 6: Concordance of CP decomposition for pattern B. Mode 1 (parameter x)
and Mode 2 (parameter y) are presented in box A and B. Box C showed the identified
sources spectra (SFS) in dotted lines and expected ones in solid lines

Figure 7 illustrates the results of the CP decomposition with 2 sources
corresponding to the experimental pattern C, designed to study the effect of
partial co-linearity on one mode with inter-modal co-linearity. In this case, the
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CP decomposition identified correctly the two fluorescent sources and their
respective behaviours vs. mode 1 and 2. The partial co-linearity is fixed by 4
points (out of 7).

Supplementary experiments demonstrated that (i) only one varying point
can be necessary to properly separate two collinear sources and (ii) even if
their maximum of emission are separated by 5 nm (data not shown).

As shown by the results, coupling synchronous fluorescence spectroscopy
(SFS) and CP decomposition allows extending the potential use of fluores-
cent whole cell biosensors to the study of the relationship between genes in a
systemic fashion. And if the maturation time of fluorescent proteins is taken
into account, then a temporal dimension can be integrated in the experiments
without disturbing the system integrity.

Figure 7: Concordance of CP decomposition for pattern C. Mode 1 (parameter x)
and Mode 2 (parameter y) are presented in box A and B. Box C showed the identified
sources spectra (SFS) in dotted lines and expected ones in solid lines.
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3.3 Limits of the method: rank of decomposition

A well-known problem when using CP decomposition is the choice of the
number of the components or sources with which the decomposition has to be
done. In others words, how many relevant signal sources contribute to explain
the variation of the data according to the different modes? The decomposi-
tion can be performed with infinity of sources but one cannot ensure that the
supplementary sources fit either relevant behaviors or the noise.

However it is possible to estimate an optimal number of sources according
to the energy component of each source. The energy component represents the
level of contribution of each source in the explained variation. The explained
variation indicates the fitting accuracy of the initial data tensor. For instance,
an explained variance of 90% means that 90% of the variation in the data is
described by the model, while the remaining 10% is related to the noise or data
not included in the model. Thus we can soundly define that if the nth supple-
mentary source is 2 log under the most explicative source, the optimal number
of sources is (n-1). Figure 8 shows the evolution of the energy component
versus rank of decomposition. The energy component stays almost stable for
4 sources with less than 1 log of difference between them. This means that 4
sources are needed to correctly fit the data. The 5th source is more than 2 log
lower and thus not required to significantly improve the model.

Figure 8: Component Energy for CP decomposition of dataset A achieved with 1 to
5 sources. Energy is expressed in logarithm.
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4 Conclusion

We developed an original method at the interface of synthetic biology and sys-
tems biology in order to study topology of gene networks. From a natural set of
genes representative of a cellular response, a linear synthetic circuit integrating
the corresponding promoters coupled with reporter genes can be constructed
and inserted into an organism of interest which can be used in multi-way
experiments to capture genetic network toplogies. Spectral data acquisition
realized with synchronous fluorescent spectroscopy helps to facilitate the pro-
duction of diversified multiway dataset. CP-based signal separation methods
solve simultaneously the overlapping issue linked to complex environments
(autofluorescent medium, metabolites, etc.) and the use of neighbouring re-
porter signals. CP decomposition was chosen because of its signal separation
potential but also because the models arising from it can be interpreted without
ambiguity. The proposed methodology was used to study a three-way dataset
that simulate different gene expression topologies. We demonstrated that the
method could be used to study several overlapping signals and that the quality
of the separation is linked to the interactions of these signals as a function
of cross parameters (modes) from which the gene network dynamic can be
described.

The proposed method cannot integrate as many genes as the classical tran-
scriptomic approach but offer the opportunity to confirm the identified net-
works and monitor them temporally without perturbing the system. In an
another work, we applied the method for the study of two antagonist genes
involved in the iron homeostasis (bfrB and pvdA) present in Pseudomonas
aeruginosa PAO1 strain (a model of soil bacterium) and described a sensibility
threshold of this simple gene system to iron starvation which was not yet
reported and thus confirmed the high potential of this methodology for the
study of living systems.
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Abstract

Iron regulation is a fine tuned mechanism in living organisms. In bacteria, part
of this mechanism involves the Ferric Uptake Regulator (Fur) protein possess-
ing a dimeric form that in presence of iron ions acts as transcription factors. In
this article, we present the in vivo and in silico characterizations of the paceB
promoter, a Fur target promoter found in Escherichia coli. The emphasis of the
work is put on building a simple model explaining the biological data obtained
and analyzing this model.

1 Introduction

Iron homeostasis in the human body, is ensured through a finely tuned absorp-
tion mechanism. Most of the iron absorption happens in the small intestine
and involves free iron ions. Once absorbed iron cannot be excreted from the
body. Misregulation of the absorption mechanism leads to iron overabsorption
related diseases such as hemochromatosis.

Within the framework of the iGEM 2013 competition, the Evry team pro-
posed a new way to fight against these diseases by reducing the number of
free iron in the intestine. To trap iron ions, we use siderophores, chelator
molecules naturally produced by the bacteria Escherichia coli to capture iron
in the environment in case of iron starvation. By inverting this mechanism one
can obtain bacteria capable of producing more chelators as the concentration
of iron in the environment increases.

To realize this goal, we designed a synthetic system composed of two
plasmids: the sensor plasmid containing a lacI-lva gene, encoding the re-
pressor of the lac promoter (plac), under the control of the paceB promoter

∗These authors contributed equally to the work
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(a low-iron concentrations sensitive promoter) and the effector plasmid can
contain any iron chelator gene under the control of a plac promoter. The
lacI/plac communication system allows to invert the iron concentration signal
to produce more effector molecules as the iron concentration increases.

To create such system, a first step is to test independently each parts: the
paceB promoter, the lacI/plac system and the chelator production. The two-
plasmids design makes the system modular, changing any of the two plasmid
allows to create different systems and decouples the sensor from the effector
system. Modeling is also facilitated as one can build a model of the whole
system from models of the parts.

In silico analysis of these systems is necessary to find the good range
of biological parameters to make E. coli bacteria produce the good quantity
of chelator molecule for a given iron concentration. As creating too many
chelator molecules would lead to underabsorption of iron by the body and too
few chelator molecules would make the treatment inefficient.

This article focuses on the first part of the system: the iron-sensing. It
presents its in vivo characterization and the mathematical models that have
been derived from these data. Our purpose here is threefold: 1) present the
characterization of the synthetic iron-sensing system in E. coli; 2) detail the
construction of the models that have been derived for this system and analyze
their output based on in vivo data; 3) propose a model for the response of the
iron-sensitive paceB promoter.

2 In vivo iron-sensing system

Description Iron homeostasis is essential to the survival of bacteria [1] as
iron is indispensable for the core mechanisms but in too high concentrations
becomes toxic. For designing our device, we took advantage of the mecha-
nisms naturally present in E. coli ensuring this homeostasis. The genes con-
trolling the iron transport through the membrane in E. coli are found in an
operon under the regulation of the Ferric Uptake Regulator (Fur) protein [2].
The Fur protein possesses two different binding sites [3]: one to bind to another
Fur protein, creating Fur dimers and the other to bind to an iron ion. The Fur
protein is thus found both in monomeric and dimeric forms in the cell [4]. The
dimeric form in the presence of iron ions has the particularity of being able to
specifically bind to a 19 base pairs DNA sequence motif called the Fur Binding
Site (FBS) [4]. We searched the whole genome of E. coli for such FBS and
kept only the sequences that were located in promoter regions. We cloned

108 ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY



2/10/2014- page #109

these sequences and we eventually selected the promoter of the aceB gene as
the only successful clone.

FUR FUR
Fe2+

Fe2+
FUR

FUR

RBS GFP T RBS GFP T

a) b)
FUR

FUR

FUR

Fe2+

Fe2+

c) d)

BBa_K1163001
BBa_B0010 BBa_B0012BBa_K1163101

sfGFPpAceB

pSB1A3

BBa_K1163102

BBa_K1163003
BBa_B0010 BBa_B0012BBa_K1163101

LacI-LVA
pAceB

pSB1A3

BBa_K1163103

Figure 1: The paceB promoter under the control of the Fur protein in absence
or presence of iron. a) At low iron concentrations, the Ferric Uptake Regulator
protein can be found both in monomeric and dimeric forms, that cannot bind to
the Fur Binding Site region of the paceB promoter allowing the transcription
of the Green Fluorescent Protein gene (Gfp); b) At high iron concentrations,
the Fur dimers can bind to two iron ions forming FeFur dimer complexes that
can bind to the FBS region of the paceB promoter, preventing the transcription
of the downstream sfgfp gene. The system is OFF. c,d) Map of the genetic
constructs used.

The paceB promoter works in the following way: in its default state, the
Fur dimer cannot bind to the FBS region of the DNA. However, when bound to
ferrous (Fe2+) or ferric (Fe3+) ions, the FeFur dimer complexes are capable
of binding to the FBS region of the paceB promoter preventing the RNA poly-
merase from transcribing the downstream gene. The behavior of the system is
illustrated in Figure 1.

Genetic construction The E. coli Top10 strain (BBa V1004) was chosen as
the chassis organism. The different constructs were cloned into the pSB1A3
high copy number plasmid carrying an ampicillin resistance marker for se-
lection. Figure 1b,c present the synthetic plasmids used for the experiments.
These plasmids were submitted to the biobrick registry under the IDs:
BBa K1163102 and BBa K1163103 respectively.
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Experimental setup Bacteria containing the construct were grown overnight
in 2mL of M9 minimal medium (10mL M9 salt (5x), 5µLCaCl2 (1M), 100µL
MgSO4 (1M), 800µL glycerol (50%), 12.5µL NaOH(pH 7.4), 40mL H2O)
supplemented with iron (50µL of FeSO4 (10nm) and 1mL of casamino acids
(0.2%)) and ampicillin. After one night, the cultures were diluted 200 times
in a fresh M9 medium with the same composition. These cultures were then
incubated at 37◦C for 8 hours and washed using iron-free M9 medium. The
bacteria were transferred to a 96 well plate containing 4 different M9 media
(24 wells each) with Fe2+ iron ion concentrations of 0.1µM, 1µM, 10µM and
100µM. For each well, the Optical Density at 600nm (OD600) and the GFP
fluorescence at 530nm were recorded every 10 minutes for 820 minutes using
a TECAN plate reader.

On the 96 well plate, 24 wells (2 rows) were used per medium in the
following way: 4 wells (blank) were filed only with medium; 8 (control) wells
were filed with E. coli Top10 bacteria possessing the construct of Figure 1d;
the 12 remaining wells (data) were filed with E. coli Top10 bacteria possessing
the construct of Figure 1c. For each set of wells, two different colonies were
used. This amounts to 2 biological and 6 technical replicates per medium.

The raw values obtained from the data wells were corrected for the medium
absorbance (background absorbance) using the blank wells and for the back-
ground fluorescence of E. coli using the control wells. These operations were
conducted following the data analysis procedure presented by [5].

Biological characterization The results from the plate reader experiment
are presented in Figure 2. The values correspond to the mean values over the
12 data wells for each medium. The values for the 100µM media were not
exploited because the bacteria did not grow well in this condition.

Figure 2a presents the optical density at 600nm (OD600) curves obtained
for the three media and corrected for background absorbance. The differences
in growth between the different media is interpreted as being due to the quan-
tity of iron molecules available for the cells growth. Figure 2b presents the flu-
orescence over OD600 corrected for background fluorescence and absorbance,
corresponding to the fluorescence per cell for the three media. A correlation is
observed between the cell fluorescence and the quantity of iron in the medium.
This is the expected behavior of the system. Finally Figure 2c presents the
growth rates mu for each medium, extracted from the data of figure 2a and
used in the models.

110 ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY



2/10/2014- page #111

-4000

-2000

0

2000

4000

6000

8000

0 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

57
0

60
0

63
0

66
0

69
0

72
0

75
0

78
0

81
0

F
lu

o
re

sc
en

ce
/O

D
(6

00
)

time (min)

a)

b)

10µM
1µM
0.1µM

[Fe]

-0.4

0

0.4

0.8

1.2

1.6

2.0

0 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

57
0

60
0

63
0

66
0

69
0

72
0

75
0

78
0

81
0

O
p

ti
ca

l D
en

si
ty

 (
A

.U
)

time (min) 

-0,1

0,4

0,9

1,4

1,9

2,4

0 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

57
0

60
0

63
0

66
0

69
0

72
0

75
0

78
0

81
0

G
ro

w
th

 R
a

te
 (

1
/m

in
)

time (min)

c)

Figure 2: Characterization of the behavior of the paceB promoter. The values
correspond to the average and error bars to the standard deviation of the values
obtained on the 12 data wells. a) Mean Optical Density (OD600) corrected for
background absorbance for the three different media. b) Mean fluorescence
over OD600 corrected for background absorbance and fluorescence. c) Growth
rate functions extracted from a and fitted by logistic regression.

3 Model construction

The goal of our mathematical models is to explain the biological data presented
before in the simplest way possible. Only a qualitative model can be done
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with these data as they are expressed in terms of fluorescence but the models
consider quantities of molecules. The mathematical framework used is the one
of Ordinary Differential Equations where each process is represented as a set
of reactions and modeled through mass action law.

Gfp Production The GFP production model represents the production of
Gfp proteins that would be obtained by considering no regulation of the sfgfp
gene. Its goal is to rule out the possibility that the differences in fluorescence
observed in figure 2b be due to the differences of growth rates of the cells
between the different medium shown in figure 2c.


d
dtRNA(t) = kt ·Np − (DRNA + µ(t)) ·RNA(t)
d
dtGFPI(t) = Kp ·RNA(t) − (DGFP + µ(t) + F ) ·GFPI(t)
d
dtGFPA(t)= F ·GFPI(t) − (DGFP + µ(t)) ·GFPA(t)

(1)

The system of equations derived for the GFP production model are pre-
sented in (1). In this model, the production of sfGfp mRNA molecules (RNA),
was considered proportional to the number of synthetic plasmids (Np) times
the transcription rate (Kt) of one sfgfp gene. The quantity of inactive Gfp
proteins (GfpI ) produced by the translation of one sfGfp mRNA molecule by
the ribosome depends on the quantity of sfGfp mRNA molecules times the
translation rate (Kp) of one sfGfp mRNA molecule. Finally, with some time,
the inactive sfGfp protein eventually folds into an active sfGfp protein (GfpA)
its production is thus proportional to the quantity of inactive sfGfp proteins
times the folding rate of one sfGfp protein (F ).

For all the quantities, two degradation mechanisms were considered: the
dilution due to cell division (µ(t)) computed for each medium from the data
(Figure 2c). And the natural degradation of the RNA molecules (DRNA) and
of the Gfp proteins (DGfp), the degradation rate was considered equal in both
folded and unfolded states.

Iron sensing The iron-sensitive model adds to the production model the
equations representing the behavior of the paceB promoter. In order to limit
the complexity of the model two approximations were done: we considered a
closed system for the total quantity of Fe and Fur dimers; The binding of the
FeFur dimers on the DNA was approximated as a chemical reaction.
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

d
dtp(t) = 2kFur

r · CF (t)− 2kFur
d · p(t)2 · q(t)

d
dtq(t) = kFur

r · CF (t)− kFur
d · p(t)2 · q(t)

d
dtCF (t) = kFur

d · p(t)2 · q(t) + kFBS
r · CB(t)− (kFur

r + kFBS
d · (Np − CB(t)))

·CF (t)
d
dtCB(t) = (Np − CB(t)) · kFBS

d · CF (t)− kFBS
r · CB(t)

d
dtRNA(t) = Kt · (Np − CB(t))− (DRNA + µ(t)) ·RNA(t)
d
dtGFPI(t) = KP ·RNA(t)− (DGFP + µ(t) + F ) ·GFPI(t)
d
dtGFPA(t) = F ·GFPI(t)− (DGFP + µ(t)) ·GFPA(t)

(2)

The system of equations derived for the iron-sensitive model is presented
in (2). The regulation behavior was modeled as follows: two iron ions (p) and
one Fur dimer (q) can bind to from a free FeFur dimer complex (CF ) with an
association rate of KFur

d and dissociate with a rate kFur
r . Free FeFur dimer

complexes can then bind to the FBS region of the paceB promoter on the DNA
of the synthetic plasmid creating a bound FeFur dimer complex (CB). This
binding was modeled as a chemical reaction with an association rate kFBS

d
and a dissociation rate kFBS

r .

As each bound FeFur dimer complex occupies the FBS of one plasmid,
preventing the transcription of the downstream genes, the number of synthetic
sfgfp genes that can be transcribed is then Np − CB , the total number of
synthetic plasmids minus the number of bound FeFur complexes. The last
two equations for the Gfp production are identical to the ones presented in
equation 1.

4 In silico iron-sensing system

The parameter values used in the models are presented in Table 1. These
values are either directly extracted from the literature or computed from it.
The column ”Sim” corresponds to the values used in the following simulations.
For both models, the growth rate parameter was computed from the measured
optical densities following the method of [5].

Kinetic parameters The direct and reverse kinetic parameters (ki
d, k

i
r), i ∈

{Fur, FBS} were computed from the association constants (Ki
A) using the

fact that:
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Symbol Unit Range Sim Description Ref.
Np ∅ [15− 300] 232 Number of plasmids [7]
kt min−1 [2.33− 7.42] 2.557 sfGfp DNA transcr. rate [8]
KP min−1 [3− 5.25] 4.276 sfGfp mRNA transl. rate [9]
F min−1 [0.045− 0.056] 0.056 sfGfp folding rate [10]
DmRNA min−1 [0.166− 0.217] 0.216 mRNA degrad. rate [11]
DGFP min−1 [0.011− 0.013] 0.013 sfGfp degrad. rate [5]
KFeFur

D µM 1.2± 0.06 1.2 Fe-Fur dissoc. cst [12]
KFBS

D nM 20 20 FeFur-FBS dissoc. cst [12]

Table 1: The parameters directly taken from the literature. The column Sim
corresponds to the parameters used in the simulations. These values were
obtained by running a minimization algorithm on the sum of square differences
between the normalized data and model output.

Ki
A =

ki
d

ki
r

⇒ ki
d = Ki

A · ki
r

The Ki
A were computed from the literature following the formula Ki

A =
1

Ki
D·Na·v where Ki

A is the association constant, Na the Avogadro number and

v the volume of an E.coli cell (v = 1.2µm3 [6]).

Hence, only the ki
r remain as a free parameters. In order to determine the

influence of these parameters on the dynamic of the model, we conducted a
specific sensitivity analysis for a range of possible ki

r values and a logarithmic
step of 100.1min−1. We analyzed two different outputs of the model for each
ki

r: the final quantity of active Gfp proteins (at t=820 min) and the mean
quantity active Gfp proteins. The standard deviation was computed from all
the different simulations and is presented in Table 2). The analysis was run
for Fe0 = 104.5 iron ions because this quantity leads to the more unstable
case. The results can thus be more easily generalized. It revealed that the
dynamics of the model was strictly not affected as long as kFur

r > 10−4min−1

and kFBS
r > 10min−1. For the simulations, we have arbitrarily chosen values

in this range: kFur
r = 15min−1 and kFBS

r = 19min−1.

Characterization To compare only the qualitative behaviors, both the bi-
ological and model data were normalized by dividing by the highest value
reached on the three media. We show a comparison between the biological data
and the production model (Figure 3a) and the iron-sensing model (Figure 3b).
As can be seen, the production model alone does not explain at all the change

114 ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY



2/10/2014- page #115

Modified parameter Range Unit Output Std. dev.
kFur

r [10−4 − 104] min−1 Final Gfp output 0.0031
kFur

r [10−4 − 104] min−1 Mean Gfp output 0.0098
kFBS

r [101 − 104] min−1 Final Gfp output 0.0029
kFBS

r [101 − 104] min−1 Mean Gfp output 0.0026

Table 2: Results of the sensitivity analysis on the kinetic parameters with 104.5

iron ions
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Figure 3: Comparison between the obtained biological data and the simulation
output. The biological and model data are normalized by dividing by the
highest value of each set of curves. a) Quantity of GFPA proteins predicted
by the GFP production model and b) Quantity of GFPA molecules predicted
by the iron-sensing model. Initial non-null parameters of the simulation:
Fe0 = 103, 103.5, 104 [13] respectively for the media [Fe] = 0.1, 1, 10µM,
Fur0 = 1000 [14]
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in fluorescence and does not possess the same dynamics as the biological
data. Even if not perfect, the iron sensing-model is capable of explaining the
change in Gfp production due to the difference in iron concentration. It better
simulates the biological data.

Sensitivity analysis Finally, we conducted a sensitivity analysis in order
to know which parameters impact the most the behaviors of the models. We
used the Elementary Effects method (EE) [15] which allows to estimate the
contribution of each parameter and the extent of their coupling. The method
is the following: construct a grid from the parameter space with p values per
dimension uniformly separated by a distance ∆. Generate k trajectories on
this grid starting each time at a random point and moving by modifying one
parameter at a time until all parameters have been modified. For each point
on the trajectory, the difference in the model output compared to the previous
point is estimated. The method produces two measures: µ∗ assesses the effect
of the parameter on the model while σ assesses the coupling with the other
parameters.
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Figure 4: Sensitivity analysis plot, showing for each parameter its mean effect
on the model µ∗ against its variance σ. a) Analysis of the qualitative behavior
of the model considering the area under the GFPA curve; b) Analysis of the
quantitative behavior by considering the final quantity of GFPA produced.
All the non-appearing symbols are superposed in (0,0). Elementary Effects
parameters: r = 75, p = 14, ∆ = 7.

Two analyses were conducted on the iron-sensing model. In Figure 4a,
the output of the model was considered to be the area under the activated Gfp
proteins (GFPA) curve. In Figure 4b, the output was set to be the final quantity
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(at t=820min) of activated Gfp proteins (GFPA). The first output provides
information about the effect of each parameter on the qualitative behavior of
the model whereas the second approach gives an idea about the variations of
the quantitative behavior. It can be seen that the qualitative behavior only
depends on three parameters (Kp, F,DRNA) that can be considered as limiting
factors of the model. The quantitative behavior on the other hand depends on
all the parameters with different degrees of coupling.

5 Discussion

We made the choice of preferring the simplicity of the equations and impose
some more assumptions instead of increasing the complexity of the models
mainly because of the few biological data at hand. This led to an oversimplifi-
cation of some phenomenon, for example for determining the kinetic constants
where a Fur protein is associated to a whole DNA molecule, resulting in a loss
of accuracy. On the other hand, this level of complexity was enough to estimate
the different levels of Gfp production at different concentrations of iron.

6 Conclusion

In this paper, we have shown the design and the characterization of the iron-
sensitive promoter paceB. The biological experiments prove that the synthetic
construction effectively works but shows some limitations because of the tox-
icity of iron in too high concentrations. Then we detailed the construction of
a mathematical model to explain these biological data. This model is capable
of reproducing the tendency of the biological system but is too simplistic to
fully reproduce the behavior. Finally, the sensitivity analysis revealed that
only three parameters impact the qualitative behavior of the model while all
the parameters impact its quantitative behavior.

References

[1] Simon C Andrews, Andrea K Robinson, and Francisco Rodrı́guez-Quiñones.
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Abstract

Modularity is a widespread principle used in nature and even more prominently
in engineering. Protein modules harvested from natural proteins are used
in synthetic biology to construct new combinations with new functionalities.
Our ability to design protein domain modules with defined properties opens
exciting prospects for biological engineering. DNA binding domains can be
designed to target almost any specific DNA sequence, which can be used for
the design of designed orthogonal transcription factors. Designable DNA-
binding TALE (Transcription activator-like effector) domains can be used to
construct genetic logical NOR gates, which can be used, based in the same
Boolean logic in electronics to build complex logic circuits (Gaber et al.,
NatChemBiol, 2014) in mammalian cells that could be used to engineer cel-
lular response for new sensors, therapeutic or other applications. While the
number of natural protein folds in the nature is limited, we can construct new
polypeptide folds using modular building blocks. We have used coiled-coil
modules to guide the self-assembly of the new topological protein folds. In
this engineering approach the protein fold is defined by the sequential order
of concatenated coiled-coil interacting pairs, which can self-assemble through
interactions between segments into protein polyhedral cage. This principle
was demonstrated on the construction of a nanoscale polypeptide tetrahedron,
composed of a single polypeptide chain composed of 12 coiled-coil forming
segments (Gradišar et al., NatChemBiol, 2013). This principle presents a new
paradigm of structural scaffold formation, with potentials for many different
applications.

1 Introduction

Biological systems are based on the self-assembly of natural polymers, such as
DNA and proteins, and are one of the most complex forms of the “organized
chaos”. The sophisticated machinery of a cell is far from being understood
completely, however, due to the spectacular progress of molecular biology in
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the last few decades, we are now able to genetically alter living organisms, and
endowing them with new characteristics and traits not found in nature. This
knowledge has eventually lead to the genesis of a new discipline, synthetic
biology, which uses the engineering principles for manipulation of biological
systems [1]. While synthetic biology can be a powerful tool for studying
biological systems and their molecular mechanisms, its main focus is creating
new biological parts, devices and systems from well characterized elements.

Many natural proteins are intrinsically modular, composed of different
protein domains, which facilitates wide combinatorial complexity. Ideal mod-
ular elements are characterized by their relative independence of the context.
Modules can be rearranged for new purposes, while retaining similar basic
properties as the original element in the initial context. Multimodular proteins,
therefore, can be designed for new specific functions in the context with other
modules, isolated from the endogenous cellular processes. A special subset of
protein modules is particularly attractive for synthetic biology, the one where
the structure of protein modules can be rationally designed to perform different
functions, such as interactions with other specific proteins or DNA sequences.
Wide basis set of designed modules therefore represents an extremely powerful
toolbox for synthetic biology. Two types of designable modules have recently
been discovered and elaborated, design of proteins that recognize any selected
DNA sequence and coiled-coil interacting segments. These traits make mod-
ular proteins, such as zinc finger proteins (ZFPs), transcription activator-like
effectors (TALEs) and coiled-coil proteins powerful tools for use in synthetic
biology, with prospects in bionanotechnology and therapeutic, diagnostic, en-
vironmental and industrial applications.

2 Designable modular DNA-binding domains

Modular DNA-binding domains with a known DNA recognition code allow
design and construction of proteins to bind virtually any nucleotide sequence
[2,3]. Such designed proteins should display high DNA-binding affinities and
low cross-reactivity due to the high specificity. They should be able to target
DNA sequences that are sufficiently long to ascertain the absence of the target
site in the host genome of high complexity and high orthogonality among
several designed DNA domains used in synthetic devices. Recognition se-
quence of 18 nucleotides provides combinatorial complexity above 60 billion
combinations and even taking into account the off target binding to sites having
one to two mismatches they still provide large potential basis set.

Zinc finger proteins (ZFPs), which are the oldest well understood modular
DNA binding domains represent a large repertoire of DNA-binding domains
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among the thousands of protein domains characterized up to now [4,5]. Each
finger of the DNA-binding domain binds to the designated trinucleotide [6].
By combining several fingers, we can design and create proteins for specific
targeting of DNA. However, individual finger domains and linkers between
domains can affect the binding efficiency of the neighboring fingers, which
demonstrated an important limitation to the designable modularity of ZFPs [7].
Transcription activator-like effectors (TALEs) are transcription factors, orig-
inating from plant pathogen bacteria. Their DNA-binding domain contains
modular repeats of 34 aminoacids, where the 12th and 13th residue determine
specific recognition of a single base pair [8,9]. Unlike ZFPs, these modules can
be arranged into a single DNA-binding domain, designed for almost perfect
reliability of binding to a specific DNA sequence. This designable modular-
ity allows their combinations with other protein domains for a wide array of
functions. For example designed DNA-binding domains can be fused to nucle-
ases [10-13] with great potential for the genome engineering, while there have
been reports of their fusion with biosynthetic enzymes [14], transcriptional
repression and transcriptional activation domains [15-18] and many others.

2.1 Enhancing metabolic flow

Many organisms produce biologically active substances, useful e.g. for the
pharmaceutical or food industry. In many cases, the productivity of the de-
sired compound by combinations of natural biosynthetic enzymes needs to
be improved. A branch of synthetic biology, known as metabolic engineer-
ing, strives to increase the production of these substances using genetically
engineered organisms. A number of research groups have published reports
on different strategies for the enhancement of the metabolic flow [19-21] and
even construction of metabolic pathways, non-existent in nature [22].

The bottlenecks in biosynthetic processes often lie in the nonoptimal meta-
bolic flow between sequential biosynthetic processes, including loss of in-
termediates to shunt reactions, toxicity of intermediates, imbalanced proces-
sivity of the biosynthetic enzymes etc. This can result in low production
of the selected compound. Nature has, in some cases, found solutions for
this limitation by forming enzyme complexes or by enclosing enzymes of
the selected biosynthetic pathway in microcompartments, such as for example
carboxysomes. This results in their close proximity, causing a faster diffusion
of intermediates to the next enzyme. One of the most innovative synthetic
biology-driven solutions to enhance and optimize metabolic flow is binding
biosynthetic enzymes to a scaffold, which results in their fixed close proximity,
similarly to natural enzyme complexes and microcompartments, yet adaptable
to different protein combinations. Coupling of biosynthetic enzymes to pro-
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tein [23,24] and RNA scaffolds [25] through protein dimerization domains
and RNA-aptamer binding proteins, respectively, has been reported. Although
these solutions produced encouraging results, one of the drawbacks of both
approaches is the limited number of scaffold interaction domains (i.e. protein-
protein interaction domains and RNA-aptamer binding proteins), while many
biosynthetic pathways consist of a large number of enzymes.

An alternative approach to the same strategy, using DNA as a scaffold
to bind modular DNA-binding domains fused to biosynthetic enzymes, was
published by Conrado et al. [14] Over 1000 characterized ZFPs with defined
target sequences are readily available [4,5], and several of those were selected
based on the diversity of their binding sequences and previous reports on their
binding affinity. Fusion of the selected ZFPs to biosynthetic enzymes in com-
bination with the scaffold DNA that arranges the enzymes in a defined order
based on the arrangement of the binding sites for the respective ZFPs. This
approach provides the linear arrangement of biosynthetic enzymes taking into
account the periodicity of the DNA helix. This approach was demonstrated
for the production of resveratrol, mevalonate and 1,3-propanediol resulted in
active chimeric enzymes, capable of producing selected compounds, while
binding these chimeras to a DNA molecule with ZFP binding sites improved
yields of biosynthesis up to 5-fold. Such an approach, based on modular
designable elements such as ZFPs, can enable manipulation of biosynthetic
pathways, consisting of large numbers of enzymes. In contrast to protein
scaffolds, an additional advantage to this approach is spatial control of bound
enzymes due to the highly predictable structure of a DNA molecule, while a
DNA scaffold is also easy to design and produce in comparison to the highly
complex RNA scaffolds.

2.2 Information processing through transcriptional regulation based on
modular DNA binding domains

Cells are constantly exposed to different signals from the environment and
from the internal cellular processes and adapt their state to these signals, based
on different processing of those input signals. Synthetic biology aims to rewire
cells for processing external and/or internal signals in new, complex and pre-
dictable ways. In this era of rapid (bio)technological advances, synthetic biolo-
gists created intricate designed systems, such as logic circuits [26-31], bistable
switches [32,33], oscillators [34-36] and cellular counters [37]. The potentials
for use of these genetic networks lie in applications, such as environmental or
diagnostic sensing, and cell therapy, while the autonomous effective replica-
tion of cells provides the cost effective manufacturing of a cellular processor.
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Artificial genetic circuits designed so far typically consist of multiple tran-
scriptional regulators, wired into genetic networks to control cellular response.
As such, they require introduction of several regulatory elements, which should
ideally operate independent from the cell environment to ensure the reliable
performance of the designed circuit. Therefore, mostly natural protein regula-
tors have been used for the construction of synthetic biological systems [26-
29,32-37]. Apart from their interaction with internal cell processes, the diverse
biochemical properties of different proteins may require many adjustments and
fine-tuning of the designed systems to ensure their unhindered and optimal
behavior [38]. Synthetic transcription factors based on modular DNA-binding
domains, can overcome these limitations due to their designability. Genetic
fusion of the DNA-binding domain with transcriptional repression or activation
domains result in creation of artificial transcription factors, able of highly
specific and effective transcriptional regulation [15-18]. The ability to design
these synthetic transcription factors to target a large sequential diversity of
DNA operators supports construction of complex designed genetic circuits.
In a recent publication by Gaber et al. [39] we employed repressors, based
on transcriptional activator-like effectors (TALEs), to optimize construction of
orthogonal NOR gates and implemented all 16 two-input logic functions from
combinations of the same type of NOR gates in mammalian cells. In addition,
we designed and implemented a genetic logic circuit, where one input is used
to select between two logic functions for processing data within the same
circuit. In addition to such static logic circuits, it would also be desirable to
apply the designable, orthogonal building elements like TALEs as the building
blocks for the construction of dynamic, time-dependent logic systems, such
as bistable switches. This would provide a potent expansion of the biological
engineering toolbox and promote construction of even more intricate genetic
systems.

The approach for the construction of genetic circuits, described above,
could also be applied for other modular DNA binding domains, such as ZFPs
or the CRISPR/Cas system. The availability of a large number of designable
orthogonal DNA binding domains supports construction of parallel orthogonal
logic gates and switches. The introduction of designed, orthogonal logic op-
erators can improve the predictability, reliability, modularity, and standardiza-
tion of designed biological information processing systems [1]. Devices with
designed logic functions in mammalian cells could be used to evaluate and
respond to combinations of signals from the environment, to the physiological
state of an organism, or for recognition of protein combinations, characteris-
tic for cancer cells [41]. Cells, as self-replicating and cost-effective cellular
factories, also open the prospect of massive information processing devices.
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3 New protein folds from modular coiled-coil domains

DNA molecules have been used to rationally design bionanostructures of great
complexity, adopting versatile two-and three-dimensional shapes, such as dif-
ferent polyhedra [42-44]. Proteins are the basic building blocks of all cells, and
as they fold into the defined structures, they also represent the potent building
blocks for artificial nanostructures, with an additional advantage of low-cost
production in the recombinant form. However, the main disadvantage of us-
ing proteins for building nanostructures is the complexity of their structural
information, which by far surpasses the complexity of any other biological
molecule.

Creating new structural patterns of protein folding represents a big chal-
lenge, since protein structures are determined by a large number of weak, but
cooperative long range interactions. De novo protein fold design has been,
with few exceptions, successful only for folds, similar to those existing in
nature [45-47]. A new synthetic biology approach to formation of new protein
structures is based on the principle of modularity. Well characterized protein
motifs, such as coiled-coils, can be designed to self-assemble into defined
structures independently from other processes [48].

3.1 Self-assembly of new protein folds

The coiled-coil motifs are composed of two or more intertwined α-helices. The
characteristic heptad repeats form two turns of a helix, spanning approximately
1nm. Most often coiled-coils form dimers in either parallel or antiparallel
orientation. Combining two types of interacting coiled-coil segments can only
result in assembly of one-dimensional fibrillar structures [49], while for the
construction of two- and three-dimensional structures at least 3 different build-
ing elements are required.

In the publication by Gradišar et al. [50], the authors reasoned that it should
be possible to self-assemble the designed three-dimensional objects from a
single polypeptide chain, composed of coiled coil-forming segments (fig. 1).
The key is sequential concatenation of the coiled-coil segments, separated by
flexible linker peptides. The coiled coil segment pairs in a selected orientation
with its complementary interacting segment within the same polypeptide chain
thus driving the self-assembly. Each of those coiled coil-forming segments is
in isolation unstructured and forms a coiled-coil helix only when it dimerizes
with the corresponding complementary segment. This concept was demon-
strated by the construction of a tetrahedron with edges of 5 nm, composed of
6 pairs of coiled-coil segments that self-assembles into the designed fold from
the linear 12-segment polypeptide chain. Self-assembly of the tetrahedron was
confirmed by TEM, AFM, DLS, CD and fluorescent protein reconstitution.
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Figure 1: Design of the topological protein fold from designed coiled-coil modules.
Tetrahedral nanostructure self-assembles from a single polypeptide chain composed
of 12 segments that form 6 orthogonal coiled-coil dimers (Gradišar et al., Nature
Chemical Biology, 2013).

This strategy allows creation of new topological protein folds, which have
not been observed in nature. The design, based on coiled-coil segments, can
produce asymmetric structures, difficult to achieve by the assembly of pro-
tein domains or other nanoparticles. Due to their variable length and high
length/width aspect ratio, coiled-coil dimers seem to be an almost ideal type of
building element, allowing formation of large cavities within the polypeptide
polyhedra, unlike interacting protein oligomerization domains, which occupy a
major fraction of the volume. It is conceivable that such technological platform
could be used for a range of applications, such as using designed cages for the
drug delivery, designed vaccines or creation of artificial catalytic sites.

4 Conclusions

Modular proteins can be disassembled and redesigned for new specific func-
tions, which makes them a particularly powerful tool for the use in synthetic
biology. Two important areas of protein modularity are the designed DNA
binding domains that underlay self-organization of protein domains along the
DNA sequence and regulation of complex cellular devices and structural mod-
ularity based on orthogonal coiled-coil interactions underlying new type of
topological protein folds.
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Figure 2: Schematic representation of the layred logic gate based on the designed
modular TALE DNA binding domains. Orthogonal TALE-based repressors form
NOR logica gates that can form the layered logic genetic circuit. (Gaber et al., Nature
Chemical Biology, 2014).

Transcription activator-like effectors (TALEs) have been used to construct
synthetic transcriptional regulators, implemented for construction of static logic
gates and bistable switches in mammalian cells [39] (fig. 2). The prospects for
use of these genetic circuits lie in applications such as sensing and medical
therapy. Zinc finger protein domains, fused to biosynthetic enzymes, have
been shown to improve biosynthetic yields through their binding to a DNA
molecule [14]. This aspect is particularly important for the industrial produc-
tion of biological substances, while such an approach could also be used for the
construction of new metabolic pathways and biologically active compounds.
Modularity is not only important for the construction of in vivo synthetic
systems, but also for the design and construction of new, self-assembled pro-
tein structures, which was recently demonstrated on the self-assembly of a
protein tetrahedron [50]. Designed, synthetic modular proteins will expand
the existing toolbox of available elements and contribute to construction of
complex synthetic biological systems and protein structures, composed of a
large number of elements. In conclusion, protein modularity is of crucial
importance for the future development of synthetic biology.
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Abstract

Sixty  years  ago,  Alan  Turing  showed  that  a  system  of  reacting  and 
diffusing chemicals could generate spontaneous, stable, stationary, spatial 
patterns of chemical  concentrations.  Since then “Turing patterns” have 
been used successfully  to  explain the  development  of  patterns  in  both 
multicellular  and  unicellular  organisms.  In  single-celled  protists  and 
bacteria, a common motif for spatial pattern formation is the autocatalytic 
production  of  filamentous  protein  polymers  from  globular  protein 
subunits, which is an instance of the “activator-substrate depletion” (A-
SD) mechanism of Turing patterning. A feature of A-SD models is that 
the  peak  of  activator  concentration  tends  to  form at  the  center  of  the 
spatial domain rather than at the edges.  Hence,  a generic A-SD model 
cannot easily account for the generation of patterns with activator peaks at 
the poles of a cell. Here, we present a modified A-SD model that readily 
generates patterns with polar activator peaks. We explore the parameter 
combinations  that  determine  whether  the  pattern  has  polar  or  central 
peaks. We propose that our mechanism may be used by living cells as a 
means to obtain polar localization of proteins. 

 1 Introduction

The impact of  protein localization is evident at all  levels of  biological  
organization, from single cells to tissues,  organs and whole organisms. 
Segregation  of  chromosomes  during  cell  division,  the  positioning  of 
flagella,  and  the  specification  of  embryonic  axes  are  some  of  the 
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processes that depend on the timely placement of regulatory proteins at  
specific positions in the cell or organism. Advances in microscopy have 
dispelled the notion that protein localization is exclusive to the eukaryotic 
world.  Bacteria  such  as  Escherichia  coli,  Bacillus  subtilis and 
Caulobacter  crescentus all  exhibit  dynamic  localization  of  specific 
proteins during the course of their  cell  division cycles .  In addition to 
modern methods to visualize and identify these localized proteins, many 
experiments  have  sought  the  mechanisms  behind  dynamic  protein 
localization. In many cases, a particular protein is found to localize by 
binding  to  a  previously  localized  protein  (an  “upstream  factor”), 
ultimately leading to the identification of “landmark” proteins that appear 
at specific locations in the cell in the absence of an upstream factor. How 
do  landmark  proteins  spontaneously  self-organize  in  the  cell?   Not 
surprisingly, a Turing-type mechanism has been proposed in many cases 
to explain autonomous pattern formation of landmark proteins . 

The essence of Turing’s idea  was most clearly presented in a classical 
paper by Segel & Jackson ,  who showed that stable, stationary, spatial 
patterns can be generated in two-component  reaction-diffusion systems 
under a few generic conditions: one component must be self-activating 
(autocatalytic) and slowly diffusing, and the other component—the fast-
diffusing species—must inhibit the self-activation process in some way. 
In  the  Activator-Inhibitor  Production  (A-IP)  mechanism,  the  activator 
produces  an  inhibitor  that  rapidly  diffuses  away  from a  zone  of  high 
activator  concentration  and  restrains  the  self-activation  process  in 
surrounding  regions.  In  the  Activator-Substrate  Depletion  (A-SD) 
mechanism, the activator self-assembles from substrate molecules, which 
rapidly  diffuse  into  the  region  of  activator  accumulation  and  thereby 
deplete the substrate from surrounding regions. In either case, the Turing 
instability generates patches of high activator concentration surrounded by 
regions  of  low  activator  concentration,  either  because  inhibitor 
concentrations  are  high  or  substrate  concentrations  are  low.  A second 
activator patch can form only at some distance from the original patch, 
where inhibitor concentration is low enough or substrate concentration is 
high enough to allow for production of a new activator. This distance is 
the characteristic wavelength of the Turing pattern . 

In this study we focus on pattern formation by A-SD models in growing 
domains of one spatial dimension (i.e., a line segment, 0 ≤ x ≤ L(t), dL/dt 
>  0)  to  represent  a  growing,  rod-shaped  cell  where  x is  the  spatial 
coordinate and  L(t) is the length of the cell which varies with time  t. A 
common feature of these patterns is that the first activator peaks forms at 
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the center of the domain  (x = L/2), and subsequent peaks bifurcate from 
previous peaks as the domain expands . Hence, the AS-D model fails to 
explain patterns that have activator peaks at the boundaries (the poles of  
the cell). To generate patterns with activator peaks at the poles, we add an 
additional  reaction—de  novo synthesis  of  activator—to  the  classical 
Gierer-Meinhardt reaction-diffusion equations (RDEs). Simulations of the 
modified RDEs exhibit patterns with polar maxima that are reminiscent of 
landmark protein localization in rod-shaped bacteria.
 
2 Methods

We model Turing patterns in one spatial dimension, x, by RDEs (Eq. 1-2) 
for activator concentration a(x,t) and substrate concentration s(x,t):

∂a
∂t

= k
aut

⋅a2 ⋅ s − k
deg

⋅a + k
dnv

⋅ s − k
as

⋅a + D
a

⋅ ∂2a
∂x2

(1)

∂s
∂t

= k
syn

− k
deg

⋅ s − k
dnv

⋅ s − k
aut

⋅a2 ⋅ s + k
as

⋅a + D
s
⋅ ∂2s
∂x2

(2)

The “classical Geirer-Meinhardt” equations lack the terms kdnv∙s and kas∙a, 
which  correspond  to  de  novo synthesis  of  activator  (polymer)  from 
substrate (monomer) and to dissociation of polymer into monomers. We 
solve the RDEs (1-2) in one spatial dimension, 0 ≤ x ≤ L, by the method 
of lines  . That is, we discretize the spatial dimension into n compartments 
(n = 100) of length h = L/n, and approximate ∂2/∂x2 by a central difference 
scheme (Eq. 3a). We implement no-flux boundary conditions as described 
in Eq. (3b,c). (In these equations, ci represents the concentration of either 
activator or substrate in compartment i.)

∂ 2ci
∂x2

= ci−1 − 2 ⋅ci + ci+1

h2
      for i = 2,…, 99

(3a)

∂ 2c1

∂x2
= c2 − c1

h2

(3b)

∂ 2c100

∂x2
= c99 −c100

h2

(3c)

In some cases we consider a growing spatial domain, L = L(t), dL/dt > 0. 
In this case, we keep  n fixed at 100 and let  h(t)  = L(t)/n increase with 
growth 
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dh
dt

= µ ⋅h (4)

The  resulting  2n+1  ordinary  differential  equations  are  solved  using 
MATLAB’s ode15s solver. The parameter values used in our simulations 
are recorded in Table 1.

Table 1: Parameter set for the A-SD model*

 ksyn  = 2 min-1 kdeg = 0.25 min-1  kaut  = 1.5 min-1

 kas  = 1 min-1  Ds = 100 μm2. min-1 Da  = 0.01 μm2. min-1

μ  = 0.005 min-1

* The values of the de novo polymerization constant,  kdnv , are defined in the text 
and figure captions.

3 Results

3.1 De novo conversion of substrate to activator supports activator  
peaks at cell poles

A  Turing-type  RDE  generates  periodic  activator  peaks  with  a 
characteristic wavelength, λ0 that depends on parameter values. If L ≈ λ0/2, 
the  domain  is  large  enough  to  accommodate  a  half-wave,  with  the 
activator maximum pinned at one end of the cell and the minimum at the 
other end. If  L(t) increases to ~ λ0,  the domain can accommodate either 
two activator half-peaks at the poles with a minimum in the center (polar 
peaks) or an activator peak at the center with minima at the poles (polar  
troughs).  As  L(t)  increases  further,  additional  activator  peaks  are 
generated, but the patterns can still be classified as either “polar peaks” or 
“polar troughs”. In A-IP models, either pattern is possible . In classical A-
SD models, however, only polar trough patterns are observed. 

In the classical A-SD model, Eq. (1-2) with kdnv = kas = 0, the only route to 

new activator production is the autocatalytic term, k
aut

⋅a2 ⋅ s. Hence, new 

activator  tends  to  be  produced  where  activator  concentration  is  the 
highest,  namely  at  the  peak.  However,  the  substrate  necessary  for 
activator production is more abundant at some distance from the peak. 
Hence, the activator peak tends to grow into the surrounding zone, where 
more substrate is available, and a depression tends to form in the center of 
the peak, where substrate concentration is lowest. When the activator peak 
reaches the center of the domain, substrate availability is equal on both 
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sides of the peak, and the peak is anchored there. For this reason, classical 
A-SD models are unsuccessful in explaining patterns with polar peaks of 
landmark proteins. 

To account for polar activator peaks, previous groups have modified the 
classical A-SD model in various ways. For the MinCD/DivIVA system in 
B.  subtilis,  Howard   proposed  that  increased  curvature  of  the  cell’s 
boundary at  the poles might  account for polar  localization.  To explain 
growth zone formation in fission yeast, Csikasz-Nagy et al.  introduced a 
polarly  localized  nucleating  factor  that  stimulates  the  autocatalytic 
production  of  activator  from  substrate  at  the  poles.  While  these 
modifications are reasonable and yield appropriate results, they are case-
specific.  Examples  of  polar  peaks  in  other  biological  systems  would 
presumably  need  other  case-specific  explanations.  We  seek  a  more 
generic account of polar activator peaks in A-SD models.

Since  the  autocatalytic  term  biases  A-SD  models  to  produce  central 
activator  peaks,  we  conjectured  that  an  alternative  source  of  activator 
production might create a different pattern. Hence, we introduced the de 

novo activator production term, kdnv ⋅ s,  into Eq. (1-2).  This term, which 
implies that new activator can be produced from substrate independent of 
pre-existing activator, is reasonable both chemically and biologically. The 
de  novo term  describes  the  spontaneous  production  of  polymers 
(activator)  from  a  handful  of  monomers  (substrates),  while  the 
autocatalytic term describes the extension of pre-existing polymers by the 
addition of  new monomeric  subunits.  Our model  also contains  a term, 
kas∙a for the depolymerization of activator back to substrate monomers.

To test the impact of the de novo term, we simulated a cell of length L ≈ 
λ0,  i.e.,  long  enough  to  accommodate  either  a  central  peak  or  central 
trough pattern. For the classical A-SD model, kdnv = kas = 0, we expected to 
find central peak patterns exclusively. By increasing the strength of  de 
novo synthesis, we expected to find examples of spontaneous, stable polar 
peaks. We initialized the model with an excess of activator at one pole.  
When kdnv is small, the activator peak moved towards the center (Figure 
1A and B). When we initialized the model with excess activator at the 
center, the peak stayed in place (Figure 1C). Hence, for small values of 
kdnv, our modified RDE behaves exactly as the classical A-SD model. For 
larger values of kdnv, we saw that, for some initial conditions, the activator 
peak was no longer exclusively central.  If the activator was initialized 
with a central  bias, then the peak remained at  the center  (Figure 2C). 
However, for simulations that were initialized with an excess of activator 
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at one pole, we observed activator half-peaks not only at the end with the 
initial bias but also at the other end (Figure 2A and B). While one of the 
half-peaks  clearly  arises  from  the  initial  bias,  the  other  appears 
spontaneously,  since the cell  is  long enough to hold two half-peaks at 
opposite poles. 

 A    B      C

      cell length (μm)

Figure 1: Space-time plot of activator concentration for varying initial conditions 
of the activator and  kdnv = 1 min-1.  Initial  activator bias is provided by setting 
activator  concentration  as  1  dimensionless  unit  in  one  compartment  and  0 
dimensionless  units  in  all  other  compartments.  The  color  bars  indicate  the 
concentration of the activator. (A) Initial activator bias at the left pole i.e. a(1,0) = 
1 dimensionless unit.  (B) Initial activator bias at the right pole i.e. a(100,0) = 1 
dimensionless  unit.  (C) Initial  activator  bias  in  the  middle  i.e.  a(51,0)  =  1 
dimensionless unit.

A          B C

cell length (μm)

Figure 2: Space-time plot of activator concentration for varying initial conditions 
of the activator and  kdnv = 10 min-1. Initial activator bias is provided by setting 
activator  concentration  as  1  dimensionless  unit  in  one  compartment  and  0 
dimensionless  units  in  all  other  compartments.  The  color  bars  indicate  the 
concentration of the activator. (A) Initial activator bias at the left pole i.e. a(1,0) = 
1 dimensionless unit  (B) Initial activator bias at the right pole  i.e. a(100,0) = 1 
dimensionless unit. (C) Initial activator bias in the middle i.e. a(51,0) = 1 unit.
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3.2 Central and polar peaks are alternative attractors 

Irrespective of the value of  kdnv , a central activator peak was obtained if 
the  initial  bias  was  at  the  center,  suggesting  that  the  location  of  the 
activator peak is sensitive to initial conditions. To determine the effects of 
initial  conditions  on  pattern  formation,  we  simulated  our  model  with 
random  sets  of  initial  conditions.  In  Figure  3A,  we  plot  the  final 
distribution of activator for 500 simulations, each initialized with different 
initial  conditions  selected randomly.  For  kdnv   =  0,  only  2 of  500 runs 
showed polar activator peaks. In these two cases, we suspect, both ends of 
the cell were initialized with nearly equal activator concentrations. When 
kdnv  was increased from 0 to 1 or 10, a significantly larger number of runs 
(≈ 40%) showed polar peaks (Figure 3B and C). Further increase in the 
value of  kdnv showed moderate  increase in  polar  peaks,  indicating  that 
central-peak patterns are dominant over polar-peak patterns. Importantly, 
both patterns  are attractors,  each with its  own basin of attraction.  The 
effect of increasing kdnv is to increase the basin of attraction for the polar 
attractor, albeit only to a limited extent.

A B C

   cell length (μm)

Figure 3: Final activator distribution (at t = 500 min) plotted for 500 independent 
runs,  each with random initial conditions (at  t = 0) of activator and substrate, 
ranging from 0 to 1 dimensionless units. The color bars indicate the concentration 
of the activator. (A) kdnv = 0 min-1. (B) kdnv = 1 min-1. (C) kdnv = 10 min-1.

3.3 Asymmetric pre-patterns lead to polar activator peaks above a  
critical value of kdnv

As our simulations show, varying initial conditions give rise to different 
final patterns. How then can the model explain robust polar localization of 
landmark  proteins?  In  most  cases,  cells  inherit  a  pre-pattern  or 
asymmetric  polarity  from the  parent  cell.  We therefore  investigated  if 
polar peaks are robustly inherited from asymmetric pre-patterns, i.e. from 
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an initial pattern with a peak at one pole and a trough at the other. For 
varying values of   kdnv ,  we simulated our model starting with an initial 
polar bias at one end of the cell. Figure 4A shows the final distribution of 
activator obtained for 1000 values of kdnv ranging from 5.5 to 6.5. For each 
value  of  the  parameter,  the  simulation  was  initialized  with  an  initial 
activator peak at  the right pole  i.e. a(100,0) = 1 unit.  Below a critical 
value of  kdnv,  the  final  distribution pattern shows a  central  peak,  while 
above the critical  value,  two half-peaks are  obtained at  the  poles.  The 
results  indicate  that,  given  an  asymmetric  pre-pattern,  polar  activator 
peaks are robustly inherited above a critical value of  kdnv  = 5.95, On the 
other hand, if the pre-pattern is symmetric, then the corresponding final 
pattern is also symmetric, irrespective of the value of kdnv. If the simulation 
is  initialized  with  bias  at  both  poles,  then  the  corresponding  final 
distribution pattern shows polar half-peaks for all values of  kdnv  (Figure 
4B).   If  the  pre-pattern  at  t =  0  min  has  a  central  bias,  then  the 
corresponding final pattern also show central peaks, even above critical 
value of kdnv (Figure 4C). Hence, above a critical rate of de novo activator 
synthesis, our model can account for the generation of polar peaks if the 
pre-pattern is asymmetric. 

A B C

                    cell length (μm)

Figure 4: (A) Final activator distribution plotted for 1000 values of kdnv between 
5.5 and 6.5 min-1. The initial pattern is asymmetric, with an activator peak at one 
end and trough at the other i.e. a(100,0) = 1 dimensionless unit. (B) Space-time 
plot of activator distribution for kdnv = 5.5 min-1 and for an initial bias at both poles 
i.e.  a(1,0)  =  a(1,0)  =  1  dimensionless  unit.  (C) Space-time  plot  of  activator 
distribution for kdnv = 6.5 min-1 and the initial bias is in the middle of the cell i.e.  
a(51,0) = 1 dimensionless unit. The color bars indicate the concentration of the 
activator.

The condition for an asymmetric polar pre-pattern is easily realized in the 
relevant biological context.  Imagine a cell  with activator peaks at both 
poles.  Upon cell  division,  each daughter  cell  inherits  one of  the  polar 
peaks and a trough at the other end, which was the central trough in the  
mother cell. Newly born daughter cells with such a pre-pattern will give 
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rise to a second activator peak at the opposite pole when they grow long 
enough to accommodate a second peak. The cycle of small daughter cells 
with a single polar peak growing into pre-divisional cells with two polar 
peaks will continue in each generation.

3.4 In growing cells, new activator peaks appear spontaneously

Our simulations up to this point have been for cells of fixed size where L 
is  a  constant.  In  reality  though,  cells  grow and  divide  over  time  and 
therefore  L =  L(t).  The effect  of cell  growth on pattern formation in a 
classical  A-SD  model  was  previously  studied  by  Crampin  et  al.  . 
Additional activator peaks emerge when the size of the cell is a multiple 
of the characteristic wavelength of the Turing pattern. The transitions in 
the activator pattern have a characteristic feature: as cell size approaches a 
new multiple  of  λ0,  a  pre-existent  activator  peak  splits  into  additional 
activator peaks. Following this transition, the recently split activator peaks 
move away from each other as the cell continues to grow. This process of 
peak splitting occurs every time the cell becomes large enough to hold 
additional peaks, ultimately giving rise to a tree-like or branched activator 
pattern. For our set of equations, we found a similar branched pattern for 
low values of kdnv  (Figure 5A). 

In sharp contrast, for larger values of the rate of  de novo synthesis, we 
found that additional activator peaks appeared at locations where no peak 
existed previously (Figure 5B).  Transitions  in  the  number of activator 
peaks also occurred when cell size crossed a multiple of a critical length. 
Another significant deviation from the branched pattern is the number of 
peaks that appear at each transition. For the branched pattern, a cell of 
length L ≈ λ0/2 holds one half-peak at a pole. When length L ≈ λ0, a single 
peak is found at the center of the cell. Thereafter, the number of peaks 
doubles  in  subsequent  transitions,  giving  rise  to  2,  4,  8  and 16 peaks 
respectively (Figure 5A).  For the case of de novo activator production in 
our model, the first transition, at L ≈ λ0, gives rise to two half-peaks at the 
poles. In the next transition, a third peak forms at the center. Subsequent 
transitions have 5, 9 and 17 peaks respectively. Hence, after the initial two 
transitions, the branched pattern shows an even number of peaks, while 
the  de novo pattern shows an odd number of peaks. We propose that an 
odd  number  of  activator  peaks  is  a  characteristic  feature  of  an  A-SD 
model with de novo synthesis of activator.

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 139



2/10/2014- page #140

A B

    cell length (μm)               cell length (μm)

Figure 5: Space time plot of activator production in a growing cell, L(t = 0) = 1.3 
μm  initialized  with  a  bias  of  activator  at  the  right  pole  i.e.  a(100,0)  =  1 
dimensionless  unit.  Activator  concentration  in  other  compartments  is  set  to  0 
dimensionless units. The color bars indicate the concentration of the activator. 
(A) kdnv = 5 min-1. (B) kdnv = 30 min-1.

At t = 500 minutes, the cell length L = 100 μm and compartment size h  = 
0.1 μm. A concern at large L is that the discretization may not be smooth 
enough. We therefore discretized the domain into 200 compartments and 
repeated the simulations.  We found that the activator patterns obtained 
from the two discretization schemes were comparable to each other.

 
4 Conclusions

The classical A-SD model, proposed years ago by Gierer and Meinhardt, 
exhibits  activator  peaks  that  localize  away  from  the  poles  of  a  one-
dimensional  field.  We  present  a  modified  set  of  RDEs  that  includes 
additional  terms for  de novo production of activator and conversion of 
activator back to substrate molecules. We show that our modified RDEs 
can account for patterns with activator peaks at the poles. 

How does the addition of the de novo synthesis term account for the phase 
shift in the activator pattern? When the cell is small, production of new 
activator peaks is inhibited due the rapid diffusion of substrate molecules 
into  the  activator  peak,  depleting  the  surrounding  region  of  substrate. 
Only when the cell grows sufficiently long may a second activator peak 
be formed. In the classical A-SD model, activators are produced only by 
an autocatalytic route. Hence, new peaks are obtained by splitting a pre-

140 ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY



2/10/2014- page #141

existing peak,  resulting in a branched pattern.  In contrast,  the  de novo 
synthesis term in our model allows the production of activators at any site.  
Therefore,  as the cell  grows,  new activator peaks may be produced in 
between pre-existing peaks, where substrate concentration is largest. The 
autocatalytic and de novo terms compete for activator production. At low 
kdnv ,  the autocatalytic term dominates, and we observe movement of the 
first  peak towards the center  of  the cell,  followed by peak splitting in 
subsequent  transitions.  When   kdnv is  large  enough,  de  novo activator 
synthesis takes over, allowing the formation of new peaks between old 
ones. We propose that this mechanism, combining autocatalytic activator 
production with a de novo synthesis term, may be a means used by cells 
for polar localization of polymeric proteins.
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Abstract - Introduction 
On an example, a simple version of Krebs cycle with 
transporters/exchangers between mitochondrion and cytosol, we will 
systematically apply, in a logical order, several theoretical approaches for 
metabolism. We will emphasize the advantages and the drawbacks of each 
approach and show how we can use all of them to gain a better 
understanding of the behavior of a metabolic network. 
 

Metabolic Network. What is a metabolic network ? 
Cells house a great number of chemical reactions, which split the nutriment 
we eat in smaller molecules and produce energy (ATP molecules for 
instance) from the oxygen we breathe in (catabolism). 
From these molecules other reactions take place to synthesize the basic 
molecules of the cell, such as amino-acids, nucleotides and nucleosides, fatty 
acids, etc.(anabolism). With these elementary molecules, the cell can 
synthesize several macromolecules (protein, nucleic acid phospholipids etc.). 
As a matter of fact, organisms are built almost entirely from water and about 
thirty small precursor molecules (amino acids, aromatic bases of nucleic 
acids, sugars, palmitate, glycerol and choline). 
Metabolism is an open system. The entries are the nutriments we eat and the 
oxygen we breathe in; the output are the CO2and H2Owe breathe out and 
metabolites excreted from the cell. 
 

An example of metabolic network: the simplified  Krebs cycle 
with some transporters. 
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As an example, we will take a simplified version of the Krebs cycle 
represented in Fig. 1 [1]in which the three classical steps : 
K5: AKG + NAD + Pi + ADP <=> Succinate + NADH + ATP . (α-keto-
glutarate dehydrogenase). 
K6: Succinate + FAD <=> fumarate + FADH2 .   (succinate dehydrogenase) 
. 
K7: fumarate <=> malate. (fumarase). 
have been lumped together in 
K567: AKG + NAD + Pi + ADP<=> malate + NADH2 + ATP . 
 

Figure 1. The metabolic network KS1 

The reactions of this network can be written, with obvious abbreviations. 
“m” means mitochondrial and “c” cytosolic. CO2 and H2O have been 
omitted in the reactions. 
K1 : PYRm + NADm + CoAm = ACoAm + NADH2m . (Pyruvate 
dehydrogenase with production of 1CO2.). 
K2 : PYRm + ATPm = OAAm + Pim + ADPm . (Pyruvate carboxylase with 
consumption of 1CO2). 
K3 : OAAm + ACoAm = CITm + CoAm . (Citrate synthase). 
K4 : CITm + NADm = AKGm + NADH2m. (Aconitase + Isocitrate 
dehydrogenase). 
K567 : AKGm + NADm + Pim + ADPm = MALm + NADH2m 
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+ ATPm (see above). 
K8 : MALm + NADm = OAAm + NADH2m . (malate dehydrogenase). 
T1 : CITm + MALc = CITc + MALm . (Malate/Citrate exchanger). 
T2 : AKGc + MALm = AKGm + MALc . (Malate/ α-keto-glutarate 
exchanger). 
T3 : MALm + Pic = MALc + Pim . (Malate/ Phosphate exchanger). 
T5 : Pic = Pim . (Pi carrier) 
T6 : PYRc = PYRm . (Pyruvate transporter). 
 
In this open system, the internal metabolites have been framed in black. 
Their concentrations are the variables of the system. All is as if the 
concentrations of all other metabolites were constant. They are colored in 
red (external metabolites). 
 
The stoichiometry matrix. 
All metabolic network with m internal metabolites and r reactions can be 
represented by a stoichiometry matrix N of m rows and r columns. Its 
coefficients nij represents the number of molecules i consumed or produced 
by the reaction j. The coefficients are negative for the substrates and positive 
for the products. Note that the direction of the reaction is arbitrary. Only 
internal metabolites are counted. 
 

 K1 K2 K3 K4 K567 K8 T1 T2 T3 T5 T6 

PYRm -1 -1 0 0 0 0 0 0 0 0 +1 

OAAm 0 +1 -1 0 0 +1 0 0 0 0 0 

Pim 0 0 0 0 0 0 0 0 +1 +1 0 

CITm 0 0 +1 -1 0 0 -1 0 0 0 0 

AKGm 0 0 0 +1 -1 0 0 +1 0 0 0 

MALm 0 0 0 0 +1 -1 +1 -1 -1 0 0 

ACoAm 1 0 -1 0 0 0 0 0 0 0 0 

Table 1: Stoichiometry matrix of the network KS1 

From the stoichiometry matrix it is possible to build the metabolic network. 
There is a unique stoichiometry matrix associated to a metabolic network 
and vice versa. 
Exercise: draw the metabolic network associated to the following 
stoichiometry matrix:  

[1  - 1]; [1  - 1  -1];  �
−1 0 1
1 −1 0
0 1 −1

� (first you can write each reaction 

corresponding to each column then associate the reactions to constitute the 
network)
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The Rank of the stoichiometry matrix. 
It is an important concept from the mathematical point of view but also from 
the biochemical point of view, because it is the number of independent 
concentrations (variables). A variable is independent of another if it cannot 
be expressed as a function of the other. 
Counter-example. NAD + NADH2 = Nt (constant) so that NAD = Nt – 
NADH2 and NAD and NADH2 are not independent. If we add NAD and 
NADH2 as variable, the stoichiometry matrix becomes: 
 

 K1 K2 K3 K4 K567 K8 T1 T2 T3 T5 T6 

PYRm -1 -1 0 0 0 0 0 0 0 0 +1 

OAAm 0 +1 -1 0 0 +1 0 0 0 0 0 

Pim 0 0 0 0 0 0 0 0 +1 +1 0 

CITm 0 0 +1 -1 0 0 -1 0 0 0 0 

AKGm 0 0 0 +1 -1 0 0 +1 0 0 0 

MALm 0 0 0 0 +1 -1 +1 -1 -1 0 0 

ACoAm 1 0 -1 0 0 0 0 0 0 0 0 

NAD -1 0 0 -1 -1 -1 0 0 0 0 0 

NADH2 +1 0 0 +1 +1 +1 0 0 0 0 0 

Table 2:Stoichiometry matrix comprising NAD and NADH2 as new variable 
with NAD + NADH2 = Nt 
 
It is easy to see that (row NAD) + (row NADH2) = 0 which corresponds to 
NAD + NADH2 = Nt (in fact to d(NAD)/dt +d(NADH2 )/dt = 0 (see below). 
From the mathematical point of view, a column (resp. row) is independent of 
another column (resp. row) if it cannot be expressed from the other. For 
instance, K2 is independent of K1, because the stoichiometry factor of 
OAAm in K1 is zero which will never make +1 in K2( in other words, it is 
impossible to find a factor λ ≠ 0 such that K2 = λ.K1). With the same 
reasoning one can see that K1 is independent of K3 and K4. In the same way 
it is easy to see that T5 is independent of all other vectors columns. On the 
contrary, because the column T2 = - column K567, T2 and K567 are not 
independent. 
We will not go further in the calculation of the rank which is a complicated 
problem; let us give only some simple rules. The rank is ≤ the lower 
dimension of row and column. It means that in our example the rank ≤ 7, the 
number of rows. In our example it is easy to find 7 independent columns K1, 
K2, K3, K4, K567, K8 and T5, so that the rank is exactly 7 and all other
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columns can be necessarily expressed from these seven. For instance, T3 = -
K1 + K2 + K4 –K567 + T5. 
Exercise: Express T1, T2 and T6 as the function of the previous seven 
independent columns vectors, K1, K2, etc.. 
 
Steady-state. 
The time course of the metabolites concentrations can be described by 
differential equations.  
The variations of the metabolites are: 
d(PYRm)/dt = -VK1 –VK2 +VT6 

…….. 
d(OAAm)/dt = VK2 – VK3 + VK8 
or, in matrix notation : d(X)/dt = N.V, where  

[𝑋𝑋] =

⎣
⎢
⎢
⎢
⎢
⎡
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
𝑃𝑃𝑃𝑃𝑃𝑃
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴⎦

⎥
⎥
⎥
⎥
⎤

    and    [𝑑𝑑(𝑋𝑋)/𝑑𝑑𝑑𝑑] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑑𝑑(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)/𝑑𝑑𝑑𝑑
𝑑𝑑(𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂)/𝑑𝑑𝑑𝑑
𝑑𝑑(𝑃𝑃𝑃𝑃𝑃𝑃)/𝑑𝑑𝑑𝑑
𝑑𝑑(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)𝑑𝑑𝑑𝑑
𝑑𝑑(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)/𝑑𝑑𝑑𝑑
𝑑𝑑(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀)/𝑑𝑑𝑑𝑑
𝑑𝑑(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)/𝑑𝑑𝑑𝑑⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

and     

V =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑉𝑉𝑉𝑉1
𝑉𝑉𝑉𝑉2
𝑉𝑉𝑉𝑉3
𝑉𝑉𝑉𝑉4
𝑉𝑉𝑉𝑉567
𝑉𝑉𝑉𝑉8
𝑉𝑉𝑉𝑉1
𝑉𝑉𝑉𝑉2
𝑉𝑉𝑉𝑉3
𝑉𝑉𝑉𝑉5
𝑉𝑉𝑉𝑉6 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

   N is the matrix of table 1. 

The steady- state is defined by d(X)/dt = 0, i.e. N.V = 0 which gives the 
relationships between the rates equation necessary to obtain a steady state. 
For instance the product of the first row N with V gives: -VK1 –VK2 +VT6 
= 0 which insure the steady state of [PYRm] etc. 
It is thus important to know all the vectors V such that N.V = 0. They form a 
vector space called Null Space of N or Kernel of N. We will denote it 
Ker(N). It is a vector space because if V’ and V” ∈Ker(N) (meaning that 
N.V’=0 and N.V” = 0) then V’+V”∈Ker(N), because N(V’+V”) = N.V’ + 
N.V” = 0. In the same way,λV’∈Ker(N). Its dimension is dim (V) – rank(N) 
= 4 in our case (11 – 7). 
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It is easy to find 4 independent vectors in Ker(N). (If you do not know the 
concept of “vector space” thinks, as an example in 2 dimensions geometry, 
of the vectors from the origin, see Fig. 2).  
 

 
Figure 2: Vectorial space of vectors from the origin. 

 
Exercise: Write the relationships between the rate at steady-state: 
-VK1 –VK2 +VT6= 0 
VK2-VK3 + VK8 = 0 
……………………) 
Use these relationships to derive 4 independent vectors of Ker(N). 
 
Metatool (http://pinguin.biologie.uni-jena.de/bioinformatik/networks/) can 
be used to obtain a basis of the Kernel (see appendix 1 and 2). The entry file 
of Metatool (appendix 1) organizes the reactions in reversible and 
irreversible ones (ENZREV and ENZIRREV) and metabolites in internal 
and external metabolites (METINT and METEXT).(Anotice of Metatool  is 
given in http://solea.quim.ucm.es/t4m/Manual_T4M.pdf).  
The output file of Metatool (appendix 2) gives the stoichiometry matrix with 
first the reversible then irreversible reactions in the order of the input file, 
then a basis of the Kernel  (entitled KERNEL), under the form of a matrix, 
the rows of which are the basis vectors. Because these vectors verify N.V = 
0, they are possible pathways at steady-state. They are represented in Fig. 3. 
All the solutions at steady-state are linear combinations of these vectors : V 
= λ1.Ker1+ λ2.Ker2  +λ3.Ker3  +λ4.Ker4 . 
However the vectors of the basis of the Kernel do not necessarily obey the 
irreversibility of some reactions. For example, Ker1 = (-2 -1 0 1 -2 -1 1 -1 0 
0 0) means that vK1 = -1 (sixth value) while this reaction being irreversible 
its rate cannot be negative (indicating that it is taken in the opposite 
direction). 

V’

V’’

V’ + V’’
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Figure 3: A basis of Ker(N) 
 
Subsets of reactions (Enzyme subsets) 
At steady state, an enzyme subset is a set of reactions which must always 
operate together with a fixed ratio in their rates. In our example, K1 K3 is a 
subset of reactions because when acetyl-CoA is formed by K1 its only use is 
through K3. The association of T3 with K2 is less obvious. It comes from 
the fact that the only output of the network are with MAL (T3) or through 
MAL exchange incorporating a molecule of MAL which has to go out 
through T3. This explains the association of T3 with K2 which is not a priori 
obvious (instead of the association of K1 with K3). It means that the flux 
through K2 will be always equal to the flux through T3. This constraint has 
to be kept in mind when examining the results of experiments. The subsets 
enable the reduction of the size of the system by lumping in one reaction all 
the reactions belonging to the same subset. It is exactly what we did at the 
beginning by lumping together the reactions K5, K6 and K7 in K567. The 
reactions which are not in a subset of several reactions remain isolated in the 
list of “subset”. 
 

Convex Basis 
Within a system, several restrictions can appear. These may be due, for 
example, to irreversibility of the reactions. These restrictions limit the 

(a) Ker1 (b) Ker2

(c) Ker3 (d) Ker4
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solution space, which becomes a polyhedral convex cone (Fig. 4 in the case 
of 3 reactions). In these conditions, any solution which is a vector of the 
convex cone can be expressed as a linear combination with non-null 
coefficients of the vectors representing the edges of the convex cone. Thus 
the basis  of the convex cone are more interesting because they obey the 
restrictions imposed to the system which is not necessarily the case of the 
basis given above for Ker(N). The convex cone is included in Ker(N). 
 

 
Figure 4: The convex cone of solutions. 

 
In the case of KS1, Metatool gives the convex basis (Fig. 5): 
C1:  -T1 -T2 K4 irreversible = EFM1(see below. It is the only one of the Ci 
containing K4) 
 C2: T2 T5 K567 irreversible = EFM2 (see below. It is the only one of the Ci 
containing K567) 
 C3: K8 T1 K1 K3 T6 irreversible = EFM4 (see below. It is the only one of 
the Ci containing K1) 
 C4: -K8 T3 (-2 T5) K2 T6 irreversible = Ker4= EFM6 (see below. It is the 
only one of the Ci containing T3). 
In this simple example the decomposition on the convex basis is easy if it is 
noticed that C1 is the only vector of the convex basis involving K4, C2 the 
only vector of the convex basis involving K567, C3 the only vector of the 
convex basis involving K1 and C4, the only vector of the convex basis 
involving T3. We have justto note the coefficient of these reactions to obtain 
the decomposition. 
For instance the basis of the Kernel can be expressed on the convex basis: 
Ker1 =-C3 + C4; Ker2 = - C1 ; Ker3 = C2  and Ker4 = C4 . 

V1

V2

V3
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Figure 5: The basis of the convex cone 

 
Elementary Modes 
An elementary flux mode (EFM)[2-3]is a minimal set of enzymes that can 
operate at steady state with all irreversible reactions used in the appropriate 
direction. All flux distributions in the living cell are non-negative linear 
combinations of elementary modes. The decomposition is not necessarily 
unique. 
A related concept was defined by the group of Palsson: Extreme pathway 
[4] in which every reversible internal reaction is split in two irreversible 
reactions (one is the forward reaction, the other is the reverse reaction).The 
number of EFMs is finite but can be great. Their comprehensive description 
gives all possibilities to browse the metabolic network. As we will see 
below, some of them are not trivial. In Metatool, the EFMs are given as rows 
of a matrix. Their description is given in table 3 and in the figures of 
Appendix 3. Among them we find the classical Krebs cycle (EFM 9). But 
they also evidence pathways which are less obvious (EFM 11 for 
instance)[5]. All the EFM can be decomposed on the convex basis. 
Considering EFM is useful because they represent extreme situations of 
metabolic pathways: in EFM1 for instance there is only one metabolite 
entering, with AKG as the only output; in EFM2 there are two entering 
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metabolites, Pi and AKG and only one going out, MAL. In the reality the 
situation is usually more complex with all metabolites going in or out, but 
with different extent. For each EFM, several indexes can be calculated such 
as the yield in carbon for ATP synthesis, the inputs and outputs etc.  An 
actual set of fluxes at steady-state in a metabolic network can be interpreted 
as combination of some EFMs. It is particularly useful for understanding the 
passage between a flux pattern to another at steady-state [6]. 
 
EFM K8  T1  T2   T3  T5 K1  K2 K3 K4  K567  T6 
1 0 -1 -1 0 0 0 0 0 1 0 0 

2 0 0 1 0 1 0 0 0 0 1 0 
3 0 -1 0 0 1 0 0 0 1 1 0 

4 1 1 0 0 0 1 0 1 0 0 1 
5 1 0 -1 0 0 1 0 1 1 0 1 

6 -1 0 0 1 -2 0 1 0 0 0 1 
7 0 1 0 1 -2 1 1 1 0 0 2 

8 0 0 -1 1 -2 1 1 1 1 0 2 
9 1 0 0 0 1 1 0 1 1 1 1 

10 0 0 0 1 -1 1 1 1 1 1 2 
11 -1 0 2 1 0 0 1 0 0 2 1 

12 -1 -2 0 1 0 0 1 0 2 2 1 
13 1 0 0 1 0 2 1 2 2 2 3 

14 0 1 2 1 0 1 1 1 0 2 2 
15 0 -1 0 1 0 1 1 1 2 2 2 

16 0 0 1 1 0 1 1 1 1 2 2 

            C1 0  -1  -1   0   0   0   0   0   1   0   0  
C2  0   0   1   0   1   0   0   0   0   1   0  

C3  1   1   0   0   0   1   0   1   0   0   1  
C4 -1   0   0   1  -2   0   1   0   0   0   1  

Table 3:Description of the EFM and of the convex basis. 

Flux Balance Analysis 
Flux Balance Analysis (FBA) is a method developed by the group of Palsson 
[7-8] aiming at optimizing the flux values in a metabolic network to fulfill a 
peculiar objective such as cell growth or ATP production etc... The objective 
is mathematized under the form of an “objective function” (a rate equation 
of ATP consumption in the case of optimizing ATP production). Known 
constraints on the fluxes can be added such as minimal and maximal values 
(otherwise maximizing a flux will lead to infinity).FBA can be applied in 
many other contexts to analyze the phenotypes and capabilities of organisms 
upon different environmental and genetic perturbations (KO genes for 
instance). The optimization is directed at the metabolic fluxes values, 
without any knowledge of the underlying rate functions so that it can be 
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applied to big genome scale networks for which not all steps are known in 
detail. 
We will give some applications of FBA to our metabolic network. We will 
suppose that all fluxes are between -1 and +1 for the reversible ones and 
between 0 and +1 for the irreversible ones. We will express the fluxes at 
steady state as a function of the convex basis. In this way we are sure that 
they satisfy N.F = 0.A vector F can be decomposed in F = λ1.C1 + λ2.C2 + 
λ3.C3 + λ4.C4. (with 0≤ λi). 
The components of the vector F on the convex basis are given in table 4: 
 
  C1 C2 C3 C4 Fluxes 

K8 0 0 1 -1 λ3-λ4 

T1 -1 0 1 0 -λ1+λ3 

T2 -1 1 0 0 -λ1+λ2 

T3 0 0 0 1 λ4 

T5 0 1 0 -2 λ2-2λ4 

K1 0 0 1 0 λ3 

K2 0 0 0 1 λ4 

K3 0 0 1 0 λ3 

K4 1 0 0 0 λ1 

K567 0 1 0 0 λ2 

T6 0 0 1 1 λ3+λ4 
Table 4.Decomposition of a vector on the convex basis. F = λ1.C1 + λ2.C2+ 
λ3.C3 + λ4.C4. (with 0≤ λi). 
 
We can now look for some objective functions. Note that due to the 
irreversible flux K1, K2, K4 and K567, 0≤ λi ≤1 whatever i = 1, .., 4. 
1 – Minimization of all fluxes (in absolute value) for an input by T6 = 
1(pyruvate entry). It means λ3+λ4=1. The minimization of all fluxes is 
somewhat ambiguous.We can take λ1= λ2= 0 (values of the fluxes K4 and 
K567). It means that T1 = λ3. Taking into account λ3+λ4=1 and the search for 
minimal fluxes gives λ3 = λ4 = 0.5. It corresponds to EFM 7.However with 
this value T5= -1, which is certainly not the minimum of T5 in absolute 
value. 
We can think of taking the minimum of the sum of the absolute value of all 
the fluxes : S(λ1,λ2,λ3,λ4)= |λ3-λ4 |+|-λ1+λ3|+|-λ1+λ2|+λ4+|λ2-2λ4|+λ3+λ4+λ3+ 
λ1+ λ2with 0≤ λi≤1   (λ3+λ4=1 all the time and does not enter in S) 
vT6=1 means λ3+λ4=1 i.e. λ3=1-λ4, so that:  
S(λ1,λ2,λ3,λ4)=3+|1-2λ4 |+|-λ1+1-λ4|+|-λ1+λ2|+|λ2-2λ4| + λ1+ λ2 
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The values of the λithat achieve this minimum areλ1 = λ2, = 0,349, λ3= 0,504 
and λ4=0,496. (determined using a software for optimization of functions 
such as Excel solver). With these values T5 = -0,643. In this case the solution 
is unique. 

2- Maximization of Citrate production, i.e. maximization of T1 orλ3-λ1 
maximal, i.e. λ1=0 and λ3=1. The last flux T6 gives 0≤ λ3 + λ4 ≤1 i.e. λ4 =0. 
One checks that there is no constraint on λ2  so that there are in this case an 
infinity of solutions : C3 + λ2 .C2 with 0≤ λ2≤1. 

3 - Maximization of alpha-ketoglutarate production, i.e. maximization of –
T2, i.e. λ1-λ2 maximal, i.e. λ1=1 and λ2=0 which corresponds to C1 + 0.C2. 
C3 and C4 which do not contain T2 can be taken at any value provided that 
the resulting fluxes are all in the interval [-1; +1] or [-2; +2] for T5. Flux K2 
and K3 give respectively 0≤ λ4≤1 and 0≤ λ3≤1. T6 adds 0≤ λ3+λ4≤1 which 
replaces the two previous inequalities. One can check that all other fluxes are 
in their interval. Thus in this case there is infinity of solutions: C1 + λ3.C3 + 
λ4.C4 with 0≤ λ3+λ4≤1.  
 
4 - Maximization of citrate and alpha-ketoglutarate production with equal 
flux, i.e. maximization of T1 and –T2 with T1 = -T2. The corresponding 
coefficients of these fluxes gives : λ3-λ1 = λ1-λ2. All these coefficients are 
between 0 and 1 so that we are in the situation represented below: 
      0λ2λ1λ3    1 
___|_______|________|_______|___|   
the solution to maximize λ3-λ1 = λ1-λ2 is clearlyλ2 = 0, λ1 = 0.5 and λ3=1. 
Because the coefficient of T6, λ3+λ4 ≤1, one get λ4 = 0.This can be shown 
mathematically: 
Maximizing vT1and-vT2 is equivalent to maximize S(λ1,λ2,λ3)=λ3-λ1+λ1-
λ2=λ3 –λ2(assuming that both fluxes are positive). The maximum is thus 
obtained for λ2=0 and λ3 =1 and with the constraintλ3+λ2 = 2λ1(vT1=-vT2), 
we have λ1=0.5. (we verify that vT1 and –vT2 are both positive) 
Here, because we impose in fact two conditions, the solution is unique. 
 
The Dynamics of a metabolic network 
(COPASI http://www.copasi.org;  
Berkeley Madonna http://www.berkeleymadonna.com). 
The dynamical system of our metabolic network is written below: 
d/dt(OAAm) = vK2 + vK8 - vK3 
d/dt (ACoAm) = vK1 -vK3 
d/dt (CITm) = vK3 -vK4 - vT1 
d/dt(AKGm) = vK4 - vK567 + vT2 
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d/dt(MALm) = vK567 - vK8 + vT1 - vT2 - vT3 
d/dt(Pim) = vK2 -vK567 + vT3 + vT5 
d/dt(PYRm) = vT6 - vK1 - vK2 
 
We take mass action laws as rate functions, with the only dependence upon 
the internal metabolites (the external metabolites can be thought to be equal 
to one): 
vK1 = kK1 *PYRm 
vK2 = kK2 *PYRm 
vK3 = kK3*ACoAm *OAAm 
vK4 = kK4*CITm 
vK567 = kK567*AKGm*Pim 
vK8 = kK8*MALm - kK8M*OAAm 
vT1 = kT1*CITm - kT1M*MALm 
vT2 = kT2*MALm - kT2M*AKGm 
vT3 = kT3*MALm - kT3M*Pim 
vT5 = kT5 - kT5M*Pim 
vT6 = kT6 
As an example we put all rate constants, kK1, kK2, ..kT6 = 2. The initial 
concentrations of metabolites (t = 0) are set equal to zero. 
 

 
Figure 6: The time course of fluxes (left figure) and of metabolites 
concentrations (right figure) reaching a steady-state (calculations performed 
with Berkeley Madonna software).    
 
Figure 6 gives the time course of the rates vK1, etc. and of the 
concentrations of metabolites. It appears clearly that we tend to a steady state 
for which the rates and the concentrations are constants. The values obtained 
for the rate are summarized in the table 5 below: 
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  K8  T1  T2   T3  T5 K1  K2 K3 K4  K567  T6 

Steady-State 0 -0.894 0.317 1 0.211 1 1 1 1.894 2.211 2 

1.894 x C1 0 -1.894 -1.894 0 0 0 0 0 1.894 0 0 

2.211 x C2 0 0 2.211 0 2.211 0 0 0 0 2.211 0 

C3 1 1 0 0 0 1 0 1 0 0 1 

C4 -1 0 0 1 -2 0 1 0 0 0 1 

Σ 0 -0.894 0.317 1 0.211 1 1 1 1.894 2.211 2 

Table 5:Rates at steady-state and decomposition on the convex basis. 

Thus the steady state is F = 1.894 C1 + 2.211 C2 + C3 + C4 which is close 
to EFM 15 = 2C1 +2C2 + C3 + C4. 
What happens when we decrease the rate of pyruvate entry (T6)? 
For T6 = 0.2, we obtain the flux at steady-state F = 0.76 C1 + 0.87 C2 + 
0.1C3 + 0.1C4 
And for T6 = 0.02, we obtain F = 0.65 C1 + 0.75 C2 + 0.01C3 + 0.01C4 
which is close to 0.7 x (EFM 3) = 0.7 C1 + 0.7 C2. EFM 3 is characterized 
by entries of citrate and Pi and output of malate. Thus by decreasing the 
entry of pyruvate we pass from a steady-state close to EFM 15 to a new 
steady-state close to EFM 3.In the same way, one may expect that a decrease 
in the rate constant of K2 versus K1 will progressively shift the fluxes from 
EFM15, with equal fluxes in K2 and K1 towards EFM4, 5 or 9 (i.e. Krebs 
cycle with K8 ≠ 0 to regenerate OAA).Playing with the rate constants (and 
more generally with all the kinetic constants) is a convenient way to describe 
the possible reroutings of metabolism inside a fixed (from the point of view 
of structure) metabolic network. 
 
Control coefficients. 
Copasi gives also the control coefficients on metabolite concentrations and 
on fluxes (which are the rates at steady state)[7-10)]. They are depicted in 
table 6: 
The following points should be emphasized: 

- The sum of all control coefficients on each row is equal to unity. 
- The control coefficients of all steps except T6 on the flux through 

T6 are null, because T6 is irreversible. 
- The control of T6 is high on all the steps. 
- On the contrary the exchangers T2 and T5 have a low control. 

These considerations may be used to select targets for the action of inhibitors 
(or activators), keeping in mind that when a step is inhibited (T6 inhibited 
for instance, the flux and the control on the network will change as shown in 
table 7 below for T6 = 0.02. In this case it appears that the control of T6 on 
K4, K567, T1, T2 and T5 is strongly decreased. If we  

 

156 ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY



2/10/2014- page #157

 

 

 

 

 

want to further decrease the fluxes in the network we have to inhibit another 
controlling step such as K567 for instance. The high positive control 
coefficients are in green, the high negative control coefficients are in red. 

 
Conclusion.  We have detailed in this paper, several approaches on the 
same metabolic network representing the Krebs cycle with some exchangers 
between mitochondria and cytosol. It has to be emphasized that a large 
amount of information can be provided with the simple topological study of 
the metabolic network i.e. without considering the rate functions. This 
topological study should be a prerequisite to any more quantitative modeling 
of a metabolic network. The EFMs give a good description of all the 
possible pathways in the metabolic network. The only drawback of EFM 
analysis is their huge number in metabolic network with a number of 
stepsexceeding several hundreds. The flux balance analysis (FBA) approach 
can give quantitative values of fluxes satisfying a given objective without 
any knowledge of the rate functions. The problem is the choice of the 
objective function. If it could be simple for metabolic network of 
microorganisms (optimization of biomass, optimization of growth rate) 
defining an objective function in the case of eukaryotic organisms is more 
delicate, due to the interactions between cells and the possible changes of the 
objective function itself. 

Table 6: Control coefficients of the steps (upper row) on the fluxes at 
steady-state (first column) for T6 = 2. (With Copasi) 
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The introduction of the rate functions of all the steps lead to a set of 
differential equations describing the time course of the metabolites 
concentrations and of the fluxes. It permits to follow the dynamics of the 
system, to calculate the fluxes at steady state, to describe the possible 
reroutings of metabolic network. The determination of the control coefficient 
of fluxes on this quantitative description of the metabolic network may 
indicate targets for therapeutic drugs. The drawback of this approach is that 
very often not all parameters of the rate functions are known. In some cases 
they can be estimated by fitting the prediction of the model with some of the 
known fluxes (typically the input and output fluxes). A random sampling of 
the unknown parameters can also evidence coarse classes of similar 
pathways through the metabolic network.  
 

Table 7 : Control coefficients of the steps (upper row) on the fluxes at 
steady-state (first column) for T6 = 0.02. (With Copasi) 
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Figure 7: Plan study of metabolic networks. The first step is to write the 
stoichiometry matrix N from which a lot of knowledge can be already 
derived, including all the minimal pathways inside the metabolic network 
(EFM) and  fluxes optimizing an objective function (FBA). 
The addition of the rate functions gives a dynamical system describing the 
time course of fluxes and metabolites concentrations. The calculation of 
the control coefficients indicates the steps to which the network is the 
most sensitive. 
 
Our suggestion is to approach all metabolic network in a systematic way 
(Fig. 7), beginning with the description of the stoichiometry matrix. The 
mathematical study of the stoichiometry matrix will give numerous 
important informations on the metabolic network such as the number of 
independent variables and the relationships between the dependent 
variables. The determination of the convex basis will be useful to describe 
any pathway in the metabolic network and the EFMs. If an objective is 
envisaged, a FBA approach could be useful to determine the fluxes inside 
the network and its robustness. For further quantitative study of the 
metabolic network it is necessary to define the rate functions of all steps. 
It permits the determination of the steady state, with the calculation of 
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control coefficients but also to study dynamical behavior of the network 
which can be compared with experimental observations or with other 
theoretical predictions such as the ones of FBA. 
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APPENDIX 1 : METATOOL ENTRY FILE 
 
-ENZREV 
K8 T1 T2 T3 T5 
 
-ENZIRREV 
K1 K2 K3 K4 K567 T6 
 
-METINT 
OAAm ACoAm CITm AKGm MALm Pim PYRm 
 
-METEXT 
PYRc NADm NADH2m CoAm ADPm ATPm H2O CO2 MALc CITc 
Pic AKGc  
 
 
-CAT 
 
 
K1 : PYRm + NADm + CoAm = ACoAm + NADH2m + CO2 . 
K2 : PYRm + CO2 + ATPm = OAAm + Pim + ADPm . 
K3 : OAAm + ACoAm + H2O = CITm + CoAm . 
K4 : CITm + NADm = AKGm + NADH2m + CO2 . 
K567 : AKGm + NADm + Pim + ADPm = MALm + NADH2m + CO2 + 
ATPm .  
K8 : MALm + NADm = OAAm + NADH2m .  
T1 : CITm + MALc = CITc + MALm . 
T2 : AKGc + MALm = AKGm + MALc . 
T3 : MALm + Pic = MALc + Pim . 
T5 : Pic = Pim . 
T6 : PYRc = PYRm . 
 
APPENDIX 2 : METATOOL OUTPUT FILE 
 
METATOOL OUTPUT (int) Version 4.3 (25 October 2002) E:\ECOLE 
THEMATIQUE EVRY 2014\TUTORIAL 
METABOLISME\EFM\meta4.3_int.exe 
 
INPUT FILE: KS1_in.dat 
 
INTERNAL METABOLITES: 7 
EXTERNAL METABOLITES: 12 
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REACTIONS: 11 
 
  5 int      MALm 
  4 external NADm 
  4 external NADH2m 
  4 external CO2 
  4 int      Pim 
  3 int      PYRm 
  3 int      OAAm 
  3 int      CITm 
  3 int      AKGm 
  3 external MALc 
  2 external CoAm 
  2 int      ACoAm 
  2 external ATPm 
  2 external ADPm 
  2 external Pic 
  1 external H2O 
  1 external CITc 
  1 external AKGc 
  1 external PYRc 
19 metabolites,  50 is the summarized frequency 
 
edges frequency of nodes 
  1   4 
  2   5 
  3   5 
  4   4 
  5   1 
freq_of_nodes = 5.7561 * edges^(-0.5765) 
Linear correlation coefficient r = -0.539471 
The dependency is not significant. 
 
STOICHIOMETRIC MATRIX 
 
 matrix dimension r7 x c11 
 1  0  0  0  0  0  1 -1  0  0  0  
0  0  0  0  0  1  0 -1  0  0  0  
 0 -1  0  0  0  0  0  1 -1  0  0  
 0  0  1  0  0  0  0  0  1 -1  0  
-1  1 -1 -1  0  0  0  0  0  1  0  
 0  0  0  1  1  0  1  0  0 -1  0  
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 0  0  0  0  0 -1 -1  0  0  0  1  
The following line indicates reversible (0) and irreversible reactions (1) 
 0  0  0  0  0  1  1  1  1  1  1  
rows and columns are sorted as declared in the inputfile 
 
 
KERNEL 
 
 matrix dimension r4 x c11 
-2 -1  0  1 -2 -1  1 -1  0  0  0  
0  1  1  0  0  0  0  0 -1  0  0  
 0  0  1  0  1  0  0  0  0  1  0  
-1  0  0  1 -2  0  1  0  0  0  1  
11 reactions (columns) are sorted in the same order as in the ENZREV 
ENZIRREV section. 
 
enzymes 
 
 1:  (-2 K8) -T1 T3 (-2 T5) -K1 K2 -K3 irreversible 
 2:  T1 T2 -K4 irreversible 
 3:  T2 T5 K567 irreversible 
 4:  -K8 T3 (-2 T5) K2 T6 irreversible 
 
overall reaction 
 
 1: 3 NADH2m + ATPm + 2 CO2 + CITc = 3 NADm + ADPm + H2O + 
2 MALc + Pic 
 2: NADH2m + CO2 + AKGc = NADm + CITc 
 3: NADm + ADPm + Pic + AKGc = NADH2m + ATPm + CO2 + MALc 
 4: PYRc + NADH2m + ATPm + CO2 = NADm + ADPm + MALc + Pic 
 
BLOCK DIAGONALISATION 
Reaction blocks were found from nullspace matrix (KERNEL). 
1. block: 
K8 T1 T2 T3 T5 K1 T6 K3 K4
 K567 K2  
 
SUBSETS OF REACTIONS 
 
 matrix dimension r9 x c11 
 1  0  0  0  0  0  0  0  0  0  0  
 0  1  0  0  0  0  0  0  0  0  0  

164 ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY



2/10/2014- page #165

 

 

 0  0  1  0  0  0  0  0  0  0  0  
 0  0  0  1  0  0  1  0  0  0  0  
 0  0  0  0  1  0  0  0  0  0  0  
 0  0  0  0  0  1  0  1  0  0  0  
 0  0  0  0  0  0  0  0  1  0  0  
 0  0  0  0  0  0  0  0  0  1  0  
 0  0  0  0  0  0  0  0  0  0  1  
11 reactions (columns) are sorted in the same order as in the ENZREV 
ENZIRREV section. 
 
enzymes 
 
 1:  K8 reversible 
 2:  T1 reversible 
 3:  T2 reversible 
 4:  T3 K2 irreversible 
 5:  T5 reversible 
 6:  K1 K3 irreversible 
7:  K4 irreversible 
 8:  K567 irreversible 
 9:  T6 irreversible 
 
 overall reaction 
 
 1: MALm + NADm = OAAm + NADH2m 
 2: CITm + MALc = MALm + CITc 
 3: MALm + AKGc = AKGm + MALc 
 4: MALm + PYRm + ATPm + CO2 + Pic = OAAm + 2 Pim + ADPm + 
MALc 
 5: Pic = Pim 
 6: OAAm + PYRm + NADm + H2O = CITm + NADH2m + CO2 
 7: CITm + NADm = AKGm + NADH2m + CO2 
 8: AKGm + Pim + NADm + ADPm = MALm + NADH2m + ATPm + 
CO2 
 9: PYRc = PYRm 
 
REDUCED SYSTEM with 6 branch point metabolites in 9 reactions 
(columns) 
 
matrix dimension r6 x c9 
 1  0  0  1  0 -1  0  0  0  
0 -1  0  0  0  1 -1  0  0  
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 0  0  1  0  0  0  1 -1  0  
-1  1 -1 -1  0  0  0  1  0  
 0  0  0  2  1  0  0 -1  0  
 0  0  0 -1  0 -1  0  0  1  
The following line indicates reversible (0) and irreversible reactions (1) 
 0  0  0  1  0  1  1  1  1  
 
-> Branch metabolites are :  
met                  cons built reactions 
OAAm                 1 2 3 iir 
CITm                 2 1 3 iir 
AKGm                 1 2 3 iir 
MALm                 3 2 5 irrrr 
Pim                  1 3 4 iirr 
PYRm                 2 1 3 iii 
 
-> No branch metabolites are :  
met                  cons built reactions 
ACoAm                1 1 2 ii 
 
CONVEX BASIS 
 
 matrix dimension r4 x c11 
 0 -1 -1  0  0  0  0  0  1  0  0  
 0  0  1  0  1  0  0  0  0  1  0  
 1  1  0  0  0  1  0  1  0  0  1  
-1  0  0  1 -2  0  1  0  0  0  1  
 
 enzymes 
 
 1:  -T1 -T2 K4 irreversible 
 2:  T2 T5 K567 irreversible 
 3:  K8 T1 K1 K3 T6 irreversible 
 4:  -K8 T3 (-2 T5) K2 T6 irreversible 
 
overall reaction 
 
 1: NADm + CITc = NADH2m + CO2 + AKGc 
 2: NADm + ADPm + Pic + AKGc = NADH2m + ATPm + CO2 + MALc 
 3: PYRc + 2 NADm + H2O + MALc = 2 NADH2m + CO2 + CITc 
 4: PYRc + NADH2m + ATPm + CO2 = NADm + ADPm + MALc + Pic 
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CONSERVATION RELATIONS 
- not found - 
 
ELEMENTARY MODES 
 
matrix dimension r16 x c11 
 0 -1 -1  0  0  0  0  0  1  0  0  
0  0  1  0  1  0  0  0  0  1  0  
 0 -1  0  0  1  0  0  0  1  1  0  
 1  1  0  0  0  1  0  1  0  0  1  
 1  0 -1  0  0  1  0  1  1  0  1  
-1  0  0  1 -2  0  1  0  0  0  1  
 0  1  0  1 -2  1  1  1  0  0  2  
 0  0 -1  1 -2  1  1  1  1  0  2  
 1  0  0  0  1  1  0  1  1  1  1  
 0  0  0  1 -1  1  1  1  1  1  2  
-1  0  2  1  0  0  1  0  0  2  1  
-1 -2  0  1  0  0  1  0  2  2  1  
 1  0  0  1  0  2  1  2  2  2  3  
 0  1  2  1  0  1  1  1  0  2  2  
 0 -1  0  1  0  1  1  1  2  2  2  
 0  0  1  1  0  1  1  1  1  2  2  
11 reactions (columns) are sorted in the same order as in the ENZREV 
ENZIRREV section. 
The following line indicates reversible (0) and irreversible reactions (1) 
 0  0  0  0  0  1  1  1  1  1  1  
 
 enzymes 
# in () indicates # of enzymes used by the elementary mode 
# in [] indicates the diagonal block of the kernel matrix to which the 
elementary mode belongs 
1: ( 3) [bl 1]  -T1 -T2 K4 irreversible 
 2: ( 3) [bl 1]  T2 T5 K567 irreversible 
 3: ( 4) [bl 1]  -T1 T5 K4 K567 irreversible 
 4: ( 5) [bl 1]  K8 T1 K1 K3 T6 irreversible 
 5: ( 6) [bl 1]  K8 -T2 K1 K3 K4 T6 irreversible 
 6: ( 5) [bl 1]  -K8 T3 (-2 T5) K2 T6 irreversible 
 7: ( 7) [bl 1]  T1 T3 (-2 T5) K1 K2 K3 (2 T6) irreversible 
 8: ( 8) [bl 1]  -T2 T3 (-2 T5) K1 K2 K3 K4 (2 T6) irreversible 
 9: ( 7) [bl 1]  K8 T5 K1 K3 K4 K567 T6 irreversible 
 10: ( 8) [bl 1]  T3 -T5 K1 K2 K3 K4 K567 (2 T6) irreversible 
 11: ( 6) [bl 1]  -K8 (2 T2) T3 K2 (2 K567) T6 irreversible 
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 12: ( 7) [bl 1]  -K8 (-2 T1) T3 K2 (2 K4) (2 K567) T6 irreversible 
 13: ( 8) [bl 1]  K8 T3 (2 K1) K2 (2 K3) (2 K4) (2 K567) (3 T6) 
irreversible 
 14: ( 8) [bl 1]  T1 (2 T2) T3 K1 K2 K3 (2 K567) (2 T6) irreversible 
 15: ( 8) [bl 1]  -T1 T3 K1 K2 K3 (2 K4) (2 K567) (2 T6) irreversible 
 16: ( 8) [bl 1]  T2 T3 K1 K2 K3 K4 (2 K567) (2 T6) irreversible 
 
overall reaction 
 
 1: NADm + CITc = NADH2m + CO2 + AKGc 
 2: NADm + ADPm + Pic + AKGc = NADH2m + ATPm + CO2 + MALc 
 3: 2 NADm + ADPm + CITc + Pic = 2 NADH2m + ATPm + 2 CO2 + 
MALc 
 4: PYRc + 2 NADm + H2O + MALc = 2 NADH2m + CO2 + CITc 
 5: PYRc + 3 NADm + H2O + MALc = 3 NADH2m + 2 CO2 + AKGc 
 6: PYRc + NADH2m + ATPm + CO2 = NADm + ADPm + MALc + Pic 
 7: 2 PYRc + NADm + ATPm + H2O = NADH2m + ADPm + CITc + Pic 
 8: 2 PYRc + 2 NADm + ATPm + H2O = 2 NADH2m + ADPm + CO2 + 
Pic + AKGc 
 9: PYRc + 4 NADm + ADPm + H2O + Pic = 4 NADH2m + ATPm + 3 
CO2 
 10: 2 PYRc + 3 NADm + H2O = 3 NADH2m + 2 CO2 + MALc 
 11: PYRc + NADm + ADPm + Pic + 2 AKGc = NADH2m + ATPm + 
CO2 + 3 MALc 
 12: PYRc + 3 NADm + ADPm + 2 CITc + Pic = 3 NADH2m + 
ATPm + 3 CO2 + 3 MALc 
 13: 3 PYRc + 7 NADm + ADPm + 2 H2O + Pic = 7 NADH2m + ATPm 
+ 5 CO2 + MALc 
 14: 2 PYRc + 3 NADm + ADPm + H2O + Pic + 2 AKGc = 3 NADH2m 
+ ATPm + 2 CO2 + 2 MALc + CITc 
 15: 2 PYRc + 5 NADm + ADPm + H2O + CITc + Pic = 5 NADH2m + 
ATPm + 4 CO2 + 2 MALc 
 16: 2 PYRc + 4 NADm + ADPm + H2O + Pic + AKGc = 4 NADH2m + 
ATPm + 3 CO2 + 2 MALc 
 
The elementary modes (12) 3 5 7 8 9 10 11 12 13 14 15 16 are additional 
to the convex basis. 
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APPENDIX 3 : Description of all Elementary Flux Modes (EFM) of KS1 
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NAD + ADP + PiNADH + ATP

NADH
NAD

ATP NAD
NADH

NAD

NADH

6 = C4

2x

MALc

MALc AKGc

PYRm

ACoAm

CITmOAAm

ADP + Pim

K2

K1

K3

AKGm

K4MALm K567

K8

PYRc

PimPi c

MALc

T5

T3

T2

T1

CITc

T6

NAD + ADP + PiNADH + ATP

NADH
NAD

ATP NAD
NADH

NAD

NADH

7

2x

2x

MALc

MALc AKGc

PYRm

ACoAm

CITmOAAm

ADP + Pim

K2

K1

K3

AKGm

K4MALm K567

K8

PYRc

PimPi c

MALc

T5

T3

T2

T1

CITc

T6

NAD + ADP + PiNADH + ATP

NADH
NAD

ATP NAD
NADH

NAD

NADH

2x

8
2x

MALc

MALc AKGc

PYRm

ACoAm

CITmOAAm

ADP + Pim

K2

K1

K3

AKGm

K4MALm K567

K8

PYRc

PimPi c

MALc

T5

T3

T2

T1

CITc

T6

NAD + ADP + P iNADH + ATP

NADH
NAD

ATP NAD
NADH

NAD

NADH

5(e) EFM 5 (f) EFM 6

(g) EFM 7 (h) EFM 8
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MALc

MALc AKGc

PYRm

ACoAm

CITmOAAm

ADP + Pim

K2

K1

K3

AKGm

K4MALm K567

K8

PYRc

PimPi c

MALc

T5

T3

T2

T1

CITc

T6

NAD + ADP + PiNADH + ATP

NADH
NAD

ATP NAD
NADH

NAD

NADH

9* Cycle de Krebs

MALc

MALc AKGc

PYRm

ACoAm

CITmOAAm

ADP + Pim

K2

K1

K3

AKGm

K4MALm K567

K8

PYRc

PimPi c

MALc

T5

T3

T2

T1

CITc

T6

NAD + ADP + PiNADH + ATP

NADH
NAD

ATP NAD
NADH

NAD

NADH

10
2x 

MALc

MALc AKGc

PYRm

ACoAm

CITmOAAm

ADP + Pim

K2

K1

K3

AKGm

K4MALm K567

K8

PYRc

PimPi c

MALc

T5

T3

T2

T1

CITc

T6

NAD + ADP + PiNADH + ATP

NADH
NAD

ATP NAD
NADH

NAD

NADH

11

2x 

MALc

MALc AKGc

PYRm

ACoAm

CITmOAAm

ADP + Pim

K2

K1

K3

AKGm

K4MALm K567

K8

PYRc

PimPi c

MALc

T5

T3

T2

T1

CITc

T6

NAD + ADP + PiNADH + ATP

NADH
NAD

ATP NAD
NADH

NAD

NADH

12

2x 

2x 

2x 

(l) EFM 12

(i) EFM 9 Krebs cycle (j) EFM 10

(k) EFM 11

MALc

MALc AKGc

PYRm

ACoAm

CITmOAAm

ADP + Pim

K2

2xK1

K3

AKGm

K4MALm K567

K8

PYRc

PimPi c

MALc

T5

T3

T2

T1

CITc

T6

NAD + ADP + PiNADH + ATP

NADH
NAD

ATP NAD
NADH

NAD

NADH

13 *

2x 

2x 
2x 

3x 

MALc

MALc AKGc

PYRm

ACoAm

CITmOAAm

ADP + Pim

K2

K1

K3

AKGm

K4MALm K567

K8

PYRc

PimPi c

MALc

T5

T3

T2

T1

CITc

T6

NAD + ADP + PiNADH + ATP

NADH
NAD

ATP NAD
NADH

NAD

NADH

14
2x 

2x 

2x 

MALc

MALc AKGc

PYRm

ACoAm

CITmOAAm

ADP + Pim

K2

K1

K3

AKGm

K4MALm K567

K8

PYRc

PimPi c

MALc

T5

T3

T2

T1

CITc

T6

NAD + ADP + PiNADH + ATP

NADH
NAD

ATP NAD
NADH

NAD

NADH

15*
2x 

2x 
2x 

MALc

MALc AKGc

PYRm

ACoAm

CITmOAAm

ADP + Pim

K2

K1

K3

AKGm

K4MALm K567

K8

PYRc

PimPi c

MALc

T5

T3

T2

T1

CITc

T6

NAD + ADP + PiNADH + ATP

NADH
NAD

ATP NAD
NADH

NAD

NADH

16 = C1+ 2C2 + C3 + C4 
2x 

2x 

(m) EFM 13 (n) EFM 14

(o) EFM 15 (p) EFM 16         
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SILVA Pedro Ângelo (ppsilva@igc.gulbenkian.pt)

SOURNIA Pierre (pierre.sournia@polytechnique.edu)

STAN Guy-Bart (g.stan@imperial.ac.uk)

SUBRAMANIAN Kartik (skartik@vt.edu)

THIELE Ines (ines.thiele@uni.lu)

TROSSET Jean-Yves (jytrosset@gmail.com)

VANOUSE Paul (vanouse@buffalo.edu)

YOU Lingchong (you@duke.edu)

ZELISZEWSKI Dominique (dominique.zeliszewski@issb.genopole.fr)


