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“But technology will ultimately and usefully be better served by following
the spirit of Eddington, by attempting to provide enough time and intellectual

space for those who want to invest themselves in exploration of levels
beyond the genome independently of any quick promises for still quicker

solutions to extremely complex problems.”

Strohman RC (1977) Nature Biotech 15:199

FOREWORD
What are the salient features of the new scientific context within which biological modelling

and simulation will evolve from now on? The global project of high-throughput biology may
be summarized as follows. After genome sequencing comes the annotation by ’classical’
bioinformatics means. It then becomes important to interpret the annotations, to understand
the interactions between biological functions, to predict the outcome of perturbations, while
incorporating the results from post genomics studies (of course, sequencing and annota-
tion do not stop when simulation comes into the picture). At that stage, a tight interplay
between model, simulation and bench experimentation is crucial. Taking on this challenge
therefore requires specialists from across the sciences to learn each other’s language so as
to collaborate effectively on defined projects.

Just such a multi-disciplinary group of scientists has been meeting regularly at Genopole,
a leading centre for genomics in France. This, the Epigenomics project, is divided into six
subgroups. The GolgiTop subgroup focuses on membrane deformations involved in the
functionning of the Golgi. The Hyperstructures subgroup focuses on cell division, on the
dynamics of the cytoskeleton, and on the dynamics of hyperstructures (which are extended
multi-molecule assemblies that serve a particular function). The Organisation subgroup
has adopted a systems biology approach with the application and development of new
programming languages to describe biological systems which it has been applying to prob-
lems in the growth and differentiation of plants and in the structure and functioning of
mitochondria. The Observability subgroup addresses the question of which models are
coherent and how can they best be tested by applying a formal system, originally used for
testing computer programs, to an epigenetic model for mucus production by Pseudomonas
aeruginosa, the bacterium involved in cystic fibrosis. The Bioputing group works on new
approaches proposed to understand biological computing using computing machine made
of biomolecules or bacterial colonies. The SMABio subgroup focuses on how multi-agents
systems (MAS) can be used to model biological systems.

The works of subgroups underpinned the conferences organised in Autrans in 2002, in
Dieppe in 2003, in Evry in 2004, in Montpelliers in 2005 and in Bordeaux in 2006. The
conferences in Evry in 2007 which as reported here, brought together over a hundred partic-
ipants, biologists, physical chemists, physicists, statisticians, mathematicians and computer
scientists and gave leading specialists the opportunity to address an audience of doctoral
and post-doctoral students as well as colleagues from other disciplines.

This book gathers overviews of the talks, original articles contributed by speakers and
attendees, and poster abstracts. We thank the sponsors of this conference for making it
possible for all the participants to share their enthusiasm and ideas in such a constructive
way.

Patrick Amar, Gilles Bernot, Marie Beurton-Aimar, Marie Dutreix, Jean-Louis Giavitto, Christophe Godin,
Janine Guespin, François Képès, Jean-Pierre Mazat, Franck Molina, Victor Norris, Vincent Schächter,
Philippe Tracqui.
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http://www.gdr-bim.u-psud.fr

• Institut National de Recherche en Informatique et en Automatique (INRIA):
http://www.inria.fr

• Fondation Scientifique Fourmentin-Guilbert:
http://www.fourmentinguilbert.org

THE EDITORS



INVITED SPEAKERS
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Qualitative Simulation of the Carbon Starvation Response
in Escherichia coli

Delphine Ropers1, Hidde de Jong1, Johannes Geiselmann2

1 INRIA Rhône-Alpes, 655 avenue de l’Europe, Montbonnot, F-38334 St-Ismier cedex, France
2 Laboratoire Adaptation et Pathogénie des Microorganismes CNRS UMR 5163,

Université Joseph Fourier, Faculté de Médecine-Pharmacie Domaine de la Merci,
F-38700 La Tronche, France

Abstract

The adaptation of living organisms to their environment is controlled at the molecu-
lar level by large and complex networks of genes, mRNAs, proteins, metabolites, and
their mutual interactions. In order to understand the overall behavior of an organism,
we must complement molecular biology with the dynamic analysis of cellular interac-
tion networks, by constructing mathematical models derived from experimental data, and
using simulation tools to predict the behavior of the system under a variety of condi-
tions. Following this methodology, we have started the analysis of the network of global
transcription regulators controlling the adaptation of the bacterium Escherichia coli to en-
vironmental stress conditions. Even though E. coli is one of the best studied organisms,
it is currently little understood how a stress signal is sensed and propagated throughout
the network of global regulators, so as to enable the cell to respond in an adequate way.
Using a qualitative method that is able to overcome the current lack of quantitative data on
kinetic parameters and molecular concentrations, we have modeled the carbon starvation
response network and simulated the response of E. coli cells to carbon deprivation. This
has allowed us to identify essential features of the transition between exponential and sta-
tionary phase and to make new predictions on the qualitative system behavior following a
carbon upshift. The model predictions have been tested experimentally by means of gene
reporter systems.
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Logic and Constraint Programming for constructing and
analysing Logical Models of Regulatory Networks

Laurent Trilling1

1 Université Joseph Fourier (Grenoble I), IMAG-LSR, Boı̂te postale 72 F-38402,
St. Martin d’Hères, France

Abstract

The main advantage of a logic programming approach is well-known: a lot of different
functionalities become available from a unique logical specification. It seems very well
suited to the multivalued logic models proposed by René Thomas. From a unique descrip-
tion of the logical equations, one can ideally perform simulation (all logical parameters
are known) or inference of parameters (the model must be consistent with known be-
haviours) or possibly intermediate requests (the model and some behaviours are partially
known). In the case where the givens are consistent, prediction of unknown behaviours
and elaboration of new experiments, become possible, both being safe for all acceptable
models. These advantages are emphasized by using constraints which can be solved by
efficient algorithms. After a brief recall of CLP (Constraint Logic Programming) and of
Thomas’s models, we will present successively: the main lines of a precise specification
of these models with CLP, some theoretical problems arising from this specification, the
requirements for the termination of a request, the methodology for analysing a network
given by its structure and behaviours, some biological models analysed and/or revisited
by this method and finally computational performances of the approach.
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Robustness in genetic regulation networks and micro-RNAs

Jacques Demongeot1

1 TIMC-IMAG, UMR CNRS-UJF 5525

Abstract

The dynamical behaviour of the genetic regulatory networks is very sensitive to exoge-
neous influences, like apparition of chromosomic or genic abnormalities perturbing the
genetic memory or the transcription/traduction machinery. In the modelling of genetic
networks, we can take into account these external perturbations through classical tools
like sensitivity indices to the boundary conditions or to the architecture parameters per-
turbations. The endogeneous role of the small RNAs like the micro-RNAs seems to be
more difficult to study, but fluctuations in presence/absence or in concentrations of these
effectors could play a role as important as those of the external factors. We propose a
general frame for studying the sensitivity to both external and internal factors exerting an
influence on the regulatory networks depending on their high or small robustness.
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Analysis of wastewater processing using a metagenomic
approach

Jean Weissenbach1

1 Genoscope, Evry, France

Abstract

Wastewater is processed through a number of biochemical pathways by microorganisms
which progressively decompose organic matter into mineral components. Mineralisation
is driven to a certain extent through a succession of steps which take place in aerobic
or anaerobic conditions. We have only a partial view of the biochemical aspects and
we know little about the prokaryotic florae involved and their exact contribution to the
overall process. We have therefore applied genomic and metagenomic approaches to get
more knowledge about the microbial actors and the biochemistry at work in wastewater
processing.

We have successively used 16 rDNA analysis and constructed metagenomic DNA
libraries of large insert fragments extracted from different basins of a municipal wastew-
ater treatment plant. In particular a fosmid library of more than one million clones of
DNA extracted from an anaerobic mesophilic digester was screened by high density filter
hybridization using various 16S rDNA probes. Sequences of 16S rDNAs identified in
the fosmids were compared to those obtained from PCR products on the DNA extracted
from the florae of the basins. New bacterial divisions that represent significant fractions
(> 10%) of the prokaryotic population of the digester were identified and are being further
studied.

End sequences of the large insert clones have been obtained and are being analyzed
using several approaches including assembly, definition of open reading frames, coding
sequence alignments etc. Results of such analyses will be presented. The sequence dataset
has also been used to identify missing genes in biochemical pathways as well as novel
enzyme activities and fermentation pathways.
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Adaptation studied with the self-consistent codon index:
genomic spaces, metabolic network comparison, minimal

gene sets and viral classification

Alessandra Carbone1

1 Laboratory of Analytical Genomics, Université Pierre et Marie Curie, INSERM UMRS 511,
91, Bd de l’Hôpital, F-75013 Paris, France;
e-mail: Alessandra.Carbone@lip6.fr

Abstract

Facts and ideas presented in this short review concern some recent developments at the
interface between microbial spaces, metabolic network comparison, minimal gene sets
and viral classification. The guiding line to all results presented here is to derive biolog-
ical information from genome sequences by means of a purely statistical analysis and an
appropriate design of algorithms. The paper is an updated version of (Carbone 2005).

1 Some background and motivation

Proteins are formed out of 20 amino-acids which are coded in triplets of nucleotides,
called codons. The four nucleotides (A, T, C,G) define 64 codons used in the cell.
Codons are not uniformly employed in the cell, but at the contrary, certain codons are
preferred and we speak about codon bias. There are several kinds of codon biases and
some of them are linked to specific biological functions. Statistical analysis of DNA se-
quences and in particular of codon bias were performed from the moment that long chunks
of DNA sequences were publicly available in the early eighties (Grantham et al. 1980;
Wada et al. 1990), and the roots for these studies can be traced back to the sixties (Sueoka
1962; Zuckerkandl and Pauling 1965). However with the increasing number of bacterial
genome sequences from a broad diversity of species, this field of research has been reviv-
ified in the last few years (Koonin and Galperin 1997; Lin and Gerstein 2000; Radomski
and Slonimski 2001; Knight et al. 2001; Sicheritz-Pont´en and Andersson 2001; Daubin
et al. 2002; Lin et al. 2002; Lobry and Chessel 2003; Sandberg et al. 2003; Jansen et al.
2003).

Biased codon usage may result from a diversity of factors: GC-content, preference for
codons with G or C at the third nucleotide position (Lafay et al. 1999), a leading strand
richer in G + T than a lagging strand (Lafay et al. 1999), horizontal gene transfer which
induces chromosome segments of unusual base composition (Moszer et al. 1999), and in
particular, translational bias which has been frequently noticed in fast growing prokary-
otes and eukaryotes (Sharp and Li 1987; Sharp et al. 1986; M´edigue et al. 1991; Shields
and Sharp 1987; Sharp et al. 1988; Stenico et al. 1994). Three main facts support the
idea of ”translational impact”: highly expressed genes tend to use only a limited number
of codons and display a high codon bias (Grantham et al. 1980; Sharp and Li 1987),
preferred codons and isoacceptor tRNA content exhibit a strong positive correlation (Ike-
mura 1985; Bennetzen and Hall 1982; Bulmer 1987; Gouy and Gautier 1982), and tRNA
isoacceptor pools affect the rate of polypeptide chain elongation (Varenne et al. 1984;
Buckingham and Grosjean 1986).
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To study the effect of translational bias on gene expression, Sharp & Li (Sharp and Li
1987) proposed to associate to each gene of a given genome a numerical value, called
Codon Adaptation Index or CAI for short, which expresses its synonymous codon bias
(see appendix for the definition). The idea is to compute a weight (representing relative
adaptiveness) for each codon from its frequency within a chosen small pool of highly
expressed genes S, and combine these weights to define the CAI(g) value of each gene g
in the genome. For Sharp et al., the hypothesis driving the choice of S is that, for certain
organisms, highly expressed genes in the cell have highest codon bias, and these genes,
made out of frequent codons, are representative for the bias. Based on this rationale, one
can select a pool of ribosomal proteins, elongation factors, proteins involved in glycolysis,
possibly histone proteins (in eukaryotes) and outer membrane proteins (in prokaryotes)
or other selections from known highly expressed genes, to form the representative set S.
Then, CAI values are computed and are checked to be compatible with genes known to
be highly or lowly expressed in the cell. If this is the case, then predictions are drawn
with some confidence on expression levels for genes and open reading frames, even with
no known homologues. Even if conceptually clear, this framework has been misused
several times in the literature and incorrect biological consequences have been derived
for gene expression levels of organisms which do not display a dominant translational
bias, as discussed in (Grocock and Sharp 2002). This confusion motivated us to search
for a methodology based on a precise mathematical formulation of the problem to detect
the existence of translational bias.

But the main motivation for us came from the recognition that an increasing number
of genome sequences will be available for organisms for which biological knowledge con-
sists merely of a sketched morphological and ecological description. For these organisms,
it might not be evident how to define the reference set S, nor how to identify a reliable
testing set which can ensure that predictions meet a satisfiable confidence level. Still, one
would like to detect if translational bias holds for these genomes and if so, to predict their
gene expression levels. If not, one would like to know the origin of their dominating bias
and use this information for genome comparison.

2 An automatic detection of codon bias

We proposed a simple algorithm to detect dominating synonymous codon usage bias in
genomes (Carbone et al. 2003). The algorithm is based on a precise mathematical formu-
lation of the problem that leads to use the Self-Consistent Codon Index (SCCI) (strongly
correlated to the CAI measure in translationally biased organisms) as a universal mea-
sure of codon bias, that is a measure for biases of possibly different origins (and not only
for translational bias, as CAI was originally introduced for). With the set of coding se-
quences as a sole source of biological information, the algorithm provides a reference set
S of genes which is highly representative of the bias. This set is then used to compute
the Codon Adaptation Index of genes of prokaryotic and eukaryotic organisms, including
those whose functional annotation is not yet available. An important application con-
cerns the detection of a reference set characterizing translational bias which is known
to correlate to expression levels in many bacteria and small eukaryotes; it detects also
leading-lagging strands bias, GC-content bias, GC3 bias, and horizontal gene transfer. In
general, the algorithm becomes a key tool to predict gene expression levels and to com-
pare species. The approach is validated on 96 slow-growing and fast-growing bacteria
and archaeal genomes, Saccharomyces cerevisiae, Plasmodium falciparum, Caenorhab-
ditis elegans and Drosophila melanogaster.
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3 Genomic signatures and a space of genomes for genome comparison

Based on this analysis, we propose a novel formal framework to interpret genomic rela-
tionships derived from entire genome sequences rather than individual loci. This space
allows to analyse sets of organisms related by a common codon bias signature (at times,
more than one kind of bias influences the same genomic sequence and the ensemble of
these overlapped biases defines what we call the signature of a genome) (Carbone et al.
2004). We give a number of numerical criteria to infer content bias, translational bias and
strand bias for genome sequences. We show in a uniform framework that genomes of quite
different phylogenetic relationship share similar codon bias; other genomes grouped to-
gether by various phylogenetic methods, appear to be subdivided in finer subgroups shar-
ing different codon bias characteristics; Archaea and Eubacteria share the same codon
preferences when AT3 or GC3 bias is their dominant bias; archaeal genomes satisfy-
ing translational bias use a sharply distinguished set of preferred codons than bacterial
genomes. Our analysis, based on 96 eubacterial and archaeal genomes, opens the pos-
sibility that this space might reflect the geometry of a prokaryotic “physiology space”.
If this turns out to be the case, the combination of the upcoming sequencing of entire
genomes and the detection of codon bias signatures will become a valuable tool to infer
information on the physiology, ecology and possibly on the ecological conditions under
which bacterial and archaeal organisms evolved. For many organisms, this information
would be impossible to be detected otherwise.

4 Study of metabolic networks through sequence analysis and transcrip-
tomic data

Genes with high codon bias describe in meaningful ways the biological characteristics
of the organism and are representative of specific metabolic usage (Carbone and Madden
2005). In silico methods exploiting this basic principle are expected to become impor-
tant in learning about the lifestyle of an organism and explain its evolution in the wild.
We demonstrate that besides high expressivity during fast growth or glycolytic activities
which have been very often reported, the necessity for survival under specific biological
conditions has its traces in the genetic coding (Carbone and Madden 2005). This observa-
tion opens the possibility to predict rare but necessary metabolic activities from genome
analysis.

High expression of certain classes of genes, like those constituting the translational
machinery or those involved in glycolysis, are correlated particularly well in the case of
fast growing organisms. By shifting the paradigm towards metabolic pathways, we notice
that several energy metabolism pathways are correlated with high codon bias in organ-
isms known to be driven by very different physiologies, which are not necessarily fast
growing and whose genomes might be very homogeneous. More generally, we derive a
classification of metabolic pathways induced by codon analysis, show that genetic coding
for different organisms is tuned on specific pathways and that this is a universal fact. The
codon composition of enzymes involved in glycolysis for instance, often required to be
rapidly translated, is highly biased by dominant codon composition across species (this
is indicated by the high CAI value of these enzymes). In fast growers, the numerical
evidence is definitely far more striking than for other organisms (that is, the absolute dif-
ference between the CAI value of these enzymes and the average CAI value for genes in
the genome is ”large”), but even for Helicobacter pylori, a genome of rather homogeneous

MODELLING COMPLEX BIOLOGICAL SYSTEMS 21



codon composition, enzymes involved in glycolytic pathways happen to be biased above
average. In the same manner, one detects the crucial role of photosynthetic pathways for
Synechocystis or of methane metabolism for Methanobacterium.

mRNA transcriptional levels collected during the Saccharomices cerevisiae cell cycle
under diauxic shift (deRisi et al. 1997) (here, glucose quantities decrease in the media
during cell cycle and yeast goes from fermentation to aerobic respiration), have been used
to analyze the yeast metabolic network in a similar spirit as done with codon analysis.
A classification of metabolic pathways based on transcriptomic data has been proposed,
and we show that the metabolic classification obtained through codon analysis essentially
”coincides” with the one based on (a large and differentiated pool of) transcriptomic data.
Such a result opens the way to explaining evolutionary pressure and natural selection
for organisms grown in the wild, and hopefully, to explain metabolism for slow-growing
bacteria, as well as to suggest best conditions of growth in the laboratory.

5 Genomic signatures and minimal gene sets

Computational and experimental attempts tried to characterize a universal core of genes
representing the minimal set of functional needs for an organism. Based on the increasing
number of available complete genomes, comparative genomics (Mushegian and Koonin
1996, Makarova et al. 2003, Nesbøet al. 2001, Harris et al. 2003, Brown et al. 2001,
Koonin 2003, Charlebois and Doolittle 2004) has concluded that the universal core con-
tains less than 50 genes. In contrast, experiments (Itaya 1995, Kobayashi et al. 2003,
Hutchison et al. 1999, Glass et al. 2006, Akerley et al. 2002, Gerdes et al. 2003,
Hashimoto et al. 2005, Salama et al. 2004, Ji et al. 2001, Forsyth et al. 2002, Thanassi
et al. 2002, Winzeler et al. 1999, Giavier et al. 2002, Kamath et al. 2003) suggest a
much large set of essential genes (certainly more than several hundreds, even under the
most restrictive hypotheses) which is dependent on the biological complexity and the en-
vironmental specificity of the organism. Highly biased genes, which are generally also
the most expressed in translationally biased organisms, tend to be over-represented in the
class of genes deemed to be essential for any given bacterial species. This association is
far from perfect, nevertheless it allows to propose a new computational method based on
SCCI to detect to a certain extent ubiquitous genes, non-orthologous genes, environment
specific genes, genes involved in stress response and genes with no identified function but
highly likely to be essential for the cell. Most of these groups of genes cannot be identified
with previously attempted computational and experimental approaches. The large spread
of lifestyles and the unusually detectable functional signals characterizing translationally
biased organisms suggest to use them as reference organisms to infer essentiality in other
microbial species. In (Carbone 2006), we analyse in detail 27 organisms belonging to a
large variety of phylogenetic taxa, γ and δ proteobacteria, firmicutes, actinobacteria, ther-
mococcales and methanosarcinales; they do not display strong GC nor AT content and
they are characterized by different optimal growth temperatures (Carbone et al. 2004).
We also discuss the case of small parasitic genomes, and data issued by the analysis are
compared to previous computational and experimental studies.

6 Viral adaptation to microbial hosts

The methodology presented in this paper and the notion of SCCI used to study bacterial
species have been recently used to analyse viral genomes and adaptation to their host
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(Carbone 2007, unpublished). We showed how viruses belonging to known phylogenetic
organisations are localized in confined regions of codon space depending on their codon
composition and demonstrate that codon bias is a highly refined measure that allows to re-
construct close relationships among viruses of the same species, being able to distinguish
very clearly sequences of relatively small evolutionary distance.

Finding a convincing viral classification which is independent from morphology is
becoming particularly important nowadays due to a large amount of metagenomic data
already available and promised to be available in years to come. Numerical methods to
approach these questions are sick.

Appendix: some comments on the mathematical methods

In this text, a coding sequence is represented by a 64-dimensional vector, whose entries
correspond to the 64 relative codon frequencies in the sequence. Recall that the frequency
of a codon i in a sequence g is the number of occurrences of i in g (where g is intended
to be split in consecutive non-overlapping triplets corresponding to amino-acid decom-
position), and that the relative frequency of i in g is the frequency of i in g divided by
the number of codons in g. For each vector representing a coding sequence, the sum
of its entries must equal 1. Hence, a coding sequence is a point in the 64-dimensional
space [0 · · · 1]64, where no special assumption is made on the space nor on the coordinate
system.

For each genome sequence G and some set of coding sequences S in G, codon bias
is measured with respect to its synonymous codon usage. Given an amino-acid j, its
synonymous codons might have different frequencies in S; if xi,j is the number of times
that the codon i for the amino-acid j occurs in S, then one associates to i a weight wi,j

relative to its sibling of maximal frequency yi in S

wi,j =
xi,j

yj

.

A codon with maximal frequency in S is called preferred among its sibling codons. Self-
Consistent Codon Index (SCCI) associated to g in G, is a value in [0, 1], defined as

SCCI(g) = (ΠL
k=1wk)1/L

where L is the number of codons in the gene, and wk is the weight of the k-th codon gene
sequence. Genes with SCCI value close to 1 are made by highly frequent codons.

When the reference set S is predefined to be a set of highly expressed genes in the
organism, then the index issued by the SCCI formula corresponds to the known Codon
Adaptation Index introduced by Sharp & Li (Sharp and Li 1987).

All results cited here are obtained using very simple mathematical and algorithmic no-
tions which are fully described in (Carbone et al. 2003; Carbone et al. 2004; Carbone and
Madden 2005). The statistical analysis and numerical thresholds we propose are realized
in a 64-dimensional codon space. Multivariance statistical methods have been employed
as visualisation tools, but none of the formal results nor the biological conclusions are
inferred from the 3 dimensional projections. Both space of genes and space of organisms
in 64 dimensions, and distances between organisms are defined as `1-distances.
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An information dynamics approach for characterising pattern
formation in spatiotemporal chemical systems:

applications to the Gray-Scott model and its extension to a flow reactor system

Kristian Lindgren1

1 Chalmers University of Technology, Göteborg, Sweden

Abstract

Pattern formation in chemical systems is a dynamical process that has been extensively
studied in the litterature since the original work by Turing. Given a certain set of reactions,
the shape and spatio-temporal development of the patterns is determined by two different
types of information flows. One flow is the information from the noise (fluctuations
in concentrations) leading to symmetry breaking that determins the exact path in the
dynamics. This flow is very small compared to the other information flow, associated
with the driving force given by inflow free energy, which is the focus of this presentation.

The thermodynamic constraints on this type of self-organising system tells us that
the system needs to be open (for inflow of free energy and removal of heat and waste
products). We have developed an information-theoretic frame work that goes one step
further in the analysis of physical constraints in chemical self-organisation. The formal-
ism is based on a thermo dynamic information quantity (via statistical mech anics), and
this makes it possible to connect an information-theoretic characterisation of a spatial
pattern with the free energy driving the system. In this way, a consistent picture of the
pattern formation process in terms of free energy being transformed into information
in a spatial pattern and eventually destroyed by entropy production when reactions and
diffusion processes tries to bring the system towards equilibrium.

In our analysis the information in the pattern is decomposed into contributions from
both different positions and different length scales. The overall picture we get is an
inflow of information at large length scales, due to the inflow of chemical free energy.
Information then flows down in length scale (and also across space), where accumulation
at certain positions is con nected with the pattern formation. Infor mation is lost from
the system at the finest length scales. The whole process is summarised in a continuity
equation for information.

In our current research we investigate the possibility to use this formalism to make
predictions on how pattern formation may depend on the structure of the driving force,
i.e., the inflow of free energy. Preliminary results indicate that the information flow is gen-
erally going in the direction described above – from larger to smaller length scales –which
may be viewed as generalised “second law” of information destruction. If the characteris-
tic length scale of the free energy inflow is reduced below the length scale of the patterns
in the system, the flow will not be able to support the structures built up and neither will
new structure emerge unless that happends on a smaller length scale. In the same way
as ambient heat has too low energy quality to drive a physical process, a chemical free
energy inflow of too low length scale characteristics may be insufficient to support pattern
formation.
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In the PACE project this analysis may be of importance for understanding limit ations
on the formation of meso-scale structures under reaction-diffusion-convection dynamics
when the reactor has a certain small length scale in its inflow, as is the case for the “fan”
reactor in the Omega-machine. Recent work, involving an extension of the Gray-Scott
model that allows for self-replicating pattern dynamics in a flow reactor is presented.
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Membrane proteins under the computational microscope
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Abstract

Life sciences have greatly benefited from innovative techniques in structure determina-
tion, DNA sequencing at the level of entire genomes, and direct manipulation and observa-
tion of single molecules. Computational biophysics complements these efforts by means
of cutting-edge molecular modeling in direct response to experimental advances. Its grand
challenge is to attain the microscopic detail that cannot be easily accessed through con-
ventional experimental techniques. Of topical interest are G protein-coupled receptors,
which correspond to the third largest family of genes in the human genome, and, hence,
represent privileged targets for rational drug design. When neither theory nor experiment
alone can provide atomic-level three-dimensional structures of G protein-coupled recep-
tors, their synergistic combination offers an interesting perspective to reach this goal.
Such a self-consistent strategy has been applied successfully to elucidate the structure of
the human receptor of cholecystokinin-1 in the presence of an agonist ligand.

We will show that the site-directed mutagenesis experiments designed to pinpoint key
receptor-ligand interactions can be reproduced accurately employing the free energy per-
turbation methodology. We will further disclose how sufficiently long simulations can
shed new light on the structural modifications undergone by the receptor upon transi-
tion from its activated state to its inactivated state. We will also demonstrate that novel
computational approaches can be used fruitfully to investigate the reversible association
of transmembrane helices, a key event in membrane protein folding. The paradigmatic
example of glycophorin A is chosen to decipher the mechanisms of recognition and as-
sociation reflected in the hypothesized two-stage model of membrane protein folding.
The proposed free energy calculation illuminates the complementarity of a short- and a
long-range regime in the formation of the native helix dimer, driven by forces of distinct
nature. Last, the same methodology will be utilized to disentangle the intricate mecha-
nism of glycerol conduction in the Escherichia coli facilitator GlpF.

Of particular interest, it will be demonstrated in the light of significantly long sim-
ulations, that transport across the aquaglyceroporin channel and both orientational and
conformational relaxations are processes that span comparable time scales.
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Oscillations in Saccharomyces cerevisiae
Michel Jacquet1

1Institut de Génétique et Microbiologie, Université Paris-Sud, Orsay, France

Abstract

The budding yeast Saccharomyces cerevisiae, which is one of the best-known cellular
organisms in which practically all experimental approaches are feasible, has been chosen
to study the functioning of many signaling systems. This unicellular organism, as most
living organisms, is able respond to sudden changes in their environment by modifying
its program of gene expression. Such responses involve several signaling devices. As an
example, a given stress such as heat shock will trigger both a specific pathway leading
to the activation of genes encoding chaperones and other protective components and in
addition will also trigger a more general system which is activated under a wide variety of
stresses as well as under metabolic transition: the so-called general stress system mediated
by two transcription factors Msn2 and Msn4. The sensitivity to stress of Msn2 and Msn4
depends also from the metabolic state of the cell, which is monitored by the cyclic AMP
system. We have been investigating this system as an interesting model of signaling
system.

Genetic approaches, based on the fact that this system is required for normal growth,
allowed us and others to identify all its components with their hierarchical relationships.
Noteworthy, it was found that the production of cAMP is under a very strong feedback
mechanism. cAMP positively controls the activity of the protein kinase A (PKA). Main
targets for the growth control are Msn2 and Msn4, which are inactive and maintained in
the cytoplasm when phosphorylated by this kinase. We took advantage of the develop-
ment of rapid fluorescent video-microscopy to follow the kinetics of nucleocytoplasmic
translocation of Msn2 and Msn4. We made an unexpected observation that these tran-
scriptional activators shuttle periodically with an oscillatory behavior of the molecular
population in and out the nucleus upon stress activation (1). Moreover, the illumination
by the light of the microscope was sufficient to trigger the stress induced nuclear translo-
cation. To explain this behavior we made several hypothesis based on potential systems
able to generate oscillations.

A tempting model involving the modifications of Msn2, which occur during the for-
mation of the transcriptional complex, was eliminated by experiments showing that the
domains of Msn2 interacting in the complex were not required to produce the oscillatory
behavior. Latter on, a small region of Msn2, controlled by PKA phosphorylation, was
found to be necessary and sufficient to generate a periodic shuttling of the associated pro-
tein. This result let us with Albert Goldbeter, to investigate by means of a computational
model the ability of the cAMP-PKA system to enter in an oscillatory regime. The strong
feedback mechanism of the PKA on the accumulation of cAMP within the cell is able
to generate sustained oscillation within a range of parameters compatible with the actual
knowledge of the yeast components. The details of this model and its implications will
be discussed during the presentation. To check this model, we have used mutants altered
in the feedback mechanism and shown that the oscillatory behavior was lost while the
stress-induced translocation was still occurring. This result confirms the need of an effec-
tive feedback mechanism of the cAMP-PKA system to produce oscillations and provide
a mechanistic basis for this novel aspect of non-linear relationships in cellular signaling.
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Modeling Cellular Rhythms in Metabolic and Genetic
Regulatory Networks
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Abstract

Because of their close association with feedback processes in regulated genetic or
metabolic networks, cellular rhythms represent a prototypic field of research for Systems
Biology. After providing an overview of models for cellular rhythms, I will focus on two
examples of rhythmic behavior associated, respectively, with enzymatic and genetic regu-
lation. The first example pertains to metabolic oscillations in yeast glycolysis, which arise
from the regulation of enzyme activity. The second pertains to circadian rhythms which
originate from intertwined feedback processes in genetic regulatory networks. Computa-
tional models of increasing complexity have been proposed for the molecular mechanism
of these rhythms, which occur spontaneously with a period of the order of 24 h. Models
for circadian rhythms in Drosophila account for a variety of dynamical properties such
as phase shifting or long-term suppression by light pulses, and entrainment by light-dark
cycles. An extension of the model to the mammalian circadian clock allows us to address
the dynamical bases of physiological disorders of the sleep-wake cycle in humans.
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Initiation of differential gene expression in sporulating
Bacillus subtilis - a mathematical mode
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Abstract

Early in sporulation Bacillus subtilis undergoes an asymmetric septation to give two com-
partments, a smaller prespore and a larger mother cell. Differential gene expression is
established in these compartments as a result of the activity of compartment-specific tran-
scription factors called sigma (σ) factors. The first of these is σF , which becomes active
in the prespore (but not the mother cell) soon after asymmetric septation. The initia-
tion of differential gene expression depends on interactions among σF and three specific
regulatory proteins. In the past several years we and others have identified all these inter-
actions, established the kinetic constants associated with them and measured the intracel-
lular concentrations of the relevant proteins. We have now used these kinetic constants
and concentrations to write a set of linked differential equations, which together constitute
a mathematical model that successfully describes the regulation of σF .

1 The biological system

When Bacillus subtilis, a Gram-positive soil bacterium, is starved of certain nutrients, it
enters a sequence of steps called sporulation, which lead to a heat-resistant spore. One of
the earliest steps is the construction of a division septum in an unusual position. Whereas
normal cell division in bacteria starts with the formation of a septum across the midline
of the cell and yields daughter cells of equal sizes, the septation that is characteristic of
sporulation is asymmetric: it gives rise to a small compartment named the prespore and a
large compartment named the mother cell. The two compartments remain attached, and
as sporulation proceeds the mother cell engulfs the prespore. The prespore eventually
becomes the mature spore, and this is liberated from the mother cell when the latter lyses.

This series of morphological changes is dependent on the unfolding of a genetic pro-
gramme which involves the expression, in a temporally ordered sequence, of sporulation-
specific genes, some in the prespore and others in the mother cell. Such compartment-
specific gene expression depends on the activity of certain transcription factors that are
specific to sporulation. In bacteria in general, the specificity of the RNA polymerase is
due to factors called sigma factors, which direct the enzyme to the promoters of particu-
lar genes. Different sigma factors can bind to the core RNA polymerase (depending on
the cell’s requirements at that moment), thus forming different promoter-specific RNA
polymerase holoenzymes. In growing cells almost all transcription is due to holoenzyme
containing the “house-keeping” sigma factor σA. The first sigma factor specific to sporu-
lation is σF , but in growing cells this is in an inactive form. After asymmetric septation
σF remains quiescent in the mother cell but is activated in the prespore. Active σF now
starts to compete with σA, forming σF -containing holoenzyme, and the consequent tran-
scription of σF -specific genes in the prespore sets in train all the subsequent events of
sporulation. It is crucial to the success of sporulation that σF is regulated in the way that
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I have just described — i.e. that before asymmetric septation it is kept inactive, and that
after asymmetric septation it is activated in the prespore but not in the mother cell.

Since activation of the first sporulation-specific sigma factor in only one of the two
compartments generated by asymmetric septation leads to differential gene expression,
sporulation is widely regarded as a simple and tractable model of differentiation. The
regulation of σF has been extensively studied in genetic, biochemical and biophysical
experiments, the results of some of which will be summarised very briefly in what follows.
A more extensive review, with references to the original literature, has been published by
Yudkin and Clarkson (2005).

σF is regulated by three sporulation-specific proteins, SpoIIAB (here called AB),
SpoIIAA (AA) and SpoIIE (IIE). AB is capable of three different interactions. In one
interaction it binds (in the presence of ATP) to σF and prevents the latter from becoming
attached to the core RNA polymerase. This binding of AB as an “anti-sigma factor” to
σF prevents the transcription of σF -dependent genes. Alternatively, AB can interact with
AA in either of two ways; the choice between these depends on the adenine nucleotide
present. In the presence of ATP AB acts as a specific protein kinase, phosphorylating
AA on one of its serine residues to yield AA-phosphate (AA-P). In the presence of ADP,
by contrast, AB and AA interact to make a non-covalent ternary complex, AB.AA.ADP.
The third of the proteins that regulate σF , IIE, is a specific phosphorprotein phosphatase,
which hydrolyses AA-P to AA.

In growing cells σF , AB and AA are all present, although in low concentrations, but
when sporulation begins their rate of synthesis increases dramatically. Before asymm-
metric septation all the AA in the cell is phosphorylated. By contrast with AA, AA-P
cannot make a non-covalent complex with AB, and the latter is free to bind to and thus
inhibit σF . But soon after the beginning of sporulation IIE is synthesised, and as a result
AA-P is hydrolysed to AA. This AA accumulates in the prespore, and it interacts with the
σF .AB.ATP complex, liberating σF and initiating the genetic programme of sporulation.
Thus the initiation of sporulation depends on AB’s abandoning σF as a binding partner
and binding instead to AA, and this change of partner depends in turn on the accumulation
of AA (produced by hydrolysis of AA-P) in relatively high concentration in the prespore
rather than the mother cell.

Results from my laboratory and elsewhere, particularly those gained by the use of
fluorescence spectroscopy, have shown that the release of σF from its inactive complex
with AB involves the following sequence of two reactions:

AA + σF .AB.ATP ⇀↽ σF + AA.AB.ATP;
AA.AB.ATP ⇀↽ AB.ADP + AA-P.

Since the concentration of ATP in the cell is much higher than that of ADP, the
AB.ADP thus formed will exchange its ADP for ATP, generating AB.ATP which would
be expected to bind again to σF . From the relative rates of reaction and the intracellular
concentrations of the proteins it can be shown that, as a result, σF will soon be inhibited
once more — unless some means is found to maintain AA at a high concentration so that
it is constantly available to disrupt the σF .AB.ATP complex. The only plausible means
of maintaining the concentration of AA is via hydrolysis of the AA-P formed in the reac-
tions shown above by IIE, a mechanism that implies that AA is continually being recycled
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through its phosphorylated and non-phosphorylated forms. If this implication is correct,
the cell must be engaging in a “futile cycle”, which is potentially costly in ATP. How is
the cost minimised?

Enzymological studies of the reaction in which the protein kinase AB catalyses the
phosphorylation of AA have shown that it consists of two phases: first a moderately slow
pre-steady state, and then a very slow steady state after two moles of AA have been
phosphorylated per mole of AB. (AB is a homodimer). The slow step in the steady state
has been identified as the loss of ADP from AB after each round of phosphorylation,
and this finding has led to the discovery that the interaction of AA with AB induces a
conformational change in the latter.

Figure 1: Cartoon diagram of the reaction scheme of the phosphorylation of AA by AB. AB is
shown as a monomer with a flexible lid which is closed by the interaction with AA. Blue shape,
AA; red shape, AB; purple hexagon, adenosine moiety of ADP and ATP; green circles, phosphate
groups.

It is known from crystallographic studies that AB has a flexible fold (an “ATP-lid”)
covering a nucleotide-binding pocket; when this lid is “open” ATP or ADP can readily
dissociate from (or bind to) the protein, but when the lid is covered by AA the nucleotide is
trapped and its dissociation from the protein is very slow. Figure 1 shows, in cartoon form,
the repeated phosphorylation of AA by AB, the regeneration of AA by hydrolysis, and the
interaction of the resulting AA with AB.ADP to form the ternary complex AB.AA.ADP
(which has been shown to accumulate during the reaction).

Although much information has been discovered about the regulation of σF , several
questions remain. Two particular quantitative puzzles are these. First, how is the acti-
vation of σF confined to the prespore? It is known that IIE, whose activity is essential
for the production of the AA that liberates σF from its complex with AB, is confined to
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the asymmetric septum that separates the prespore from the mother cell. But the activity
of IIE is displayed on both sides of the septum, with the result that AA is formed in the
mother cell as well as in the prespore. A possible explanation of the fact that σF activity
appears only in the prespore is the difference in volume of the two cells: since the volume
of the prespore is at least four times less than that of the mother cell, the concentration of
AA will be four times higher in the former than in the latter.

However, careful quantitative analysis would be necessary to show that this difference
is sufficient to account for the fact that σF activity is essentially absent from the mother
cell. Secondly, for RNA polymerase containing σF to become active in the prespore, the
σF must compete with the sigma factor, σA, that is a component of RNA polymerase
holoenzyme during the growth phase of the bacteria. However, the affinity of σA for the
core RNA polymerase is 25-fold higher than that of σF , while the concentration of σF at
the relevant time is only twice that of σA, so how can σF compete effectively with σA for
binding to the core polymerase?

My colleagues and I have now constructed a mathematical model which solves these two
puzzles and answers many other questions that have arisen during years of study of the
regulation of σF .

2 Constructing and testing the mathematical model

In its original form the model consisted of a set of ordinary differential equations de-
scribing the interactions that had already been identified between the molecular species
involved in regu-lating σF . To construct the model we used the known concentrations of
the proteins and of ADP and ATP at the beginning of sporulation, the rates of synthesis
of the proteins, and the rate constants for the molecular interactions. Most of these pa-
rameters are published; a few were determined in our lab specifically for the purpose of
producing the model.

Figure 2: Predicted concentration of σF -RNA polymerase during sporulation if SpoAB is al-
losteric and SpoAA binds with positive cooperativity (continuous line), or if SpoAB is not al-
losteric (dashed line).

We then asked the model to predict the change in concentration of σF -holoenzyme
around the time of asymmetric septation. But the prediction from this model (dashed
line in Figure 2) shows that the holoenzyme never reaches a concentration sufficient to
account for the transcription of σF -dependent genes in the prespore (at least 1 µmolar
σF -holoenzyme). Clearly there is some feature that we have failed to take into account in
constructing the model.
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We wondered whether the missing factor was allostery in AB. Since AB is a dimer, it
is possible that the binding of AA to AB is not linear with concentration but is subject to
positive cooperativity. We therefore extended the model to include allosteric interactions
in AB; the interactions in the revised model are shown in Figure 4.

Figure 3: Scatchard plot of experimentally determined (filled symbols) or predicted (continuous
lines) binding of SpoIIAA to SpoIIAB, if SpoIIAB is allosteric and SpoIIAA binds with positive
cooperativity (blue line) or if SpoIIAB is non-allosteric (green line). ν is the fraction of SpoIIAB
that has bound SpoIIAA.

But is AB in fact an allosteric protein, with the binding of AA to AB characterised
by positive cooperativity? We studied the binding by suface plasmon resonance and gen-
erated a Scatchard plot, which showed that the answer to this question is Yes (Figure 3).
It was thus reasonable to use the revised model to predict the change in concentration of
σF -holoenzyme at the beginning of sporulation. The prediction was now in accordance
with experimental findings (continuous line in Figure 2).

We next sought to see whether the revised model would simulate the results obtained
from in vitro experiments with purified AA, AB, IIE and σF that had previously been
published by us and others. We found that the model was successful in simulating: the
binding of AA to AB.ADP; the binding of σF to AB.ATP; the disruption of σF .AB.ATP
complexes by AA; the re-binding of σF to AB.ATP as the disrupting AA was inactivated
by phosphorylation; and the response of this re-binding to the presence of IIE. In addition
the model successfully simulated the distinctive biphasic time course of phosphorylation
of AA by AB.

3 Application of the mathematical model to the sporulating cell

The success of these simulations of results obtained in vitro emboldened us to see whether
the model could answer the two questions about the sporulating cell that we posed above.
To study the first question — whether the difference in volume between the mother cell
and the prespore accounts for the fact that the activation of σF is confined to the pres-
pore — we modelled the system with the cellular concentrations of proteins at the time
of asymmetric septation, and then imposed a fourfold increase in the concentration of
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Figure 4: Reaction scheme for the regulation of σF release. B denotes SpoIIAB (red squares and
circles), A SpoIIAA (blue triangles), and R the RNA polymerase core enzyme; σF is represented
by a green oval, σA by a yellow oval. The SpoIIAB conformation that binds SpoIIAA with low
affinity is depicted as circles and the high-affinity state as squares. ATP-bound SpoIIAB is depicted
as a filled shape, ADP-bound SpoIIAB as a stippled shape, and nucleotide-free SpoIIAB as a white
shape. Green arrows represent reactions to which the model is insensitive, red arrows those to
which the model is highly sensitive, black arrows those that are considered neither sensitive nor
insensitive (see Iber et al., 2006).

IIE. (This increase mimics the abrupt change in concentration of IIE brought about by
concentrating a fixed number of molecules of IIE into a fourfold smaller volume).

The results (Figure 5) show that almost all of the σF is released — but only if the in-
crease in IIE concentration is accompanied by an equimolar increase in the concentration
of its substrate, AA-P. (An increase in the concentration of AA-P alone is not sufficient —
results not shown). A calculation from the known rate of IIE activity, the known affinity
between IIE and AA-P, and the known cellular concentrations of the two proteins, shows
that IIE and AA-P will indeed accumulate together at the site of the asymmetric septum
as the latter is being formed. We have thus solved one of the most important puzzles that
lie at the heart of this simple differentiation system: it is now clear that compartment-
specific activation of σF is dependent solely on the increase in concentration of IIE and
AA-P generated in the prespore by the asymmetric placement of the division septum.

We next turned to the question of competition between σF and σA for binding to the
core RNA polymerase. We included in our model the known concentrations of the two
sigma factors and their affinities for the core RNA polymerase, and got the model to plot
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Figure 5: Predicted release of σF in response to a fourfold increase in the concentration of SpoIIE
alone (green line) or of SpoIIE and SpoIIAA-P (blue line) imposed at zero time.

the predicted concentrations of the two holoenzymes against changes in the concentration
of IIE. The prediction shows that, provided that the concentration of IIE increases by
at least threefold over that found in the pre-septational cell, the concentration of σF -
holoenzyme will reach a level sufficient to allow transcription of σF -specific genes (black
curve in Figure 6). But even when σF -holoenzyme reaches its maximum concentration,
σA-holoenzyme will still be active (red curve in Figure 6). This prediction exactly mimics
the situation in the sporulating cell, where the two holoenzymes are active simultaneously
in the prespore.

Figure 6: Predicted concentrations of holoenzymes containing σF or σA 90 minutes after asym-
metric septation, as a function of increases in the concentration of SpoIIE including SpoIIE com-
plexed with SpoIIAA-P.

4 Conclusion

The mathematical model summarised above is described in detail in a paper [1] by Iber et
al. (2006). That paper includes many more results than I have had space to describe here;
for example it accurately simulates the behaviour of a substantial number of sporulation
mutants whose phenotype had not previously been readily explicable. The success of the

MODELLING COMPLEX BIOLOGICAL SYSTEMS 43



model in predicting all these phenomena, and in particular its success in accounting for
the initiation of differential gene expression in terms of the volume difference between
the two compartments of the sporulating cell, would not have been possible without the
abundant information that has come both from studies of the interactions that regulate σF

and from measurements of the intracellular concentrations of the relevant proteins (for
a review of all this work see [2] Yudkin and Clarkson, 2005). It is remarkable that so
fundamental a biological phenomenon as differential gene expression can be achieved
with the help of only four proteins.
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Abstract

Biological systems are composed of a large number of molecules. These systems are com-
plex because numerous and diversified interactions exist between the molecules making
their understanding difficult.

Due to these interactions, complex systems can show some phenomena considered
as emergents because unpredictable from the simple description of molecules’ behaviour.
We particularly study self-organisation phenomena corresponding to a structural organi-
sation without central control.

Many tools are available to model these biological complex systems. We use multi-agent
systems which model each element of the system as an agent. We study their collective
behaviour inside their environment. Multi-agent simulations exhibit phenomena which
appear in the real systems they model. The characterisation of these phenomena is usually
given by the users observing such systems, which introduces an important subjective bias.

The objective of our work is to automatically detect some emergent phenomena. We
model multi-agent simulation as a graph where vertices represent agents and edges their
interactions. This graph is modified at each time step and we study its properties.

Introduction

The high capabilities of computers enable the modelling of wide biological complex sys-
tems. In real systems or in the corresponding simulations, we detect some unpredictable
phenomena called emergent phenomena, which are not easily explainable. Multi-agent
systems, by their approach, are good tools for modelling complex systems, because they
allow the simulation of such emergent phenomena.

Our objective is to detect in multi-agent simulations a kind of emergent phenomenon,
namely self-organisation, which is described as the organisation of structures whithout
central control. We have modelled agents and their interactions as a scalable graph to
study some properties of the system.

1 Self-organisation in biological complex systems

1.1 Complex systems in biology

A complex system can be defined as a system composed of heterogeneous elements with
multiple connections, which makes it difficult to apprehend by the mind.

Biological systems are complex systems composed of large number of molecules (DNA,
RNA, proteins, . . . ). A metabolism is described by interactions between proteins whereas
regulations processes use proteins/DNA interactions. Elements of these systems and their
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interactions produce organised structures (organits, cells and organisms). These diverse
structures have their particular functionality because of the diverse interaction networks
in action.

To understand these biological systems, we have tried to isolate different elements in order
to study them in depth. This is for example from this reductionist concept that molecu-
lar biology uprised, which have supplied a lot of answers to understand these systems.
However, some functionalities of these systems are difficult to understand because they
arise not only from the elements of the system themselves, but also from the interactions
between them.

The complexity of these systems is due mostly on the one hand to the locality of the
interactions between the elements of the system (the elements do not interact with all of
the other elements) and on the other hand to the variability of the interactions along time
(the duration of interactions is not the same for all the elements)

1.2 Self-organisation

The complexity of these systems can lead up to the formation of structural organisation
whithout central control: we call this self-organisation. Most of the biological systems
(ants, cells . . . ) exhibit this kind of phenomenon.

A set of mecanisms [8] enable the occurence of such phenomena:

• direct interactions based on information broadcast and localisation

• indirect interactions based on stigmergy (information sharing through the environ-
ment)

• reinforcement of agents behaviour based on a system of rewards and punishments

• cooperation behaviour of individual agents based on the composition and decom-
position of agents

Many organisation scale levels can be found in these self-organisation processes. These
differents scales give to the system a different behaviour and a super functionality any
elements cannot bring taken separately.

2 Agent-based modelling for biological complex systems

Man has always tried to model his environment. These models have provided explana-
tions about these systems but have also opened new directions of research, such as the
validation of results in real systems, and have inspired new computing methods (for ex-
ample, ant colony optimization in graphs [5]).

Many mathematical and computing tools can be used to model and to study complex
systems, ranging from differential equations to cellular automata and multi-agent sys-
tems [4]. These tools can give different kind of answers to the same biological question,
by means of different modellings.

Multi-agent systems are based on the modelling of each element of the system as an
agent [3]. This modelling being also based on the interactions between agents, we can re-
produce in the simulations some of the emergent phenomena observed in the real system,
which is one of the main interest of this kind of approach.
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3 Detection of self-organisation

3.1 Goal

In this context, our goal is to automatically detect self-organising phenomena that may
arise in simulations , which is a preliminary before attempting to explain or predict them.
The detection of these phenomena begins with the detection of the different levels of
organisation which can be formed in these systems and also to study the functionality
of the system as a whole. This structural organisation can be distinguished by differents
points

• the organisation itself can remain stable for a more or less long period of time

• its functionality can be different from the one of the global system

We have designed methods allowing us to study global properties of a system and to
detect differents clusters of agents which can be formed during simulations in order to
study their evolution.

3.2 Multi-agent simulation as a graph

A multi-agent system can be seen as a graph where the vertices represent the agents and
the edges their interactions. There are different kinds of interactions between two agents;
We consider that two agents interact if they are close enough to each other and also if
they share common attributes and/or functions. To implement these multiple kinds of
interactions the edges of the graph are multi-labeled, each label representing an interaction
criterion (see figure 1).

Figure 1: Model of an ant colony simulation. There are three interaction criteria: the
distance between two ants, the quantity of pheromones dropped in the environment (drop-
size) and the “return-to-nest” behaviour (carrying-food?). The label weights represent the
intensity of each interactions

3.3 Construction and analysis of the graph

We consider multi-agent systems using a discrete time scale (constant time steps). The
graph evolves at each time step, according to the current values of the attributes of the
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agents. For each label, we use a weight representing the interaction intensity. This weight
is increased or decreased according to the presence or the absence of a connection at
the current time step between the two agents. A connection is set depending on which
attribute is interesting; For example this can be based on:

• the comparaison of the value of the attribute with respect to the average value of the
same attribute of all the agents

• the value of the attribute compared to a fixed interval of values
• the comparaison of the values of the attribute between the agents themselves.

The analysis of these systems is based on the graph properties. We study the global
properties of the graph such as the research of topological particularities like those we can
find in complex networks [6, 1]. We also study the global evolution of some indicators
like the sum of the weights of the labels (see figure 2) or the degree of the edges. We
also try to determine the various clusters that can appear according to each criterion using
graph clustering techniques (see figure 3).
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Figure 2: Sum of the weights of the carrying-food? criterion

Figure 3: Detection of clusters in a simulation of actin filament polymerisation produced
by Hsim[2].This detection is based on the distance criterion beetween agents.

48 MODELLING COMPLEX BIOLOGICAL SYSTEMS



Conclusion

The understanding of emergent phenomena and especially the processes leading to self-
organisation, is important to apprehend complex systems. Self-organisation is also studied
with the aim of being used in new computing applications based on these processes[7].

We have developed a tool that allows us to capture various interactions which can exist
between the agents of a system. We think it is the key to the understanding of the processes
leading to the creation of structures at different scales and to a superior functionality of
the system.
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Abstract

Understanding the functioning of genetic regulatory networks supposes a modeling of
biological processes in order to simulate behaviors and to reason on the model. Unfor-
tunately, the modeling task is confronted to incomplete knowledge about the system. To
deal with this problem we propose a methodology that uses the qualitative approach de-
veloped by R. Thomas. A symbolic transition system can represent the set of all possible
models in a concise and symbolic way. We introduce a new method based on model-
checking techniques and symbolic execution to extract constraints on parameters leading
to dynamics coherent with known behaviors. Our method allows us to efficiently respond
to two kinds of questions: is there any model coherent with a certain hypothetic behavior?
Are there behaviors common to all selected models? The first question is illustrated with
the example of the mucus production in Pseudomonas aeruginosa while the second one
is illustrated with the example of immunity control in bacteriophage lambda.

Keywords: Gene networks; qualitative dynamical models; symbolic execution; temporal
properties; model-checking.

1 Introduction

Genetic regulatory networks are constituted of various interacting components, mainly
genes and proteins, usually forming a complex network of interleaved feedback loops.
As it is impossible to use intuitive reasoning to really understand these networks and
predict their possible behaviors, modeling and simulation become necessary [1]. The
lack of reliable quantitative data available about a given system is a typical difficulty of the
modeling approach. To overpass this problem, qualitative models have been developed,
whose goal consists in abstracting details of the system although preserving qualitative
observations.

Boolean models of genetic regulatory networks [2] are one of such formalisms. In
these models, the constituents of the network are represented by variables that can only
take two values, 0 or 1, meaning that the associated component is absent or present (or
that the associated gene is inactive or active). R. Thomas proposed an asynchronous
boolean modeling [3]: his approach takes into account the fact that the delays of syn-
thesis or degradation are different from one protein to another, whereas it is not the case
in previous boolean models [4]. The relation between boolean models and piecewise-
linear differential equations have been first discussed in [5]. R. Thomas’ approach has
been generalized to a multilevel discrete modeling [4, 6, 7]; in this generalized formalism
the concentrations of the constituents of the network are represented by integer variables
which can take a finite number of values. Such a discrete model can be seen as a precise
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qualitative abstraction of a system of piecewise-linear differential equations, as demon-
strated by E.H. Snoussi [8]. This formalism is described in Sec. 2, where the convenience
of introducing more than two levels of expression for the variables is explained.

This generalized discrete approach has been used to model various gene networks (for
example in [9, 10, 11, 12, 13]). H. de Jong et al. [14] have recently proposed a refinement
of R. Thomas’ discrete modeling that takes into account singular states (corresponding to
frontiers between qualitative states).

Nevertheless, even in such a discrete and finite formalism there are usually more than
one model compatible with the knowledge on the system. Knowledge generally consists,
on the one hand, in inhibitions or activations between genes and other constituents of the
network, and on the other hand, in behaviors, observed in experiments. Inhibitions or
activations allow one to constrain the possible values of the parameters of the model, on
which the evolution depends. It is more difficult to select the parameters corresponding
to observed behaviors. For example, the properties relating homeostasis (stable cyclic
behavior) or multi-stationarity to the steadiness of characteristic states of feedback cir-
cuits [15, 16] can be used to decrease the number of parameter values to be considered,
as in the GINsim tool [17].

To go further, two main ideas have been proposed. The first one consists in using con-
straint logic programming, to manipulate partially known models [18]. As this approach
does not allow one to describe all observed behaviors, the difficulty of selecting param-
eters according to observations remains. The other one consists in formally specifying
temporal properties and in verifying if the constructed model satisfies the specification.
For example Shaub et al. [19] proposed a method for determining all infinitely visited
states for which the observed behaviors have to be verified. More generally the specifi-
cation can be expressed in a formal temporal language (like computational tree logic –
CTL) and verification of behavior specification is then studied for each possible complete
model (i.e. where each parameter has a precise value) independently. Implementing this
idea, the tool SMBioNet [20] selects the models with respect to a given specified behav-
ior after having exhaustively generated all possible models. In the tool GNA [21], CTL is
also used to specify behaviors but only one complete model can be simulated.

Description of the proposed method

In this chapter we propose a method combining the advantages of both approaches de-
scribed above. The set of possible models can be represented by a unique formal model,
a symbolic transition system (STS) [22]. Symbolic execution techniques allow the sim-
ulation of the STS, generating all possible behaviors. We specify behaviors using linear
temporal logic (LTL) [23], and we select parameters with respect to LTL formulas by
building constraints: parameters satisfying these constraints define the set of all models
verifying the specified behavior.

Thus we propose a methodology to analyze partially known systems. On the one hand,
an interaction graph of the system leads to a STS, representing the set of discrete models
compatible with the interactions; on the other hand, the known behaviors of the system
are translated into LTL formulas. Constraints associated with these formulas restrict the
possible values of the parameters; then these constraints are added to the initial STS,
which represents the set of discrete models with the specified behavior.
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We will see in the sequel two different types of questions that can be asked after this
construction:

• is there any model coherent with a certain hypothetic behavior? The hypothetic be-
havior is translated into LTL formulas, and the method finds the possible parameters
coherent with this hypothesis or shows that this behavior is impossible over the set
of selected models. This case is illustrated on the example of mucus production in
Pseudomonas aeruginosa.

• Are there behaviors common to all selected models? We will see that the symbolic
representation of possible parameters allows to exhibit common behaviors of the se-
lected models, without having to enumerate the models. The example of immunity
control in bacteriophage lambda illustrates this point.

After having described the R. Thomas’ discrete modeling, we introduce, in Sec. 2,
constraints deduced from gene interactions, and show their use in the system associated
to mucus production in Pseudomonas aeruginosa. This system will be used as a running
example to illustrate our method. Section 3 is divided in three parts. We firstly explain
the translation of a set of models into a STS model. We secondly introduce symbolic ex-
ecution techniques. We thirdly explain how behaviors can be specified with LTL formu-
las, and the way we extend usual model-checking techniques to characterize parameters
coherent with the LTL formulas. Then we show how this framework can be fruitfully
applied to discover the unknowns (parameters or behaviors) of the genetic regulatory net-
work. Section 4 illustrates the whole methodology on the example of immunity control
in bacteriophage lambda.

This chapter is a synthesis of recent works [24, 25, 26, 27] and is based on results
presented in [28] that have been enriched and completed. From a practical point of view
this proposed methodology has been implemented in the Agatha tool, which is also used
for validation purposes of industrial specifications [29, 30].

2 Discrete modeling of genetic regulatory networks

In this section we first present the notion of discrete descriptions, also called complete
or basic models in the sequel. They correspond to the generalized discrete models intro-
duced by R. Thomas [4]. These models are based on the interaction graph of the system:
interaction graphs are directed graphs whose nodes abstract genes and associated proteins
(called variables in the sequel) and whose edges are labeled by signs and thresholds of
interactions. The threshold of the interaction a

θ,+−−→ b (resp. a
θ,−−−→ b) defines when the

interaction takes place: variable a activates (resp. inhibits) variable b if its concentration
level is above θ. The effect of a on b does not depend on the concentration of a as soon as
the concentration of a is above θ.

This remark leads to the discretization of the concentration space of the system vari-
ables: if a has k outgoing edges labeled by different thresholds θ1 < ... < θk , then the
concentration space of a is discretized into k + 1 levels denoted by integers from 0 to k.
Then the level i abstracts the concentrations which are above θi (if i > 0) and below θi+1

(if i < k). Thus the real values of thresholds θi do not matter for the discrete dynamics.
They are then modeled by integers which reflect their relative ranks.

This possibility of having different thresholds makes generalized discrete models
more expressive than simpler boolean models: if a variable a has an effect on two other
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variables b and c, the threshold of the two interactions are generally not equal; so the pos-
sible levels of a are 0, where no interaction is effective, 1 where only one interaction is
effective, and 2 where the two interactions are effective. Boolean models can not distin-
guish different thresholds, as the level of a would be 0 (no effective interaction) or 1 (all
interactions are effective).

Figure 1: Example of interaction graph. Each arrow indicates an interaction from a regula-
tor to a regulated variable; the sign indicates a positive or negative effect, and the integer
is the rank of the threshold of the interaction. The blunt arrow indicates the negative
interaction.

Example 1 In Fig. 1, x and y represent two proteins produced by two genes. Variable x
has two outgoing edges, with two different thresholds; the possible values for x are 0, 1
and 2; the threshold of the interaction on y is less than the threshold of the interaction
on x itself, so the integer associated with the threshold of the interaction of x on y is 1,
whereas the integer associated to the threshold of the interaction of x on itself is 2. The
possible values for y are only 0 or 1. The genetic regulatory network corresponding to
this interaction graph is described in Sec. 2.3.

In Sec. 2.1 we present the possible discrete dynamics governed by parameters asso-
ciated to discrete states. We then show how biological knowledge, in particular the gene
interaction graph, can be used to construct a set of acceptable discrete descriptions.

2.1 Dynamics of a discrete description

In a discrete model, the genetic regulatory network is described by n variables, each
representing the concentration of a constituent of the actual network. Each variable xi

can take an integer value between 0 and a maximum value maxi (this maximum value
is deduced from the interaction graph of the system as explained above). A state E =
(E1, . . . , En) is a vector of values of the variables. With each state E, and each variable xi,
is associated a parameter K(xi, E), which has an integer value between 0 and maxi (the
same maximum value than xi). This parameter is the value toward which the associated
variable tends in the associated state. It means that in the state E:

• If K(xi, E) > Ei , then (E1, . . . , Ei + 1, . . . , En) is a successor of E;

• If K(xi, E) < Ei , then (E1, . . . , Ei − 1, . . . , En) is a successor of E;

• If K(xi, E) = Ei for all i, then E is called a steady state, and has only itself as
successor.

The associated transition graph is constituted of the states, and the transitions between
each state and its successors. This complete model, for which each parameter has been
instantiated, is called in the sequel a discrete description.
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Let us remark that a successor of a state E differs from E in at most one coordinate:
only one value from E1 to En is modified (by adding or subtracting 1), if E is not a steady
state. This property is called asynchronous updating of the variables. The reason is that
when the concentration of two (or more) constituents of the network increase or decrease,
there is no reason that these concentrations reach their threshold at the same time. So
one of the concentration reach the threshold first; then the state of the system becomes
different, with different interactions leading to different behaviors (i.e. the associated
parameter can be different). Without knowledge on these delays, there can be more than
one successor to a given state. See [4] for details about this point, and also the notion of
desynchronization formally defined in [20].

Example 2 We consider the system corresponding to Fig. 1. A state (E1, E2) ∈ {0, 1, 2}×
{0, 1} is defined by the values of variables x and y. If K(x, (0, 0)) = 1 and K(y, (0, 0)) =
1 then the state (0, 0) has two successors, (1, 0) and (0, 1). It means that if in the system
the concentrations of the two proteins are at the lowest level, the concentrations increase
to reach a state corresponding to (1, 0) or (0, 1).

Until now the sign of the interactions between the constituents of the network is not
taken into account. As shown in Sec. 2.2, equalities and inequalities between parameters
can be deduced when positive or negative interactions between genes are known.

2.2 Constraints on parameters deduced from interactions

We have seen that each edge of the interaction graph is associated with a threshold. If a
protein a activates a gene producing a protein b, the rate of synthesis of b is a sigmoid
function of the concentration of a: it means that when the concentration of a is under a
threshold θ, the rate of synthesis of b is not affected; but if the concentration of a is greater
than the threshold θ, the rate of synthesis gets rapidly a maximal value. In piecewise-
linear differential descriptions and associated qualitative models, these sigmoid functions
are approximated by step functions [4, 5]. So, if in a discrete description a variable a has
more than two discrete levels, and has an effect on b at the level 1, a has no effect on b
when the level of a is 0, and a has the same effect on b when the level of a is 1, 2 or more.

More generally, the following equalities can be deduced from the interaction graph:
we suppose that a variable xi has one interaction on a variable xj , and that the associated
threshold has an integer level (or rank) t. Let E = (E1, . . . , En) and E ′ = (E ′

1, . . . , E
′
n)

be two states such that Ei < t, E ′
i < t and for every k 6= i, Ek = E ′

k. E ′ differs from E at
most in its ith coordinate. Then K(xj, E) = K(xj, E

′). Similarly, if Ei ≥ t and E ′
i ≥ t

then K(xj, E) = K(xj, E
′).

These equalities allow the introduction of a new notation of the parameters: let Y be
the subset of the variables {x1, . . . , xn} whose elements can have an action on xj , and X
a subset of Y ; then if E is a state where the value of each variable in X is greater than
or equal to the threshold of its interaction on xj , and values of variables in Y \X are less
than their thresholds, then the value of K(xj, E) is denoted by K(xj, X).

Example 3
In discrete descriptions associated to Fig. 1, K(x, ∅) = K(x, (0, 0)) = K(x, (1, 0)) (the
value of x, 0 or 1, is under the threshold of the interaction on itself, which is 2, and
the value of y, 0, is under the threshold of the interaction on x, which is 1). Similarly
K(x, {y}) = K(x, (0, 1)) = K(x, (1, 1)) (here the value of y, 1, is equal to the thresh-
old).
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Moreover the sign of the interactions imply constraints on the parameters. We suppose
again that a variable xi has one interaction on a variable xj , and X denotes a set of
variables such that xi /∈ X . Then we have:

• K(xj, X) ≤ K(xj, X ∪ {xi}) if xi has a positive interaction on xj;

• K(xj, X) ≥ K(xj, X ∪ {xi}) if xi has a negative interaction on xj .

Let us point out that the inequalities are not strict: for example we can say that
K(xj, X) ≤ K(xj, X ∪ {xi}) rather than K(xj, X) < K(xj, X ∪ {xi}). The reason
is that even if there is a positive or negative interaction, it is not sure that the interaction
is sufficient to make the regulated variable reach a greater or lower threshold.

Example 4 In discrete descriptions associated to Fig. 1, K(x, {y}) ≤ K(x, ∅) ≤ K(x, {x})
and K(x, {y}) ≤ K(x, {x, y}) ≤ K(x, {x}) (because y has a negative interaction on x,
and x has a positive interaction on itself), and similarly K(y, ∅) ≤ K(y, {x}) (x has a
positive interaction on y).

Sometimes more precise knowledge about the interactions is available. For example
the presence of two different products x and y can be necessary to activate a gene z, or
x can activate z but the simultaneous presence of x and y produces an inhibition. These
two facts are respectively translated into constraints: K(z, {x}) = K(z, {y}) = K(z, ∅)
and K(z, {x, y}) ≥ K(z, ∅) in the first case, or K(z, {x, y}) ≤ K(z, ∅) ≤ K(z, {x}) in
the second case.

2.3 Mucus production in Pseudomonas aeruginosa

Pseudomonas aeruginosa are bacteria that secrete mucus (alginate) in lungs affected by
cystic fibrosis, but not in common environment. As this mucus increases respiratory defi-
ciency, this phenomenon is a major cause of mortality. Details of the regulatory network
associated with the mucus production are described by Govan and Deretic [31]. The
simplified regulatory network, as proposed by Guespin and Kaufman [32], contains the
protein AlgU (product of algU gene) and an inhibitor complex anti-sigma (product of
muc genes). AlgU has a positive effect on anti-sigma and on itself, while anti-sigma has
a negative effect on AlgU. A sufficient concentration of AlgU leads to the production of
mucus (by activating different alg genes). If we consider that the threshold of the interac-
tion of AlgU on anti-sigma is under the threshold of auto-activation of AlgU, then Fig. 1
is the interaction graph corresponding to the discrete descriptions where x and y repre-
sent respectively AlgU and anti-sigma. We consider that the production of mucus occurs
precisely when the value of x is 2.

Constraints on parameters are described in the examples of Sec. 2.2. Moreover we
assume that K(x, {y}) = 0 and K(y, ∅) = 0. This additional constraints mean that x
tend toward its basal level (i.e. 0) without auto-activation and under inhibition of y and,
similarly, that y tend toward its basal level when x does not activate it. The set of all these
constraints will be denoted by C in the sequel.

It has been observed that mucoid P. aeruginosa can continue to produce mucus iso-
lated from infected lungs. It is commonly thought that the mucoid state of P. aeruginosa
is due to a mutation which cancels the inhibition of algU gene. An alternative hypothesis
has been made: this mucoid state can occur in reason of an epigenetic modification, i.e.
without mutation [32]. The models compatible with this hypothesis have been constructed
in [33, 20]. We use the same example to explain our methodology in Sec. 3.
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2.4 Manipulating sets of discrete descriptions

The only knowledge of the interaction graph is not sufficient to precisely determine which
is the behavior of the biological system: numerous discrete descriptions can fit the con-
straints deduced from the interaction graph. In the example of Fig. 1, there are 6 states,
so 6 parameters associated with x (with 3 possible values) and 6 with y (with 2 possible
values). It results in 36 × 26 = 46656 different discrete descriptions.1 With the equalities
described in example 3, there remain 34 × 22 = 324 discrete descriptions, since param-
eters K(x, ∅), K(x, {x}), K(x, {y}) and K(x, {x, y}) can take three different values (0,
1 or 2), and parameters K(y, ∅) and K(y, {x}) can take two different values (0 or 1).
The assumption that K(x, {y}) = 0 and K(y, ∅) = 0 reduce the set of possible discrete
descriptions to 33 × 2 = 54 elements. Finally 28 of these discrete descriptions verify the
inequalities deduced from the signs of interactions in example 4.

In order to precise the behavior of the biological system, complementary biological
knowledge, different from previously used interaction graphs, have to be taken into con-
sideration. To reduce the set of acceptable discrete descriptions we will express biological
knowledge by temporal logic formulas involving equalities and inequalities on gene ex-
pression levels. Then model checking techniques combined with symbolic execution of
the symbolic model denoting sets of acceptable discrete description will give will give us
the set of acceptable parameters.

3 Symbolic formal methods

3.1 Symbolic transition systems

A symbolic transition system (STS) [22] is a transition system whose transitions are la-
beled by conditions on STS variables and assignments of STS variables. Each initial-
ization of STS variables yields a basic model where each variable has a precise initial
value, and all transitions are defined according to the STS transitions. Thus a STS is
parameterized by an initialization function.

Let M be a STS, V = {v1, v2, . . . , vk} the set of STS variables; then an initialization
function of M is a map from V to the set of possible values of the variables. If σ is an
initialization function, Mσ denotes a basic model whose first state is (σ(v1), . . . , σ(vk)).
So we can associate to M the set of all basic models obtained by applying an initialization
function: {Mσ | σ initialization function} denotes this set.

A STS can represent a set of discrete descriptions associated to an interaction graph.
In this case, STS variables are divided into two subsets:

• the set of variables {xi | 0 ≤ i ≤ n};

• the set of parameters {K(xi, E) | 0 ≤ i ≤ n, E ∈ {0, . . . ,max1} × · · · ×
{0, . . . ,maxn}} of the associated discrete descriptions (maxi is the maximal value
of variable xi).

The transitions are labeled according to the rules defined in Sec. 2.1. Nevertheless we
need to take into account additional knowledge corresponding to constraints deduced

1Let us recall that a discrete description is completely defined by the values of parameters. However
there are only 210 × 32 = 9216 different dynamics, i.e. different transition graphs, for these discrete de-
scriptions. Indeed, two different values of parameters can lead to the same dynamics because the parameters
give only the directions of evolution.
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from interactions. These constraints can naturally be expressed as first order formu-
las over the set of parameters. So we call symbolic model any couple (M, C), where
M is the STS with parameters {K(xi, E)} and variables {xi} as STS variables and
C a set of constraints over parameters {K(xi, E)}. It defines a set of basic models
{Mσ | σ initialization function ∧ ∀C ∈ C, σ |= C}, where σ |= C means that the param-
eters instantiated by σ satisfy the constraint C. Each basic model Mσ is then a discrete
description associated to the values of parameters defined by σ (but with one distinguished
initial state).

For the same instantiation of the parameters, every instantiation of the variables {xi}
corresponds to the same discrete description; so a discrete description is completely de-
fined by an initialization function σ′ assigning a value only to parameters. Initialization
of variables xi allows one to specify initial states of the system if necessary.

Figure 2: STS associated with Fig. 1. Arrows represent the transitions, labeled by a
condition and an assignment.

Example 5 Figure 2 represents the symbolic model associated with the interaction graph
of Fig. 1, corresponding to the network of mucus production in P. aeruginosa. Initial
constraints on parameters, denoted by C, are specified in Secs. 2.2 and 2.3. The control
point denoted by T in Fig. 2, indicates that the system is in a transient state (i.e. non-
steady state), whereas the control point denoted by S indicates that the system has reached
a steady state. We see that there are four different transitions from T to T: two of them
correspond to a change of x and two of them correspond to a change of y. The transition
from T to S occurs when all parameters of the current state are equal to the current values
of the variables x and y.

3.2 Symbolic execution

Symbolic execution has been introduced for analysis purposes of computer programs [34].
The method has been extended to STSs, and is used in the Agatha tool for behavioral anal-
ysis [35] and conformance testing [36]. As the known constraints and rules of evolution
of a discrete description can easily been specified in a STS, we have adapted symbolic
execution techniques to generate all behaviors compatible with the constraints on the pa-
rameters.
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The method constructs a tree whose vertices are states labeled by constraints, with the
following rules:

• The root of the tree is a state, associated with the initial constraints C.

• Let us suppose that E is an already constructed state of the tree, labeled by the con-
straints CE , and that there is a STS transition from E to E ′ labeled by the condition
D. The state E ′ provided with the constraint CE′ = CE ∪ {D} is built if and only
if the conjunction of the constraints of CE ∪ {D} is satisfiable. A new transition is
built from (E, CE) to (E ′, CE′).

• The process is repeated until the new state has already been encountered in the tree
path from the root to the current state.

Let us point out that every state in the tree is associated with constraints whose conjunc-
tion is called path condition; this path condition is the condition on parameters under
which the path exists.

Example 6 Figure 3 shows the symbolic execution of the symbolic model associated with
mucus production system in P. aeruginosa, with (x, y) = (0, 1) as initial state, and C as
initial constraints, as described in Sec. 2.3. The states in circles correspond to the control
point T in the STS of Fig. 2, whereas states in squares correspond to the control point S,
i.e. to steady states.
Each state of the figure is associated with constraints; for example:

• (0, 0) is the only successor of (0, 1) because initial constraints contain the equalities
K(x, {y}) = 0 and K(y, ∅) = 0, i.e. K(x, (0, 1)) = 0 and K(y, (0, 1)) = 0. So the
associated constraint associated with the state (0, 0) in a circle is simply C.

• (1, 0) is a successor of (0, 0) if K(x, ∅) > 0. So the set of constraints associated
with (1, 0) is C ∪ {K(x, ∅) > 0}.

• (0, 0) is a steady state if (K(x, ∅) = 0 ∧ K(y, ∅) = 0). So the set of constraints
associated with the state (0, 0) in a square is C ∪ {(K(x, ∅) = 0 ∧K(y, ∅) = 0)}
which is equivalent to C ∪ {(K(x, ∅) = 0)} as K(y, ∅) = 0 is contained in C.

• (0, 1) is not a successor of (0, 0) because in this case K(y, ∅) > 0, which is not
compatible with the initial constraint K(y, ∅) = 0.

Figure 3: Symbolic execution of the STS of Fig. 2 from the initial state (0, 1). Squares
indicate steady states. For simplicity reason, the constraints labeling vertices are not
represented in the figure.
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Let us point out the reason why the construction of a path of the symbolic execution
stops when the new state E has already been encountered in the tree path from the root.
Actually, when this case occurs, the path condition of this new state is sufficient to lead
to an infinite path repeating the states from E to E. For example in Fig. 3, under the
constraints C01 associated to the last state of the path 01 → 00 → 10 → 11 → 01, this
path can be repeated infinitely because the constraints that are needed to make the path
again are already contained in C01.

Very often, the construction of a path can be terminated before the occurrence of the
previous condition (i.e. before than the new state has already been encountered in the tree
path from the root). Actually, when the couple of the new state and its associated con-
straints have already been constructed in another path, we can be sure that the possible
successors of this couple are precisely the same than the successors of the already con-
structed state. This case occurs when the same set of parameters leads to the same state
by different pathways, which is usual in reason of the asynchronous updating of the vari-
ables. In this case the size of the symbolic execution tree can be reduced. The following
example illustrates this point.

Figure 4: Illustration of the reduction of the symbolic execution. (a) is the interaction
graph, (b) a part of the symbolic execution, (c) the same reduced symbolic execution.

Example 7 We consider the system of three variables x, y, z associated with the interac-
tion graph of Fig. 4(a). Part of the symbolic execution of the associated symbolic model
from initial state (x, y, z) = (0, 0, 0) is represented in the same figure (Fig. 4(b)). The con-
dition associated to the path 000 → 010 → 110 is C = (K(y, 000) > 0∧K(x, 010) > 0).
The path condition of 000 → 100 → 110 is C ′ = (K(x, 000) > 0 ∧ K(y, 010) > 0).
But from the interaction graph, we can deduce that K(x, 000) = K(x, 010) = K(x, ∅)
and that K(y, 000) = K(y, 010) = K(y, ∅). Therefore, C and C ′ can be written
K(x, ∅) > 0 ∧ K(y, ∅) > 0. Finally, as (110, C) = (110, C ′), successors of one couple
in the symbolic execution tree are exactly successors of the other; symbolic execution tree
can be represented by Fig. 4(c).

3.3 Specification of paths and synthesis of constraints on parameters

3.3.1 Linear temporal logic

To search a specific path in the symbolic execution tree we adapt model-checking tech-
niques for linear temporal logic (LTL) [23]. Intuitively model-checking techniques consist
in exploring all states of a basic model to state whether this model satisfies or not a given
temporal logic formula [37].
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A LTL formula expresses properties of a path. This logic adds to the classical operators
of propositional logic2 mainly two temporal operators, called Next (N ), and Until (U ).
If f and g are formulas, Nf means that f is true in the following state of the path, and
fUg means that f is true in each state of the path, until g becomes true (and g eventually
happens). We can then define the operators Finally (F ) and Globally (G); Ff means that
f eventually happens (and can be written >Uf ); Gf means that f is always true (and can
be written ¬F (¬f)).

As a LTL formula expresses a property of a single path, there are two ways to use it to
express a property of a discrete description. On the one hand we may want to express that
all paths of the model have the specified behavior; we say that this property is universal.
On the other hand, we may want to express that there exists at least a path in the model
with the specified behavior; we say that this property is existential. The distinction is
important because universal or existential properties can not be treated exactly by the
same method (see Sec. 3.3.2).

Examples of temporal properties

Temporal properties of interest in a model include the existence of a path from a given set
of states to another one. If for example there is a path from a state where a variable x is
at its basal level 0 to a state where x is at its maximal value 2, it means that there is a path
verifying x = 0∧F (x = 2), i.e. a path such that in its first state x = 0 and that eventually
reaches a state where x = 2. Such properties can be known from experiments or can be
hypotheses of interest. We will see in Sec. 4.2.1 examples of such properties.

The negation of the previous properties are also useful: they mean that a given set of
states can not be reached from another one. This kind of property is used in Sec. 3.3.3.

Another current property can be the knowledge that a set of states is stable, i.e. that
when the system is in these states, there is no path going out. This can include steady
states, or stable cyclic behaviors. For example in a system of two variables (x, y), if S is
the set of stable states, all paths must verify (x, y) ∈ S ⇒ G((x, y) ∈ S). It means that
there is no path verifying (x, y) ∈ S ∧F ((x, y) /∈ S). We will use in Sec. 4.2.1 examples
of such properties.

More sophisticated properties can be expressed. For example, we can express that
from a given set of states there exists a path such that this set will be infinitely revisited.
Such paths verify the property (x, y) ∈ S ∧ GF ((x, y) ∈ S) (i.e. there is a path whose
first state is in S, and from all states of the path, S will be reached in the future). This
property can also hold for all paths beginning in S; then all paths verify (x, y) ∈ S ⇒
GF ((x, y) ∈ S). This is the type of property used in Sec. 3.3.4.

Let us suppose that the set A of states is an attractor of the system and S is its basin of
attraction; then from every state in S, the set A will eventually be reached, and the system
will then stay in this set A. It means that all paths verify (x, y) ∈ S ⇒ FG((x, y) ∈ A)
(i.e. paths beginning in S are such that after a certain time, all their states are in A; or
Finally, all states are Globally in A).

2As ¬ (not), ∧ (and), ∨ (or), ⇒ (implies), > (true), ⊥ (false).
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3.3.2 Extended LTL model-checking

We extend classical LTL model-checking techniques designed for basic models to STSs.
Just as classical LTL model-checking only considers pertinent paths according to the for-
mula, our method also considers pertinent paths according to the formula, but in our case
each state of a path is provided with constraints on parameters. The key point is that a path
is eliminated as soon as the conjunction of constraints is no more satisfiable. This leads
to a minimal tree construction and gives us the solutions in term of constraints: the dis-
junction of the path conditions associated to all remaining paths. The resulting constraint
represents all parameter valuations compatible with the behavior specified by the formula.
To summarize, given a symbolic model (M, C), extended LTL model-checking allows us
to compute all initialization functions (i.e. parameter valuations) leading to basic models
satisfying a LTL formula. In other words, the extended LTL model-checking associates
to any LTL formula a characteristic constraint defining the discrete descriptions satisfying
it.

Let us remark that the developed technique constructs the disjunction of constraints
on possible paths. Then satisfying a LTL formula for a model means that there exists
at least a path satisfying the LTL formula. As said before, such a property is qualified
as existential. On the contrary we may want to select models whose all paths satisfy
the formula (universal property). In such a case the negation of the universal property
is unsatisfiable. We have then to specify this impossible behavior as a LTL formula. It
suffices to take the negation of the associated constraint to find all models compatible with
the universal property. An example is given in next subsection (Sec. 3.3.3).

3.3.3 Adding knowledge to the symbolic model

When considering behaviors, expressed as LTL formulas, supposed to be known to occur
in the actual system, we can add the corresponding characteristic constraints D to the
symbolic model (M, C). We get the symbolic model (M, C ∪ D) restricting the set of
discrete descriptions.

Example 8 From a state where AlgU is at its basal level, P. aeruginosa will not produce
mucus in a common environment, so there is no path from a state where x = 0 to a state
where x = 2. That is clearly an universal property. In order to show that it is not possible
to reach x = 2 from x = 0, we consider the formula (x = 0)∧ F (x = 2). The associated
constraint, generated by our method, and added to initial constraints C is K(x, ∅) > 1.
The negation is simply K(x, ∅) ≤ 1. All discrete descriptions verifying C and the latter
constraint satisfy the universal property. In the sequel we denote C ′ = C∪{K(x, ∅) ≤ 1}.

3.3.4 Extracting knowledge from the symbolic model

Let us come back to the two central questions asked in the Introduction: is there any
model coherent with a certain hypothetic behavior? Are there behaviors common to all
possible models?

The first question consists in specifying the hypothesis with LTL formulas, and find-
ing the associated constraints. When the constraints are not satisfiable, there is no model
compatible with the LTL formulas. When they are satisfiable, the solutions of the con-
straints give all parameter valuations, each one corresponding to a discrete description
satisfying the LTL formulas (see example 9).
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The second question consists in finding properties common to all discrete descriptions
associated to a symbolic model (M, C). The set of constraints C precisely represents
such common properties; then every behavior implied by these constraints is a common
behavior to all selected discrete descriptions (see Sec. 4.2.3 for an illustration).

Example 9 If the hypothesis of an epigenetic change in mucoid P. aeruginosa is verified,
bacteria which produce mucus can continue to produce mucus in a common environment.
A path beginning with x = 2 which revisits infinitely a state where x = 2 is described by
the formula (x = 2) ∧GF (x = 2). The resulting constraint, added to C ′, is

[K(x, {x, y}) = 2 ∧K(y, {x}) = 1] ∨ [K(x, {x}) = 2 ∧K(y, {x}) = 0]

This constraint implies that the (mucoid) state (2, 1) is a steady state, or that (2, 0) is a
steady state.
Let us point out that there is another path compatible with C and verifying (x = 2) ∧
GF (x = 2) (given in Fig. 5). But in this path, K(x, (1, 0)) > 1, because there is a
transition from the state (1, 0) to the state (2, 0); as K(x, ∅) = K(x, (1, 0)), it is not
compatible with K(x, ∅) ≤ 1, and therefore with C ′.

There are 8 discrete descriptions verifying the constraints; in these models the mucoid
state can be related to an epigenetic modification. These constraints imply the existence
of a stable mucoid state, but not that all paths from a mucoid state come back to a mucoid
state. This more restrictive behavior, is achieved if K(x, {x, y}) > 1, i.e. for 4 models
from the 8.

Figure 5: Example of a path of the STS of Fig. 2 verifying (x = 2)∧GF (x = 2) (if (2, 0)
or (2, 1) is the initial state of the path), compatible with C but not with C ′.

4 Application to immunity control in bacteriophage lambda

4.1 Immunity control in bacteriophage lambda

Bacteriophage lambda is a virus whose DNA can integrate into bacterial chromosome
and be faithfully transmitted to the bacterial progeny. After infection, most of the bacteria
display a lytic response and liberate new phages, but some display a lysogenic response,
i.e. survive and carry lambda genome, becoming immune to infection. Figure 6 is the
graph of interactions described by Thieffry and Thomas [9] which has also been studied
in [38]. Four genes are involved, called cI, cro, cII and N. The states, represented by
a vector (cI, cro, cII, N), are in {0, 1, 2} × {0, 1, 2, 3} × {0, 1} × {0, 1}. Even with the
constraints deduced following Sec. 2.2, the associated symbolic model represents 1 008
000 different discrete descriptions.
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Figure 6: Graph of interactions associated with immunity control in bacteriophage
lambda. Arrows are labeled by the threshold and sign of the corresponding interaction.
For clarity blunt arrows indicate the negative interactions.

4.2 Lytic and lysogenic pathways of bacteriophage lambda

4.2.1 Specification of behaviors by LTL formulas

First we have to specify the set of states of interest. The lytic response leads to the states
where cro is fully expressed, and other genes repressed. So (0, 2, 0, 0) and (0, 3, 0, 0) are
called lytic states. To specify that the system is in one of these states, we use the following
formula, called lytic:

lytic = (cI = 0 ∧ cro ≥ 2 ∧ cII = 0 ∧ N = 0).

The lysogenic response leads to the state where cI is fully expressed, and the repressor
produced by cI blocks the expression of the other viral genes, leading to immunity. So
(2, 0, 0, 0) is called lysogenic state. To specify that the system is in this state, we use the
following formula, called lysogenic:

lysogenic = (cI = 2 ∧ cro = 0 ∧ cII = 0 ∧ N = 0).

The viral proteins are initially absent when the viral genome integrates a cell; so the
initial state is (0, 0, 0, 0). The system is in this initial state if it verifies the following init
formula:

init = (cI = 0 ∧ cro = 0 ∧ cII = 0 ∧ N = 0).

When the system reaches the set of lytic state it does not leave it; the stability of these
states is an universal property. So we translate this property into the equivalent property
P1:

• P1: there is no path verifying lytic ∧ F (¬lytic).

Similarly, the stability of the lysogenic state is an universal property, equivalent to the
property P2:

• P2: there is no path verifying lysogenic ∧ F (¬lysogenic).

As lytic and lysogenic responses are possible from the initial state, it means that there
exists at least a path from initial state to lytic states, and at least a path from initial state
to lysogenic state. These properties are translated into P3 and P4:

• P3: there is a path verifying init ∧ F (lytic);

• P4: there is a path verifying init ∧ F (lysogenic).
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4.2.2 Resulting constraints on parameters

In the sequel Cλ denotes the set of initial constraints associated with the interaction graph
of Fig. 6 following the rules described in Sec. 2.2. We apply the extended model-checking
method to the associated symbolic model, to find the constraints that have to be added to
Cλ.

To obtain the additional constraints associated with P1, we first generate the disjunc-
tion of the conditions leading to a path verifying lytic ∧ F (¬lytic). The negation of this
disjunction is:

C1 = [K(cI, {cro}) = 0 ∧K(cro, ∅) > 1 ∧K(cII, ∅) = 0 ∧K(N, {cro}) = 0].

Similarly the negation of the constraints associated to init ∧ F (lysogenic) is

C2 = [K(cI, {cI}) = 2 ∧K(cro, {cI}) = 0 ∧K(cII, {cI}) = 0 ∧K(N, {cI}) = 0].

These two constraints can be added to Cλ in the symbolic model. The discrete descriptions
verifying these constraints verify P1 and P2.

By the same method applied on the symbolic model with the constraint Cλ∪{C1, C2},
we generate the additional constraint needed to verify P3. This constraint is> (the always
true proposition): it means that all discrete descriptions whose parameters verify Cλ ∪
{C1, C2} have a path verifying init ∧ F (lytic).

Finally, the additional constraint associated withP4 and init∧F (lysogenic) (obtained
by disjunction of path conditions) is

C4 = [K(cI, ∅) = 2] ∨ [K(cI, {cII}) = 2 ∧K(cII, {N}) = 1 ∧K(N, ∅) = 1].

The discrete descriptions whose parameters verify Cλ ∪ {C1, C2, C4} are the discrete de-
scriptions associated with immunity control that verify the properties P1 to P4.

4.2.3 Questioning the symbolic model

In this subsection we show that there are pathways to lysis or lysogeny common to all
discrete descriptions whose parameters verify Cλ∪{C1, C2, C4}. For simplicity, the states
of values of (cI, cro, cII, N) are denoted by (0000), (0100), etc.

In all these discrete descriptions K(cro, ∅) > 1 (it is a consequence of C1). But
K(cro, 0000) = K(cro, 0100) as these parameters are equal to K(cro, ∅); so they are at
least equal to 2. So it is clearly a sufficient condition to demonstrate that in all discrete
descriptions there is the following path to lysis:

(0000) → (0100) → (0200) (1)

The constraint C4 is

[K(cI, ∅) = 2] ∨ [K(cI, {cII}) = 2 ∧K(cII, {N}) = 1 ∧K(N, ∅) = 1].

So all discrete descriptions verify at least one of the properties C or C ′:

• C = [K(cI, ∅) = 2];

• C ′ = [K(cI, {cII}) = 2 ∧K(cII, {N}) = 1 ∧K(N, ∅) = 1].
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First we look at the discrete descriptions verifying the first constraint C. As K(cI, ∅) =
K(cro, 0000) = K(cro, 1000), all discrete descriptions such that K(cI, ∅) = 2 have the
following path to lysogeny:

(0000) → (1000) → (2000) (2)

Now we consider the second constraint C ′.

• As K(N, ∅) = 1, there is a transition (0000) → (0001).

• As K(cII, {N}) = 1, and K(cII, {N}) = K(cII, 0001), there is a transition (0001) →
(0011).

• As K(cI, {cII}) = 2, and K(cI, {cII}) = K(cI, 0011) = K(cI, 1011), there is a
path (0011) → (1011) → (2011).

• The constraint C2 implies that K(N, {cI}) = 0, then K(N, 2011) = 0. So there is a
transition (2011) → (2010).

• The constraint C2 implies that K(cII, {cI}) = 0, so K(cII, 2010) = 0. So there is a
transition (2010) → (2000).

Therefore all discrete descriptions verifying C ′ have the following path to lysogeny:

(0000) → (0001) → (0011) → (1011) → (2011) → (2010) → (2000) (3)

Interestingly, this last path is precisely the most likely pathway to lysogeny according to
experimental knowledge, as described by Thieffry and Thomas [9].

A precise count of the number of discrete descriptions reveals that there are 2156
discrete descriptions verifying Cλ ∪ {C1, C2, C4}. In all these discrete descriptions, there
is a common pathway from initial state to lysis: pathway (1). There are 1176 of these
discrete descriptions verifying C. They are discrete descriptions with a common pathway
to lysogeny: pathway (2). Moreover there are 1470 discrete descriptions (out of the 2156)
verifying C ′; they have the common pathway (3) to lysogeny. 490 discrete descriptions
verify C and C ′: they are the discrete descriptions with at least two different pathways to
lysogeny, pathway (2) and pathway (3).

5 Conclusion

We have shown how a symbolic model representing a set of possible discrete descriptions
of a genetic regulatory network permits one to deal with incomplete knowledge. Known
interactions can be translated into constraints on the parameters, which can be specified
in a symbolic transition system. This STS can be simulated with symbolic execution
techniques. The known behaviors can be specified with LTL formulas, and then, model-
checking techniques have been extended to select the constraints on parameters associated
with these behaviors. Adding these contraints to the STS, a symbolic model representing
all discrete descriptions coherent with the known behaviors is obtained.

Then we have explained how the symbolic model can be used to reveal new results:
the possibility of hypothetic behaviors can be tested (as the epigenetic change in P. aerug-
inosa) or common behaviors between all selected descriptions can be found (as possible
pathways to lysis or lysogeny in bacteriophage lambda).
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By using SMBioNet to analyze the regulatory network of the cytotoxicity of P. aerugi-
nosa [33], models coherent with the hypothesis of the existence of an epigenetic switch
between non-inducible states and inducible ones have been constructed. The underlying
interaction graph used was similar to the interaction graph associated with mucus produc-
tion (in Fig. 1). This theoretical results have lead to new experimental results [39]. It is
now interesting to take into account these new results into a more elaborated model, in
particular by including other important proteins implicated in the network. The efficiency
of the methods presented in this chapter should allow us to construct and analyze this
more complex model. It is a work that we plan to do in the context of the observability
working group of Epigenomics Project of Genopoler, Evry.
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Abstract

The existence of two identical chromosomes within the same cell in which genes and
higher order structures compete for limited resources is a symmetry-breaking situation
previously proposed to lead to differentiation. Recent experiments are consistent with
an intimate relationship between metabolism and the rate of chromosome replication in
bacteria. The process of chromosome replication progressively changes the copy number
of genes and sites in a linear order. This raises the possibility that slowing or even pausing
replication for different times at different sites in the chromosome might be combined
with various mechanisms leading to local cooperation and global competition. If so,
such replication-phenotype coupling could produce different patterns of gene expression.
Indeed, replication-phenotype coupling may constitute a powerful and fundamental way
of generating coherent phenotypes. As a prelude to testing this hypothesis, we discuss
some of the parameters that will need to be explored by bench experimentation and
computer simulation.

1 Introduction

One of the fundamental problems in biology, highlighted by Kauffman [15], is how cells
integrate gene expression and environmental conditions to steer their phenotypes in a
coherent, reproducible way through the vast space of possibilities apparently available to
them. A possible solution is that the very existence of two chemically identical chromo-
somes in the same cytoplasm spontaneously leads to different patterns of gene expression
and that this underpins differentiation [26]. This is based on the idea that if a gene attracts
an RNA polymerase it has a greater chance of attracting a second one and hence, if two
identical copies of a gene compete for a limited number of RNA polymerases, one copy
is expressed and the other silent. Related ideas about the primordial role of the cell cycle
in generating not just diversity but coherent diversity have also been developed [31, 25].

Such ideas need to be updated in the context in which gene expression takes place
at the level of hyperstructures which are large, spatially extended assemblies of ions,
molecules and macromolecules that are implicated in functions that range from DNA
replication and cell division to chemotaxis and secretion [24]. These ideas also require
updating due to the discovery that carbon metabolism in Bacillus subtilis, and almost
certainly other bacteria, affects the enzymes responsible for the elongation step in chro-
mosome replication [14]. In other words, metabolism appears to be exerting a direct
control over the way the chromosome is replicated. This suggests to us a reciprocal
relationship in which the way the chromosome is replicated determines the phenotype.
Here we explore this idea.
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2 Hypothesis

By slowing or accelerating the elongation step of DNA replication in different regions
of the genome, a bacterium generates different patterns of copy numbers of different
genetic elements and this results in different, coherent, phenotypes in daughter cells. This
differentiation occurs via several mechanisms that are characterised by local synergistic
relationships and global competitive ones.

3 Mechanisms

Sources of local positive feedback are based on cooperation and include:

1. the movement of genes during their transcription by RNA polymerase from the
nucleoid where they are relatively inaccessible to RNA polymerase to a position on
the periphery of the nucleoid where they are easily accessible.

2. the bringing together of different genes or sites on nucleic acids into a hyperstruc-
ture by factors such as protein binding that then increases the probability of these
proteins binding (e.g. by raising their local concentration).

3. nucleation phenomena such that once a critical size has been reached subsequent
assembly is faster (as observed in the polymerisation of eukaryotic actin in vitro).

Sources of global negative regulation are based on competition and include the limitations
on the:

1. quantities of the transcriptional and translational machinery.

2. physical space within the cytoplasm and membrane.

Local positive feedback and global negative regulation can act via either activation or
repression of gene expression (see Corollaries).

3.1 Activation mechanisms

Consider an activator of transcription that has two types of binding site, low affinity and
high affinity (empty and filled circles, respectively) distributed as shown in Figure 1. This
activator can form oligomers such that there is the possibility of in cis interactions between
the activators binding to the four sites on the top daughter chromosome and, separately,
between the activators binding to the four sites on the lower daughter chromosome. Repli-
cation must slow down or pause at one and only one of two rest-stops. The parameters
here include the number of activators, the number and proximity of sites, the association
constants between activator proteins and between activator proteins and their sites (low
and high affinity), and diffusion coefficients, all of which contribute to the time taken for
activators to interact to form an effective structure to activate transcription.

Other parameters include the length of time the replication fork remains at a rest-
stop and the time between successive rest-stops (in this simple model, replication is
effectively instantaneous between rest-stops and stationary at rest-stops; a more realistic
model would have regions between rest-stops where replication is relatively fast and the
rest-stops themselves would be other regions where replication is relatively slow) as well
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B

A

Figure 1: Transcriptional activation via binding sites. The large circle represents the origin of
replication of the chromosome and the bar represents the terminus. The small empty circles are
low affinity binding sites for transcriptional activators whilst the filled circles are high affinity
binding sites. A and B represent two rest-stops for replication.

as the position of the gene encoding the limiting factor and whether its own expression
is under control of this factor. Here we assume that the activator is being produced so
as to yield a constant concentration (but see Corollaries). If replication pauses at rest-
stop A, the two sets of four low affinity sites are in competition with the eight high
affinity sites and, depending on the choice of parameter values, this can allow activation of
transcription from both the top and bottom chromosomes. If pausing occurs instead at step
B, the two sets of low affinity sites are in competition with thirteen high affinity sites and
parameter values exist that allow activation of transcription from only one set of the four
low affinity sites. The important prediction here is that a broad range of parameter values
exists that results in expression from both daughter chromosomes if replication pauses
at rest-stop A but only from one daughter chromosome if replication pauses instead at
rest-stop B.

B

A

Figure 2: Transcriptional activation via genes. The small empty hexagons represent genes that
can form part of the same hyperstructure whilst the filled empty hexagons represent other genes.
Other symbols as in Fig. 1.

There are numerous variants on this theme. The activator need not be a specific protein
but could be a species of phospholipid in a domain or localised structures dependent on
divalent ions or polyamines or polyphosphates. Indeed, a more general activation mecha-
nism based on a similar principle is when the activator that is limiting is RNA polymerase
itself. Consider Figure 2 in which each of the small hexagons is a gene and in which the
four empty hexagons on the top daughter chromosome can form part of a hyperstructure
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going into one half of the cell (which will become a daughter cell) whilst the other four
empty hexagons can form part of a similar hyperstructure going into the other half of the
cell. Suppose that expression of a gene within a hyperstructure favours its chance of being
expressed again and suppose that RNA polymerase is limiting. The competition for RNA
polymerase at rest-stop A is between the two potential hyperstructures, each containing
four genes, and the rest of the genome containing 24 genes whilst the competition at rest-
stop B is between the two sets of four genes in these potential hyperstructures and 44
other genes. The prediction is then as above, namely, that parameter values can be found
that allow expression of both hyperstructures if replication pauses at A and of only one
hyperstructure if replication pauses at B.

3.2 Repression mechanisms

Now consider a repressor of transcription that has two types of binding site, high affinity
and low affinity (filled and empty circles, respectively) distributed as shown in Figure 3.
This repressor can form oligomers such that there is the possibility of in cis interactions
between the repressors binding to the four high affinity sites on the top daughter chro-
mosome and, separately, between the repressors binding to the four sites on the lower
daughter chromosome.

B

A

Figure 3: Transcriptional repression via binding sites. The small empty circles are low affinity
binding sites whilst the filled circles are high affinity binding sites. Other symbols as in Fig. 1.

Again, replication must pause at one and only one of two rest-stops. If replication pauses
at rest-stop A, the two sets of four high affinity sites are in competition for repressor with
the eight low affinity sites and, depending on the choice of parameter values, this could
allow two discrete repression hyperstructures to form (in which transcription would be
repressed) containing the affected genes in both the top and bottom chromosomes. If
pausing occurs instead at step B, the two sets of high affinity sites are in competition
with thirteen low affinity sites and parameter values exist that allow only one repression
hyperstructure to form and hence transcription to be repressed in only one of the future
daughter cells. The important prediction here is that a broad range of parameter values
exists that results in repression on both daughter chromosomes if replication pauses at
rest-stop A but only on one daughter chromosome if replication pauses instead at rest-
stop B.

As with the activator scenario, there are numerous variants on this theme. The repressor
need not be a specific protein or RNA but could involve a preferential compaction or
condensation of the regions containing the genes to be repressed into, for example, a
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cholesteric phase. To continue in this vein, perhaps the most general repression mecha-
nism would be when the repression is via denial to the space needed for transcription and
translation to occur. Consider Figure 4 in which each of the small hexagons is a gene and
in which the four genes (filled hexagons) on the top daughter chromosome can form part
of a hyperstructure going into one half of the cell (which will become a daughter cell)
whilst the other four genes (filled hexagons) can form part of a similar hyperstructure
going into the other half of the cell.

A

B

Figure 4: Transcriptional repression via competition for space. The small filled hexagons
represent genes that can form part of the same hyperstructure whilst the small empty hexagons
represent other genes. Other symbols as in Fig. 1.

Suppose that expression of a gene within a hyperstructure favours its chance of being
expressed again and suppose that RNA polymerase is limiting. The competition for RNA
polymerase at rest-stop A is between the two potential hyperstructures, each containing
four genes, and the rest of the genome containing 24 genes whilst the competition at rest-
stop B is between the two sets of four genes in these potential hyperstructures and 44
other genes. The prediction is then as above, namely, that parameter values can be found
that allow expression of both hyperstructures if replication pauses at A and of only one
hyperstructure if replication pauses at B.

4 Evidence

A steadily accumulating body of evidence points to the universality of differentiation
in the bacterial world [8, 4, 32]. Cell division gives a stalked and a swarmer cell in
Caulobacter crescentus, a spore and a mother cell in B. subtilis, and a tetrad containing
chromosomes in different states in Deinococcus radiodurans. Even populations of Es-
cherichia coli reveal a heterogeneity that increases the probability that some cells will be
ready to profit from new opportunities or survive new dangers [5]. We and others have
argued that one of the primary functions of the cell cycle is to generate coherent diversity
[26, 31, 25].

Studies of ’combed’ chromosomes from a mutant of E. coli synchronised for repli-
cation reveal a heterogeneity in the pattern of replication, consistent with different rates
of replication in different regions [9]. Sequences that slow or halt replication have been
found in both E. coli and B. subtilis. In E. coli, a polar DNA replication barrier is formed
when the DNA-binding protein Tus forms a complex with any of the four 23-base-pair
terminator (ter) sites found in the terminus region of the chromosome (in addition to other
systems [11]). In B. subtilis, a replication barrier exists near the origin of replication and
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arrest is dependent upon the RelA protein, the action of which is correlated with high
levels of the alarmone, ppGpp [3] but see [21]. Finally, there is evidence indicating a
flow of information from metabolism to replication that could exploit phenotypic changes
arising from changes in replication rate: firstly, in E. coli, the velocity of the replication
fork may vary from about 1000 to 200 nt/s as a function of the energy contained in the
nutrients [13, 19], secondly, in B. subtilis, the primase and the helicase (key enzymes in
replication) appear to interact directly with metabolic enzymes such as pyruvate dehy-
drogenase [23, 24], an enzyme that might modulate the activity of the primase [34] and,
thirdly, three B. subtilis enzymes known or proposed to act on the lagging-strand template
in the replicating fork (the DNA polymerase DnaE, the helicase and the primase) are
functionally connected to the five terminal reactions of glycolysis [14].

In the rest of this section, we give a few examples of the many candidates that could
mediate replication-phenotype coupling. The oligomeric DnaA protein, which plays a key
role in the initiation of replication [17], also acts as a transcription factor [18]. Simulations
of DnaA activity in initiation have been made based on the distribution of low affinity
binding sites in the origin region and higher affinity sites elsewhere [12]. However, the
situation is much more complex than in our model as presented above. Not only are
there are several classes of binding sites but also, depending on the position of its binding
sites relative to promoters, DnaA can act as an activator, a repressor or a terminator of
transcription. For example, it activates transcription from nrd (ribonucleoside diphosphate
reductase), glpD (aerobic glycerol-3-phosphate dehydrogenase) and fliC (flagellin) whilst
it represses transcription from mioC (biotin synthase), rpoH (heat shock sigma factor),
uvrB (DNA repair), proS (prolyl-tRNA synthetase) and dnaA itself.

The heat-stable nucleoid-structuring protein (H-NS) is present in around 14000 copies
in exponentially growing E. coli. In addition to its role in the compaction of the nucleoid
[10], H-NS binds specifically to around 250 loci to cause transcriptional repression in-
cluding that of its own gene; this repression involves an association with RNA polymerase
[27]. Another regulatory protein, the leucine-responsive regulatory protein (Lrp), inter-
acts with H-NS to form higher order, repressive nucleoprotein structures involved in the
repression of rRNA transcription [29]. The formation of this regulatory structure appears
to be directly affected by environmental changes.

Finally, the LacI repressor and its binding sites probably constitute a repression hy-
perstructure [24] that could in principle behave in accordance with our model. In the
absence of an inducer such as lactose (or in the presence of the preferred sugar, glucose),
the lac operon is not transcribed. This is because some of the ten copies per cell of the
tetrameric LacI repressor bind with their dimers to the operator O1 and to two auxiliary
operators, O2 and O3, nearby on the DNA; this on-off binding (which is an equilibrium
process) increases the local concentration of LacI at these operators if they are close
enough and brings them closer still to increase further the local concentration of LacI at
O1 [20]. LacI binding to the operators is in competition with that of RNA polymerase to
the promoter (since these sites overlap) and, importantly for our hypothesis, “there is some
finite level of affinity of the protein for the ”correct” site and some lower (but nonzero) and
progressively decreasing affinity for other sites with decreasing degrees of homology with
the correct one. To the extent that the great preponderance of wrong sites can compete
with the regulatory target for protein and thus reduce the free protein concentration, the
effective affinity of protein for the correct sites will also be reduced” [38].
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5 Tests

The lactose operon in E. coli is perhaps the best understood of all operons. Its expression
can be manipulated and copies of the entire operon, as well as copies of just the operators,
can be inserted into different parts of the chromosome. To monitor differential expression
of the operon, use might be made of fusions between B-galactosidase and the Green
Fluorescent protein. In addition, it may prove possible to use the tus system to induce fork
arrest in specific regions [2, 36] as well as other systems [11] although this must be done
prudently since it can prove lethal [7]. Note too that the lac system itself might be used as
a way of slowing replication [28]. Such experimental approaches might be combined with
a simulation approach. Multi-agent systems, cellular automata and stochastic automata
are promising approaches to simulating the diffusion and interaction of the often large
numbers of enzymes and metabolites present in biological cells [16, 6, 33]. A stochastic
automaton, HSIM, has been developed and an early version used to model the assembly
of cytoskeletal filaments in a virtual cell [1]. HSIM therefore seems well-suited to the
exploration of the parameter space needed to see what is required for differentiation to
occur.

6 Corollaries

1. Local positive feedback and global negative regulation can act not only via either
activation or repression of gene expression but also via translation and degrada-
tion. In all cases, the end result is a hyperstructure that tends to maintain its own
existence.

2. There is an epigenetic flavour to our hypothesis. If a bacterium replicates its chro-
mosome, this is usually because it is growing. If it is growing, this is because it
has the hyperstructures needed for growing. Hence, the mother cell already has one
copy of a needed if the genes in this hyperstructure are all on one strand, one of the
future daughters inherits an established hyperstructure. This creates a status quo
situation that is likely to affect the chance of the other daughter generating a sister
hyperstructure.

3. Factors that affect the synthesis or degradation of the activator or repressor are
clearly important in replication-phenotype coupling and include the position of
the gene encoding the activator or repressor (whether it is before rest-stop A, or
between rest-stops A and B, or after rest-stop B) and whether this gene is itself
regulated by its own product. Given that the ratio of RNA polymerase to genes
is a key parameter, these factors also include the temporal pattern of synthesis of
transcriptionally active RNA polymerase and the spatial distribution of this enzyme
(note that RNA polymerase itself is subject to local concentration effects).

4. The hypothesis is relevant to eukaryotic cells too even those in which DNA repli-
cation and transcription can only occur at different times. This is because the
role of transcription in the bacterial case may be replaced by modifications to the
chromosomes and associated macromolecules.

To test the feasibility of this hypothesis, we propose to use a stochastic automaton, HSIM,
that we have previously used to investigate the formation of cytoskeleton filaments and
multi-enzyme assemblies within a cell [1]. In essence, the project will entail modifying
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HSIM to represent linear genes that can bind RNA polymerases and that can be duplicated.
Both genes and polymerases will be diffusible. The effects on gene expression will be
investigating by varying the parameters of pausing during duplication, varying the quan-
tity of RNA polymerase, positive feedback weightings for cooperative RNA polymerase
binding, and chromosome condensation.

7 Discussion

How do cells manage to produce not only reproducible phenotypes (out of the hyper-
astronomical number apparently available to them [15]) but also coherent phenotypes?
How do cells negotiate the cell cycle? Are these questions linked? We have suggested
the phenotype is not decided at the level of individual macromolecules but at a higher
level that of assemblies of molecules alias hyperstructures [24]. We and others have also
suggested that a primary function of the cell cycle is to generated coherent diversity of
phenotypes within a population of cells [26, 31, 25]. For example, in the strand-specific
segregation model it is the association of each parental strand with a particular set of
hyperstructures and the continued association once replication has occurred that ensures
the separation of the daughter chromosomes [30] This is in line with the correlation
between the location of genes on the chromosome and their position of genes along the
long axis of the cell [35, 22, 37] and with evidence showing a highly asymmetric pattern
of segregation of markers around the terminus [39]. It has also been proposed that the
very fact of having two chemically identical chromosomes in the same cytoplasm creates
a symmetry-breaking situation if the genes are in a global competition with one another
for transcription by RNA polymerase and if local positive feedback circuits can operate
such that a gene that is being transcribed has a greater chance of being transcribed again
than one that is silent [26].

This ”differentiation for free” model can be revisited in the light of the recent dis-
covery of a relationship between metabolism and the enzymes involved in the elongation
step in chromosome replication [14]. There is an intriguing possibility that this relation-
ship could affect phenotype by altering the rate of replication in different regions in the
chromosome. In principle, a variety of physical mechanisms could combine to give the
local positive cooperation and global negative competition needed for differentiation to
be determined by replication-phenotype coupling. A judicious marriage between simu-
lation using programs such as HSIM [1] and bench experimentation should identify the
parameter values needed for such differentiation to occur.
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UMR CNRS 5068, Université Paul Sabatier, F-31062, Toulouse cedex 9, France
5 Division of Biological Sciences, University of California at San Diego, La Jolla,

CA 92093-0116 USA

Abstract

Bacterial disease is a major cause of suffering and the scarcity of new molecules that
can act on bacteria is a major problem. New strategies for developing such molecules
might be based on recent concepts in microbiology. Hyperstructures are large assemblies
of molecules and macromolecules that perform functions such as DNA replication and
chemotaxis and the interactions between hyperstructures have been proposed to consti-
tute an intermediate level of organisation in cells. An entirely new therapy for bacterial
diseases might therefore be devised based on the manipulation of hyperstructures. One
way to do this would be to supply cells with hybrid metabolites or hybolites made by a
pairwise combination of the thousands of small molecules involved in metabolism. Some
of these hybolites would be substrates for two, very different, hyperstructures and might
do much more than simply inhibit key enzymes and processes within the hyperstructures:
they might provoke the assembly of two hyperstructures in the same space or lead to
hyperstructures emitting misleading signals. It is conceivable that hybolites might even
convert a pathogenic Mr Hyde into an inoffensive Dr Jekyll. The likely action of candidate
hybolites on hyperstructure dynamics and hence phenotype might be explored cheaply in
silico using stochastic automata such as HSIM.

1 Introduction

In a Howard Hughes lecture given in 1999, Don Ganem rebukes those eminent colleagues
who, in the sixties, made optimistic predictions about how infectious disease was con-
quered and how funding should be redirected to chronic diseases: “Now we know, of
course, that that notion (that infectious disease was no longer a problem) was foolish to
begin with, that infectious disease, epidemic infection, is a part of the human condition.
I’m going to show you that it’s really a part of human evolution that we can never get
away from infectious disease as a class. We can triumph over individual infectious dis-
eases, but the concept that we’re going to be free of infection as a species is a ridiculous
one and one that nobody believes anymore”. Infectious disease, usually bacterial, causes
over 60% of total deaths in the developing world, infectious disease is the third leading
cause of death in Europe (the elderly and weak are most vulnerable) and, despite existing
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antibiotic therapies and vaccines, infectious disease remains the leading cause of mortality
and morbidity worldwide (for references see [17]). In particular, the problem of bacte-
rial resistance to antibiotics (often due to plasmids that can transfer resistance from one
bacterium to another) is far from solved as illustrated by the recent deaths in Israel due to
multi-drug resistant Klebsiella (in news.yahoo.com/070308/43/6czlb.html).

So what are we going to do about infectious disease? Vicente et al. [17] point out
that “the antibiotics that were easy to discover have already been found, and it is likely
that the search for new members of existing classes, and certainly for new classes of
antibiotics, will involve a substantial amount of high-quality, expensive and laborious
research”. Indeed, the cost of bringing a new drug to market is estimated to be more than
800 million Euros whilst “a paradox of the effectiveness of antibiotics is their weak value
as marketable goods: patients stop buying them once their health returns, after relatively
short courses of treatment” [17]. Apparently, therapeutic success is not guaranteed even
when pathogenic bacteria are sensitive to an antibiotic. One reason is persistence – the
fact that a bacterial population is phenotypically heterogeneous such that some bacteria
are not growing at the time of the antibiotic treatment and therefore survive [2]. Another
reason is the antibiotic itself may lead to a biofilm forming in which the bacteria are more
resistant to antibiotics [7].

Exploitation of concepts developed in the field of integrative biology is one approach
to tackling bacterial and other diseases. Here, we consider a new therapy for bacterial
diseases based on the manipulation of hyperstructures alias large assemblies of differ-
ent molecules and macromolecules that, in our hypothesis, perform particular functions
within cells [11]. We propose that hyperstructures may be manipulated by supplying bac-
teria with hybrid metabolites or hybolites and, to decide which hybolites to construct,
we propose modelling their putative action on hyperstructure dynamics via the stochastic
automaton HSIM [1].

2 Hyperstructures as targets

The concept of a hyperstructure is that of an extended assembly of molecules and macro-
molecules with a specific function within bacterial cells [11]. Certain hyperstructures are
functioning-dependent structures that only form when the constituents of the structure
function – and function together [16]. Examples of candidate hyperstructures include
the prokaryotic equivalent of the eukaryotic nucleolus for making ribosomes, the giant
factory for DNA replication, the array of chemotaxis receptors for interpreting gradients
of attractants and repellents, transertion structures produced by the coupled transcrip-
tion/translation/insertion of nascent proteins into membrane (which include nascent flag-
ella and the expressed lac operon for metabolising lactose), a competence hyperstructure
responsible for DNA uptake, a phosphoenolpyruvate:sugar phosphotransferase system
(PTS) responsible for the sensing and uptake of a large number of extracellular sugars
and for feeding their products, cytoplasmic sugar phosphates, directly to glycolytic en-
zymes that may even be part of the same hyperstructure, the divisome that executes cell
division, and possibly structures involved in pili formation and virulence.
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3 Hybolites

Hyperstructures and the interactions between them have been proposed to constitute an
intermediate level of organisation in cells [11]. Importantly for therapy, this interme-
diate level, in our hypothesis, determines the phenotype. An entirely new therapy for
bacterial diseases might therefore be devised based on the manipulation of hyperstruc-
tures. One way to do this would be to supply cells with hybrid metabolites or hybolites
made by a systematic, high-throughput, pair-wise combination of the thousands of small
molecules involved in metabolism or cell structure. Some of these hybolites would be
substrates for two, very different, hyperstructures and might do much more than simply
inhibit key enzymes and processes within the hyperstructures: they might induce the as-
sembly of a functioning-dependent hyperstructure in conditions when normally no such
structure should form, or they might provoke the assembly of two hyperstructures in the
same space, or they might lead to hyperstructures emitting misleading signals resulting
in the bacterium adopting (or trying to adopt) patterns of growth and rates of growth in-
appropriate for the environment. The hyperstructure hypothesis has corollaries in which
hyperstructure dynamics regulate the cell cycle events of chromosome initiation [10],
chromosome partitioning [15] and cell division [12]. Hybolites that affect these dynamics
might well result in alterations to the rate of progress through the cell cycle or even to the
order of cell cycle events with correspondingly serious consequences for the viability or
virulence. Finally, it is conceivable that hybolites might convert a pathogenic Mr Hyde
into an inoffensive Dr Jekyll [13] and hence avoid the problem of a killing that selects
resistant mutants that survive or creates empty niches to be filled with other bacteria.

4 Feasability

There are several reports of hybrid molecules that might be used as hybolites. Differ-
ent phospholipids, with saturated and unsaturated chains, have been linked to a corti-
sol derivative, novobiocin has been coupled through the 3’ or 2” hydroxyl group and a
linker to dioleoylphosphatidic acid, and functionalised lipids have been made with, as
head groups, the DNA bases thymidine or adenosine [14, 8, 9]. In addition to a chemical
synthesis of hybolites, it may prove possible to develop a biological system to produce
them. For example, catalytic antibodies have been obtained for a wide variety of reac-
tions including ester hydrolysis and transesterification, amide hydrolysis, glycosidic bond
hydrolysis, and decarboxylation [18, 5].

5 Targets

In this section we give a few examples of the types of hybolite that might be constructed
to manipulate particular hyperstructures.

1. Sensing Bacteria use quorum sensing molecules such as homoserine lactone to cal-
culate the density of the population and to either continue growing or stop growing.
Hybolites of such molecules linked to other molecules might result in bacteria ei-
ther continuing to try to grow at high densities or stopping growing at low densities.
Bacteria also sense attractants so as to swim up nutritional gradients or repellents
so as to swim down gradients. This sensing involves a chemotaxis hyperstructure
and hybolites to alter it might be constructed by fusing attractants and repellents.
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2. Transport and metabolism. Sugars, bases, amino acids and many other small mole-
cules can be imported by bacteria and used in metabolism. Fusing, for example, a
sugar such as glucose to an amino acid, might interfere with either the membrane-
bound enzyme IIBCglc or the cytoplasmic enzyme IIAglc which are responsible for
importing and phosphorylating glucose.

3. DNA synthesis. Ongoing replication requires feeding the hyperstructure with the
four deoxyribonucleotides (dNTPs) at the rate of about 3000 nucleotides per sec-
ond. Replication might then be readily perturbed by hybolites that involve fusions
between nucleotides and other molecules. The involvement of the membrane in
replication has a long history and it is tempting to speculate that the replication
hyperstructure may also contain cardiolipin (for references see [4, 11]). Hence, it
might be worth making hybolites from phospholipids such as cardiolipin combined
with DNA precursors.

4. Protein synthesis. A ribosomal or ’nucleolar’ hyperstructure forms in Escherichia
coli at high growth rates when the synthesis of ribosomes consumes most of the
bacterium’s resources but is not apparent at lower growth rates [3]. Hybolites might
modulate growth rate if they were to interfere with the assembly of this hyperstruc-
ture. Such hybolites might be made from the amino acids that constitute ribosomal
proteins along with bases such as uracil that are form part of ribosomal RNA.

5. Cell division. The synthesis of phospholipids and of peptidoglycan leading to the
invagination of the membrane and the cell wall must be coordinated between them-
selves and with ongoing chromosome replication and segregation. This coordina-
tion may be provided by a division hyperstructure [11]. Hence promising hybolites
might be made from combinations of phospholipids and precursors of peptidogly-
can and DNA

6 Discussion

Over the last decade, a wealth of experimental data on the existence of large intracellular
structures or hyperstructures has led to a new but still speculative view of bacteria in
which the dynamics of these hyperstructures determines the phenotype [11]. This view
leads to the idea that manipulating hyperstructures should result in changes in phenotype
and hence to the idea that molecules might be made to cause such changes. Indeed, such
molecules might actually be made to prevent bacterial virulence. Here, we have explored
briefly the notion of hybrid molecules or hybolites which comprise two molecules that
participate in different hyperstructures.

A high throughput generation and testing of hybolites on bacterial pathogens might
constitute an attractive strategy for the pharmaceutical industry. There are, however, tens
of millions of potential hybolites that might be made and screened. Unfortunately, it is not
clear which of them might be effective in an eventual therapy. A complementary rather
than alternative strategy would be to develop in silico approaches based on stochastic
automata such as HSIM [1]. HSIM is being used at present to model the dynamics of
hyperstructures such as those involved in glucose transport and metabolism. Addition of
virtual hybolites with different characteristics to HSIM might be used to help select those
that are worth testing in vivo.
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Hybolites have been proposed above as a possible panacea to bacterial diseases. Of
course, it could be argued that there are eukaryotic equivalents to bacterial hyperstructures
(see for example [6]). If so, and if hybolites really do alter bacterial hyperstructures to
affect phenotypes, they may have similar actions on eukaryotic cells. In which case,
hybolites might be of value in the treatment of certain chronic diseases.
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Could phase oscillations occur in bacteria?

Vic Norris1,2
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Abstract

Phase oscillations or phoscillations in one, two, three and more dimensions may exist in a
wide variety of systems. In the case of biological systems such as bacteria, phoscillations
might take the form of conformations travelling along DNA or protein filaments, density
fluctuations travelling in the plane of the membrane, and changes in water structure travel-
ling through the cytoplasm. Phoscillations in different dimensions might become coupled
and thereby constitute a mechanism to generate an integrated and coherent phenotype.

1 Introduction

In June 2005 on a visit to the University of Brest funded by the Epigenomics Project, Pas-
cal Ballet asked me which simple model system he might use to illustrate his 2-D, multi-
agent simulator, BioDyn [1]. I had been working with physical chemists in Rouen on an
in vitro Langmuir system to investigate how the formation of domains or patches of par-
ticular phospholipids within a planar membrane might instruct proteins when and where
to act to perform division. I therefore suggested that he might simulate certain aspects
of such systems and that, in a monolayer composed of a single species of phospholipid,
he might simulate the formation of domains of ordered phospholipids in a surrounding
sea of phospholipids in a disordered state. The idea was to represent a phospholipid with
its fatty acid chains parallel to one another (i.e. ordered) as a blue circle occupying a
unit area and a phospholipid with its chains splayed out (i.e. disordered) as a red circle
occupying a larger area. The state of the phospholipid would depend on the frequency
of collisions with other phospholipids. In Pascal’s initial simulation, the phospholipids
were relatively sparse, collisions were infrequent and the majority were red. A Langmuir-
Blodgett trough has a bar to compress the phospholipid layer and at certain values of
compression domains can form. We therefore decided to add a bar to the simulation and
to compress the phospholipids. As the bar was moved into the phospholipids, a band
of blue circles immediately formed and, at certain concentrations of phospholipids, this
band could traverse the entire population. This was intriguing because the movement of
the blue band corresponded to a phase change moving through the rather crowded popu-
lation rather than to the diffusion of the individual phospholipids themselves. It seemed
to me that if the bar itself were to oscillate a resonant frequency might be found such that
waves of phospholipids in the ordered state might be generated. This raised the possibility
that phase oscillations, or more exactly migrating bands of a different density, might oc-
cur in the cytoplasmic membrane of bacteria in vivo. It raised the further possibility that
fluctuations in density might occur in any dimension in both animate and inanimate sys-
tems. Moreover, such multi-dimensional fluctuations might be coupled. Unfortunately,
Pascal did not have time to work further on the simulation.

I therefore contacted Axel Hunding, who had modelled the oscillations of a division
protein in bacteria and who had participated as a physical chemist in a think-tank on the
origins of life organised by the Epigenomics Project. Not long after, Axel told me of a
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model of domain formation in a membrane based on the diffusion of GTPases coupled
with the attraction and adhesion among active GTPases [7]; the authors, who belonged to
the same European network as Axel, argue that the structures generated by their model are
not Turing structures [51]. It turns out that similar mechanisms were proposed a couple
of years earlier to explain how waves of MinD-membrane density might be involved in
cell division in Escherichia coli [24]. Another paper was published in 2005 in which do-
main formation in membrane was modelled based on lipids, GMC proteins, and attraction
between acidic lipids and GMC proteins [21]; phase separation occurs as a result of free
energy minimisation whilst driving the system away from equilibrium via enzyme activ-
ity results in waves of domains and, in this oscillatory system, an important role is given
to reaction-diffusion as proposed by Turing and others [51, 15]. Finally, the concept of
conformational spreading between proteins in one, two and three dimensional lattices has
been proposed as a mechanism of general importance although the potential oscillatory
aspect was not developed [6]. These interesting papers might be regarded as making a
subsequent, related proposal pointless. Here, I argue that they should be regarded instead
as the first (or at least the most recent [8]) in what I hope will be a long reflection on phase
oscillations. A new field may be emerging. Its objects are what we may term phoscillons
which are found in phoscillatory systems of any dimension. Exploration of this field,
which may have an importance that is not limited to biology, will require collaborations
across the disciplines. To illustrate this potential importance, I consider in what follows
the possibility that bacteria are phoscillatory systems.

2 The hypothesis

Phase oscillation – phoscillatory – systems exist in biology and elsewhere that undergo
phase oscillations in 1, 2, 3 and higher dimensions. In the case of cells, phoscillations in
different dimensions may be coupled to provide signals that initiate cell cycle events and
to generate coherent phenotypes.

3 The physical candidates

1D. Possible changes that could travel along DNA include solitons (a soliton is a self-
reinforcing solitary wave) [44], B to A transitions (and other conformational changes)
accompanied by ion condensation/decondensation [28] and changes in water structure
[9]. (I leave it to the physical chemists to decide whether any of these ’1D’ changes can
actually be classed as phase changes. I would argue though that they can be accompanied
by a local change in density.) In bacteria, the energy needed to maintain phoscillations
could come from the negative supercoiling created by DNA gyrase [17] or from the super-
coiling created by RNA polymerases during transcription [27]. Phoscillations might also
occur along the cytoskeletal filaments found in both prokaryotes and eukaryotes (for a re-
view see [37]. These filaments correspond to the three cytoskeletal classes in eukaryotes,
tubulin, actin and intermediate filaments as well as to other filaments such as those formed
by EF-Tu. The FtsZ protein has a structural homology to tubulin [26] and, in vitro, forms
a wide variety of polymeric structures depending on the presence and concentrations of
lipids, divalent ions and GTP [16]. FtsZ is present in E. coli as helices (this is in addition
to its presence in the ‘ring’ at the division site, see below) that have a dynamic activity
on the scale of seconds along with slower oscillations of a minute or so (Thanedar &
Margolin, 2004). In some bacteria, the Min system prevents aberrant divisions (Levin et
al., 1998, Norris et al., 2004, Teather et al., 1974) and in E. coli the MinD protein, which
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binds cooperatively to membranes in the presence of ATP, forms a long, helical polymer
that assembles from the pole and that is disassembled by MinE so generating oscillations
(Shih et al., 2003). Eukaryotic actin is proposed to undergo a conformational change fol-
lowing the binding of gelsolin and this may propagate throughout the entire actin filament
(for references see [6]). Could this occur with bacterial actin equivalents such as MreB?
It should be noted here that there is a long history of solitons and conformons in proteins
(Ji, 1991, Sinkala, 2006). Flagella offer a fine example of the important of the propaga-
tion of conformations. Flagellin exists in two states and when the motor reverses some
L-type flagellin subunits are converted into the R-type producing transient segments of a
relatively tight right-handed helix that are proposed to propagate out toward the flagellar
tip (for references see [6]).

2D. Conformational spreading between proteins in one, two and three dimensional lattices
has been proposed as a mechanism to explain a multitude of phenomena including chemo-
taxis, which involves a 2D array of chemoreceptors in the pole of E. coli [6]. Phospho-
lipids are distributed heterogeneously in the cytoplasmic membrane of E. coli and other
bacteria (for reviews see (Mileykovskaya & Dowhan, 2005, Matsumoto et al., 2006)). At
least two types of lipid domains of different order and polarity are present in the E. coli
membrane as revealed by studies using laurdan and 1,3-diphenyl-1,3,5-hexatriene (Va-
nounou et al., 2002); moreover, pyrene-labeled analogues of phosphatidylethanolamine
and phosphatidylglycerol are sequestered into separate pre-existing domains in the mem-
brane (Vanounou et al., 2003) but see (Nishibori et al., 2005). The fluorescence of the
hydrophobic dye FM 4-64 differs at the future septum from elsewhere at a very early stage
in chromosome segregation (Fishov & Woldringh, 1999). The principal lipid constituents
of these domains (which are unlikely to be pure (Galli Marxer et al., 2005)) have been
identified. Domains enriched in cardiolipin have been revealed at the centre and the poles
of E. coli using 10-N-nonyl acridine orange (Mileykovskaya & Dowhan, 2000), findings
that are reinforced by an elevated cardiolipin level in minicells which reflects that of iso-
lated poles (Koppelman et al., 2001). The cytoplasmic membrane of Bacillus subtilis
also contains cardiolipin and phosphatidylethanolamine domains (Nishibori et al., 2005,
Matsumoto et al., 2006).

What creates these lipid domains? There are probably many factors including those re-
sponsible for lipid-lipid and lipid-protein interactions (Matsumoto et al., 2006). It should
be noted that proteins are also distributed heterogeneously in the cytoplasmic membrane
and the lipid domains are probably proteo-lipid domains (for references see (Norris, 1992,
Norris et al., 2007)). The process of transertion (alias the coupled transcription, transla-
tion and insertion of proteins into and through membranes) has been proposed to create
membrane domains (Norris & Madsen, 1995, Woldringh, 2002); the importance of this
role for transertion is supported by experimental evidence that shows an increase in the
fluidity of the membrane when transcription and translation are abolished (Binenbaum et
al., 1999). This means that the energy-consuming process of transertion is structuring the
cytoplasmic membrane and the system is away from equilibrium. In addition, lipids are
being inserted into the membrane, probably at the sites in the division septum where many
of the phospholipid synthases are located (Matsumoto et al., 2006). Hence during some
or all its cell cycle, the conditions may be met for the membrane of bacteria to be swept
by waves of a particular physical state as perhaps foreshadowed in a seminal papers [8].

3D. The eukaryotic cytosol undergoes repeated gel/sol transitions as actin polymerises
and depolymerises. Waves of NADP(H) traverse neutrophils [41] whilst waves of cal-
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cium have been observed in many cell types. The cytoskeleton has been considered a
tensegrity structure that may itself vibrate [19] and oscillations of the cell wall have been
observed in Saccharomyces cerevisiae that have an frequency of around a kHz and an
amplitude of 3 nm and that depend on ongoing metabolism and probably the coupled me-
chanical activity of many proteins [40]. What then of the ’simple’ bacterial cytoplasm?
Bacterial cells contain many large, spatially extended, assemblies of ions, molecules and
macromolecules, which we have termed ’hyperstructures’ [37], which are implicated in
functions that range from DNA replication and cell division to chemotaxis and secretion.
These hyperstructures include cytoskeletal filaments with significant similarities to micro-
tubules, microfilaments and intermediate filaments as well as other types of filaments (see
above). Could hyperstructures generate oscillations in density that would be propagated
through the cytoplasm - and what might be their physical nature? Water is a seductive
candidate. Some, if not all, of the water within the cell is structured by the molecules and
macromolecules that constitute the cell (for references see [9]). One of the hypotheses in
this controversial area is that of two-state water [10, 32, 33] which is proposed to consist
of coexisting microdomains of water molecules of different densities and hydrogen bond
strengths. Low density water has a density of 0.91 g/ml; whilst high density water has
a density of 1.18 g/ml. The two types of microdomains, with different hydrogen-bonded
structures would also differ in all their physical and chemical properties: melting points,
boiling points, and solvent properties. These microdomains are in a rapidly-exchanging
equilibrium and water at surfaces can be enriched in either type. It is also reported that
water structures can be surprisingly stable [45] and the implications for biology are con-
siderable [54]. The question we return to below is whether phoscillations depend on water
structures.

4D. Phoscillations might occur, in principle, in more than three dimensions (plus time).
This may only be relevant to subjects such as astrophysics and I mention it here for com-
pleteness and fun. How would a 4D oscillation appear to a human observer of a bac-
terium? The limiting case of a phoscillon in a system of 1, 2 and 3 dimensions is a
point, a line, and a surface, respectively, so in 4 dimensions it should be a volume. The
observer should therefore see a whole subvolume of the bacterium undergoing a simul-
taneous phase change and then another subvolume undergoing a phase change with no
necessarily evident pattern.

4 Coupling between the dimensions

The coupling of oscillations can lead to their synchronisation as observed by Huygens in
1657 [48]. Bray and Duke argue for such coupling in the case of conformational spreading
through protein lattices and use the movements of myosin molecules in a muscle sarcom-
ere as an example [6]. Here, I propose that phoscillations become coupled in all three
dimensions and that these involve all cellular constituents. Changes in phase resulting in
changes in local density are generally likely to involve water and water itself – and water
structures along with ions that can mediate them –are perhaps the best candidates for cou-
pling phoscillations (see above). In 1D, fluctuations of ion condensation/decondensation
from one side to the other of DNA [28] and consequent changes in water structure could
accompany conformational changes. Much bacterial DNA is in a liquid crystalline state
with the fibres lying roughly parallel to one another so phoscillations in neighbouring fi-
bres might become synchronised [43, 4]. In 2D, water close to the membrane is generally
believed to be structured – even if this may not extend far [2]. Phoscillations that occur in
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the membrane must affect water in the adjacent cytoplasm. Finally, in 3D, transitions be-
tween gel and sol states entail polymer-water interactions giving way to polymer-polymer
interactions and vice versa as the result, it has been proposed of divalent cation binding
to anionic sites on polymers to bring them together and so exclude water [42]. Such ideas
have been taken further following evidence that a surprisingly large number of proteins
spend some of their time in the cytoplasm in a flexible and unstructured state - indeed,
it has been speculated that such unfolding might lead to local regions becoming gel-like
and even propagating regions of disorder [5]. As a specific example of coupling via wa-
ter, consider the following speculation. Enzymes can undergo specific conformational
changes on the order of a millisecond that are important in catalysis [11, 18] and the reg-
ular conformational changes of identical, neighbouring, enzymes as they perform their
function might be coupled by movements of water structure between the enzymes so
that these enzymes move together in a synchronous, low energy state. It may be worth
considering how, at other frequencies, coupling via water dynamics might lead to a syn-
chronization of ribosomes, which undergo major conformational changes as they translate
mRNA and which can be packed very closely.

5 Discussion

Turing showed that chemical reactions between two or more species of which at least
one diffuses are sufficient to form domains given that the kinetic terms and diffusion
constants obey well defined relations [51] and Gierer and Meinhardt developed a closely
related theory focusing on local activation and lateral inhibition [15]. The phoscillatory
structures discussed here are, it seems to me, not Turing structures. It is a phase or state
that is propagated rather than a molecular species and there is no chemical reaction.

What problems, if any, might phoscillation solve? There is a hunger for integrative
principles to help explain how cells negotiate the apparent enormity of phenotype space
confronting them [22]. Such principles might be found in conformational spreading along
protein lattices [6] or travelling waves in membranes [21] (for examples of other candi-
dates see [37]). Exploration of a role for phoscillation as an integrative principle might
prove particularly rewarding in the context of the hyperstructures that we propose con-
stitute an intermediate level of organisation in cells [37]. Despite decades of intense
investigation, the nature of the signals that regulate the bacterial cell cycle is unknown.
Oscillations have been implicated in this regulation [12], as have hyperstructures [36]. It
is tempting to speculate that different hyperstructures with different compositions might
act as independent phoscillating systems that could sometimes become coupled to consti-
tute cell cycle signals.
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Abstract

In this paper, we describe two keys which characterize hypercomplexity and emergence.
The first key is the nonseparability property, and the second is the process of multiple
interaction.

1 Complex systems, hypercomplexity

Here, a model is a representation of some phenomenon by mathematical objects such
as data sets, tables, matrices, relations, rules, equations, trees, graphs, hypergraphs, net-
works, functions, linear and nonlinear functional operators, etc. Typically a model will
refer in general only to some aspects of the phenomenon in question. Having built a model
for some perceived aspect of reality, this modelling can serve for some computation or as
the basis for simulation, an efficient way to complement real-world experiments for non-
invasive examination of physical reality.

In the following, complex systems are dynamic systems in which the components
interact simultaneously in ways that are not precisely known. For example, these systems
are a bacterium, cells in a body, animals in natural ecosystems, human agents in an
economy or in a stock-market, etc. To gain perspicacity in these systems requires the
construction of suitable models which in general will be continuous or discrete or even
hybrid, often multi-scale, and which will be also stochastic, since a deterministic model
is only one nice particular instance of stochastic models.

However, the complexity of biological systems differs from that of inanimate systems.
First as mentioned in [1], the distribution of their components is very inhomogeneous.
Furthermore, their structures evolve dynamically and their components are in permanent
interactions, often at different levels, unlike inanimate systems. Another characteristic
of these dynamic systems is the phenomenon of emergence [2]. In a biological system
emerge properties and behaviours that cannot be readily predicted from a knowledge
of properties and behaviours of the system’s constituents. This very unpredictability
makes emergence hard to model and to work with, by using concepts and considerations
only appropriate to inanimate systems or only arising from mechanics, electronics or
quantum physics [3]. To understand living systems and the mechanism of emergence,
a new information processing theory would be required, with its own concepts, models
and algorithms, and with efficient tools for computation; such a theory would be the
basis for a brand-new and original technology. This theory may result from current
attempts to harness the computational power of molecules [4], of bacteria [5], or of
a larger field which could be termed “new computational biology” or “new science of
information processing”. Until such time, modelling and simulation will remain essential
complements to wet experiments for understanding the complex systems behaviours.
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Examples of just how complex a biological process can be and of why a new term,
hypercomplexity, was used in [6], can be seen in [5], [6], [7], [8] and [9].

2 Nonseparability, Multiple Interactions

Although a few other terms such as non-linearity and strange attractors are employed in
the field of complex studies, the vocabulary available to describe complex systems and
hypercomplexity is still rather limited and, to begin a taxonomy of complex systems,
it would be useful to have an idea of the parameters needed to capture the essence of
complex biological organisations.

The model bacterium, Escherichia coli, is one of the best-understood of all organ-
isms. It might therefore be expected that the process whereby this bacterium divides into
two bacteria would be thoroughly understood. This is not the case, probably because
bacterial division is dependent on the interplay between many different factors. The
case can also be made that E. coli contains a level of organisation intermediate between
macromolecules, such as genes and proteins, and the cell itself; this is the level of hyper-
structures [7]. Other biological organisations also have intermediate levels and, to take
account of hierarchical complexity, the vocabulary of complexity should include levels
as a parameter. It could be argued that virtually all biological organisations, including
social ones, have to undergo the vicissitudes of a fickle environment. Hence, additional
parameters to characterise, and even quantify, hypercomplexity, might be derived and
based on the essence of organisations subject to selection for growth in good conditions
and survival in bad ones. This essence includes the existence of quasi-equilibrium and
non-equilibrium structures.

Other parameters can be based on the process of competitive coherence [8] which
underlies the operation of many biological organisations and which can be used to des-
cribe the way that a key subset of constituents are chosen to determine the behaviour of
an organisation at a particular level. This choice results from a competition between the
need of the organisation to behave in 1) a consistent way over time so as to maintain
historical continuity via the status quo and 2) a coherent way at a particular time that
makes sense in terms of both internal and environmental conditions and that is highly
adaptive. This brought us, in [6], to a vision of biological organisations orbiting around
two pairs of attractors. The first pair is the quasi-equilibrium versus non-equilibrium
pair or, for example, spore versus growing cell. The second pair is the continuity versus
coherence pair or the history versus the present.

In order to characterize hypercomplexity [6] and emergence [2], we are going to exam-
ine two keys which are behind these pairs of attractors. The first key is the nonseparability
property, and the second is the process of multiple interaction.

2.1 The nonseparability property

In mathematics, a function f (x1, . . . , xn) is said separable if there exist n functions
f1(x1), . . . , fn(xn) such that f(x1, . . . , xn) = f1(x1) + . . . + fn(xn); otherwise it is
nonseparable. This definition remains valid if the sum operator “+” is replaced by any
other operator like product “x”, division “/”, etc.
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The nonseparability property can characterize some undecidable problems, as the follow-
ing optimization problem: Consider the optimization problem (P):

maximize f1(x1), . . . , fn(xn)
under the constraints: (x1, . . . , xn) ∈ Rn; gi(x1, . . . , xn) ≤ bi, i = 1, . . . ,m

• If the functions f and gi, i = 1, . . . ,m are linear, problem (P) is polynomial;

• if xi ∈ N and f and gi are linear, i = 1, . . . ,m, then (P) is NP-complete [];

• but, if the function f is nonseparable, there is no algorithm which solves (P), that is
if f is nonseparable, (P) is undecidable.

2.2 Multiple interaction

In the following, an interaction may involve two or more system’s constituents not nec-
essarily located at the same level. An example of interaction between two entities not
located at a same level is given in [9]. A simple interaction denotes an interaction between
two system’s constituents. A multiple interaction is, by definition, an interaction between
at least three system’s constituents.

It is often defined, for the interaction set of a given biological system, an interaction
function which associates some value to each interaction. Example: Let S be a biochemi-
cal reaction set; a simple interaction is a reaction between one enzyme and one metabolite,
and a multiple interaction is a reaction involving one enzyme and at least two metabolites;
besides, the stoechiometric coefficients of S define an interaction function.

The construction of the full network of interactions between the system’s constituents
is crucial for a better understanding of a biological process. This provides new insights
into the structures and properties of biological systems, and allows useful computations.
Several instances of networks of biomolecular interactions are depicted in [10].

Now, let us observe that, in a biological system, the presence of multiple interactions
implies that the associated interaction function is nonseparable, and the network of inter-
actions has not a graph structure but a hypergraph structure.

On the other hand, as mentioned in [11], biological function captures molecular archi-
tectures, and molecules need precise architectures and positions in space to function in an
orderly fashion with specificity. This observation emphasizes the accuracy importance in
the construction of a network of interactions and its interaction function.

In [12], an analysis of the protein interaction network among E. coli cell division
proteins is described to indicate that the Fts proteins are connected to one another through
multiple interactions.

2.3 Chaos, Emergence

In [13] it is noticed that in classical mechanics, a system always has a separable Hamil-
tonian H such that H is a sum of Hamiltonians Hi, one element in the sum for each
subsystem; and as a consequence, this system is nonchaotic. Thus, the key to chaos in
classical systems is better characterized as the nonseparability of the Hamiltonian rather
than the nonlinearity of the equations of motion. We can make an analogous conclusion
and say that, in biological processes, the emergence is characterized as the product of the
nonseparability of the interaction function and of the multiple interactions.
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LifeExplorer: a visualization tool for molecular and synthetic
biology
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Abstract

Biologists deal with large amounts of data on cellular components and processes. There-
fore, repositories, models and simulation tools are necessary to provide a synthetic view
of the inherent complexity of living organisms. As a step in this direction, the Foundation
is developing a 3D visualization tool enabling to map cell components and to navigate
within the cell at various scales.

Audience and benefits

LifeExplorer, as an interactive visualization environment, is a tool for biologists to better
understand how biological processes take place in the cell space. In particular it should
help to analyse how a cell is organised in terms of compartments and internal crowd-
ing. The LifeExplorer tool will also support biologists and engineers to design virtual
processes and cells.

First step and challenges

A LifeExplorer prototype is being developed by the Foundation and industrial/academic
partners. It consists of the integration into a visual representation of all the components
involved in the transcription process of the lactose operon in Escherichia coli.

The LifeExplorer prototype takes into consideration all actors of transcription, the
resulting crowding and spacing between objects. Macromolecule localization and orienta-
tion are currently empirical, in agreement with actual knowledge deduced from molecular
biology or in vitro single-molecule experiments.

A better understanding of the highly integrated sub-cellular organisation by a visual
representation tool is achievable by the collaboration of IT experts and biologists. In
conjunction with the development of the tool itself, a large part of its value will come
from accurate and validated data by the biologists community. We welcome all biologists
to participate into this effort.
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Abstract

We describe the use of an automated optimization method to aid in the rational design of
new synthetic genetic circuits. Biological circuits are harder to design than their electrical
counterparts, as genetic circuits sharing the same topology could behave very differently
depending on the kinetic parameters, furthermore the addition of new interactions could
change the circuit dynamics in unexpected ways. Our automated procedure can design
genetic circuits, composed of predefined genetic parts, having a desired time-response
and a degree of robustness under stochastic perturbation of the parameters. This will
allow the design of new genetic devices with desired transfer functions and robustness.
Our procedure could be viewed as a genome evolution where a given genome would
acquire mutations at the promoter, ribosome binding site or coding regions. Then one
would select the fittest organism producing a desired output from a given set of inputs.
This amounts to explore the space of all possible transcriptional regulation networks,
where at each step we would add/subtract new interactions or modify kinetic parameters,
to find the optimal circuit with specified system behavior. We apply our methodology to
the design of specific genetic devices having a desired switching or oscillatory behavior.
Our computational methodology will provide very valuable information for understanding
natural circuits and for designing new synthetic ones.
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Abstract

The current challenges in biology involve ever more disciplinaries in order to tackle the
complexity of living systems from different views, methods and tools. Thus it becomes
necessary to learn how to collaborate efficiently with researchers from several scien-
tific fields. In this way, the master program ”Interdisciplinary approaches to life sci-
ences” gives an innovative opportunity to students from numerous backgrounds (biology,
medicine, physics, mathematics, computer science, chemistry) to develop skills in scien-
tific curiosity and intellectual mobility. We begin with a one-week seminar during which
students write a research project within interdisciplinary groups. Then along the year,
we animate once a week a meeting with senior investigators to intensively analyse recent
publications and synthesis. Moreover each student performs three-month internships in a
laboratory, at least one theoretical and another experimental (one rotation can be replaced
by specialized courses from a different master program).

We, David and Timothée, are currently following this master program as third and
last year of our engineering school, the Institut National Agronomique Paris-Grignon
(AgroParisTech). Following are detailed our projects realized during the master.

David made his first rotation in the laboratory Variation and Abiotic Stress Tolerance
of O. Loudet at the INRA, working on an epistatic interaction within recombinant inbred
lines in Arabidopsis thaliana. He is now working in the laboratory ”Bacterial Genome
Plasticity” of D. Mazel at the Pasteur Institute, on the use of the combinatorial capacities
of integrons in synthetic biology: Integrons are a remarkable recombination platform
involved, in particular, in antibiotic multi-resistance. We propose to use integrons as a
combinatorial platform for the study of metabolic pathways. A synthetic integron will
be build and integrated into E. Coli chromosome. Expression of the integrase and genes
cassettes will be controlled through inducible promoters. Under the integrase expression,
gene cassettes bored by a library plasmid will be randomly integrated into the integron
platform. As a proof of principle, we want to show that such a synthetic integron is able
to reconstruct E. Coli tryptophan operon out of a library of numerous genes cassettes.

Timothée made his first rotation in the laboratory Bioinformatics and Genomics of H.
Quesneville at the Institut Jacques Monod, working on the de novo detection of trans-
posable elements (TEs) in Drosophilidae genomes. Such methods are required to have
detailed, quantitative inferences about the contribution of TEs to genome sequences. One
possibility is to perform a self-alignement of the genome, cluster the high scoring pairs
and derive consensus. We then propose to annotate consensus on the basis of biolog-
ical features (long terminal repeats, terminal inverted repeats, ORF coding for a trans-
posase...). Timothée is now working in the laboratory Modeling in Integrative Biology of
K. Pakdaman at the same institute, working on the impact of transposable elements on the
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robustness of gene networks. His model aims at describing the impact of TEs dynamics
on host genome, particularly the restructuration of the genomic landscape by transposition
and duplication.
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Abstract

Mammalian cells contain two endogenous oscillatory systems: the circadian pacemaker
and the control of cell division. Recent findings tell us that these systems are coupled. We
investigate the effect of this coupling on timing of cell cycle processes with the tools of
mathematical modeling.

1 Introduction

Cell cycle and circadian rhythms are conserved from cyanobacteria to humans with ro-
bust cyclic features. Recently, the molecular link between these two cyclic processes has
been discovered: the circadian clock directly regulate Wee1 kinase that inhibits entry into
mitosis. (Matsuo et al., 2003, Science 302:255-259)

1.1 Building the model

We built a model dealing with the molecular interaction of the circadian and cell cycles
of mammalian cells. We started from the comprehensive Novak & Tyson model (2004,
J. Theor. Biol. 230:563-79), extended it with the regulation of the G2/M transition, and
connected it with a simplified circadian rhythm model. The interactions of the wiring
diagram were turned into a set of differential equations by the rules of reaction kinetics
and later we added a noise term to the equations. We fitted the new parameters of the
nonlinear differential equations and analyzed the system by computational simulations.

1.2 Mode-locking

Variation in the coupling strength between these two systems shows different results.
Based on our computational analysis, we report quantized cell cycles when wee1 tran-
scription is strongly influenced by the circadian clock. This occurs from “mode-locking”
phenomena that create various periodic repetitions of cell division cycles with different
cell growth rates.

1.3 Size control

It is questionable that mammalian cells use the same size control regulation as yeasts do.
Our model suggests that critical cell mass control regulation in mammalian cells might
depend on the circadian clock: our results show that there is no critical mass control if
this coupling is weak, or the cells grow with a mass doubling time close to 24 hours, but
strong coupling that induces quantized cell cycles can introduce strong size control into
the system.
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Abstract

We have developed a tool, spectra of normalized graph Laplacian that helps to understand
the network structure with deep perception so that we could recognize the source of the
network. We have explored the information about different topological properties of a
graph carried by complete spectra of normalized graph Laplacian. And have investigated
how and why structural properties are reflected by the spectra and how spectra change
according to different networks from different sources. So we have inferred that spectral
distribution is an excellent diagnostic to categorize the different networks from differ-
ent sources. Different graph operation related to evolution of a network produce specific
eigenvalue. Construction with those operation describe certain processes of graph forma-
tion that leave characteristic traces in the spectrum. So useful plausible hypothesis about
evolutionary process could be made and it would be easy to take decision about the evolu-
tionary assumption that is more relevance for the evolution of that system by investigating
the spectra of a graph constructed from actual data.
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A taxonomy of inter-level relationships in Systems Biology for
multi-scale agent-based models
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Abstract

One of the most challenging aspects of modelling dynamic biological systems is the fact
that our understanding of these systems is often made up of explanations that cross sev-
eral different spatio-temporal scales and levels of abstraction [2], [3]. Furthermore, many
explanations are given in terms of emergence, where behaviour observed at a certain level
(e.g. macroscopic) is the output of interactions between entities at a lower level (e.g.
mesoscopic). Agent-based modelling (ABM) is a promising computational paradigm for
capturing these inter-level relationships [4], [1]. In ABM, biological entities are repre-
sented by software agents. Agents each have a set of behavioural rules, which determine
how their states change in response to their current state and the state of their local envi-
ronment. The local environment can include other agents or environmental variables that
are spatially (e.g. all agents within a certain area) and/or logically related (other agents in
the same metabolic network). Because hierarchical relationships can be easily defined in
an agent framework by agent nesting, ABM lends itself naturally to multi-level modelling.

However, for models to truly reflect biological understanding it is important that rela-
tionships between levels are defined precisely. For example, it is important to distinguish
between an equivalence relationship (e.g. A at level x = (B, C, D) at level y) and a causal
relationship (e.g. (B, C D) at level y → A at level x). It is also important to distin-
guish between entity/agent, state and event/behaviour mappings between different levels.
Here, a practical taxonomy is suggested to help clarify these distinctions for the purpose
of modelling biological systems with ABM.
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Abstract

The biological cell is a strongly compartmented environment. Though many biological
mechanisms are the fact of molecules exchanges between membrane-bounded compart-
ments, many others are based on the dynamics of the neighbouring relations within the
compartmentation. For instance, in the well-known exocytosis, compartments divide, in-
fluencing the proteins concentrations. In order to take into account this compartmentation
in a new model, we base our work on the topology-based geometric modelling (or topo-
logical modelling) and choose a sub-class of graphs, the n-dimensional generalised maps
model [1] (n-G-maps for short) as a topological model. Here, the objects are decomposed
into basic units (volumes, faces, edges, vertices, etc.) and both the geometry of those
units and the dynamics of neighbouring relations are precisely described. Abstracting
the biological compartments as volumes, we use the topological models to follow-up the
neighbouring relations of the compartments. As an n-G-map is a graph, we translate the
n-G-maps operations into graph transformation rules [2]. Thus, this formalism fits to the
rule-based languages, which are well-adapted to model biochemical reactions. Moreover,
for such a model, formal methods like model-checking can be applied in order to verify
that the model satisfies a known property of the system.

This new cellular process modelling has led us to propose a mean to discriminate
models that involved a strong geometrical and topological structure. In the secretory
pathway of the living cell, where the excretion of proteins takes place, the Golgi apparatus
is a complex organelle where the dynamics of the compartmentation is essential but not
precisely described. The microscopy techniques do not allow the biologist to capture the
entire structure of the apparatus.

The observations lead to at least two different models. On one hand, the apparatus
consists in a pile of disconnected saccules and proteins move from one to another through
a sequence of pack and unpack operations within transport vesicules. On the other hand,
a tubular structure [3] that connects the saccules allows the proteins to diffuse into the
apparatus. This state of the art knowledge allows us to define a topogical model for these
hypotheses and parameterize them according to given biological input data. Then, we
can simulate the models in order to estimate biological quantities (proteins production
rates, energy consumption, etc.) through output values of the simulations. Results should
differentiate these models and highlight the model which better captures the activities of
Golgi apparatus.
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Abstract

“In silico” simulations of biological processes must take into account several kinds of
complex molecular behaviors. Simulations of membranes, due to interactions between
phospholipid bilayers and enzymes embedded in them, are typically an example of such
complexity.

In this context we are studying the specific case of the respiratory chain, a pool of five
enzymatic complexes embedded into the inner mitochondrial membrane. We would be
able to understand the emergence of inner membrane complex macro-structures and their
impacts on the enzymatic chain reactions, especially the link between the cristae of the
inner membrane and the raft of the enzymes of the respiratory chain.

The model implemented consists of several types of molecule (phospholipids, en-
zymes,...). The 3D space is continuous but a discretized grids optimize the neighbors
research. A molecular abstraction by a single point is not capable to handle a dynamical
3D structure and its spatial orientation. On the other hand molecular dynamics at the atom
level is not suitable for the expected time scale and length scale due to the huge number
of molecular interactions to compute. Thus, we have chosed to reduce the granularity
at the atom set level or grain level (coarse graining). Interactions between molecules are
reduced to a set of forces (attractive, repulsive) due to Lennard Jones potential. Molecules
are indeed subject to two distinct forces in the limit of large distance and short distance:
an attractive force at long ranges (van der Waals force, or dispersion force) and a repulsive
force at short ranges (the result of overlapping electron orbitals, referred to as Pauli repul-
sion from Pauli exclusion principle). The Lennard-Jones potential (also referred to as the
L-J potential, 6-12 potential or, less commonly, 12-6 potential) is a simple mathematical
model that represents this behavior. We would like to compare different models of the in-
tramolecular interactions between the grains: from a rigid model with fixed grains around
the gravitiy center of the molecule to a full linear spring-like model providing molecular
flexibilty. We would also like to test different L-J potentials being able to give identical
qualitative and quantitative global results and to estimate the impact of the granularity
(the numbre of grain per molecule) on the emergent molecular organisation.

This kind of modelisation appears to be a great compromise between the ”unreachable”
complexity of molecular dynamics and the restrictive abstraction of molecule by points
(or by spheres).
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Abstract

When developping multi-agent systems (MAS) or models in the context of agent-based
simulation (ABS), the tuning of the model constitutes a crucial step of the design process.
Indeed, agent-based models are generally characterized by lots of parameters, which to-
gether determine the global dynamics of the system. Moreover, small changes made to a
single parameter sometimes lead to a radical modification of the dynamics of the whole
system. The development and the parameter setting of an agent-based model can thus
become long and tedious if we have no accurate, automatic and systematic strategy to ex-
plore this parameter space. There are several different methods to explore the parameter
space [1] [2].

That’s the development of such a strategy that we are currently working on. We first sug-
gested the use of genetic algorithms, with the aim of capturing the quality of the model in
the fitness function (typically the consistency with experimental data or with the observed
dynamics in the real system). This approach proved efficient [3] but it also raises specific
difficulties. Furthermore, il only provides a single parameter set as a solution and doesn’t
give any insights about the parameter space as a whole.

To correct this drawback of the GA approach, we are now investigating an alternative
strategy, in which the whole parameter space is explored in a parallel way. The basic
idea is to take advantage of the fact that agent-based simulations rely on multiple agents.
We propose to enable the parameterization of the different agents with different settings.
In this method, each parameter is divided into intervals and the parameter space will be
explored differentially, depending on the potential interest of the different regions of the
space. Taking inspiration from dichotomic search and from octrees, we consider that
a parameter space of dimension n (n independent parameters) is initially divided into
hypercubes of dimension n. Then, for a each individual parameter, depending on rewards
received by the different intervals, we may differentially merge or divide the intervals.

More precisely, when an agent is instanciated, the value of each parameter is chosen
randomly among the intervals that divide the definition set of the parameter. After a model
has been evaluated (by running a simulation and computing the fitness of the model), the
intervals in which the parameters of the agents have been chosen are rewarded. For each
parameter, and for each interval, the reward is proportional to the global fitness of the
model and to the number of agents that have taken their parameter’s value in the interval.

The method has been succefully applied to several test models and we are now in the
process of applying it to more complex biological examples such as the simulation of
the glycolysis and the phosphotranferase systems in Escherichia coli, or the migration of
cancer cells.
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Abstract

Biological regulatory networks (BRN) represent interactions between biological entities.
For example, genetic regulatory networks are graphs where vertices represent genes or
regulatory products e.g. RNA, proteins and edges represent interactions between them.
These interactions are further directed (regulators are distinct from targets) and signed (+
for activation, − for inhibition). Biologists often need to use the previously described
regulatory graphs as a basis for generating dynamical models using either continuous
representation or discrete ones [2]. The first approaches for studying the dynamics of
BRN are based on the system of differential equations in which each equation describes
the evolution of the concentration of a type of macro-molecules. In 1970s, René Thomas
introduced a boolean approach that qualitatively captures the dynamics and where each
entity is either on or off. This approach was then generalised to multiple values. It was
then shown that the presence of a feedback circuit in BRN has a major role in the behavior
of a system. For example to have multistationarity, the system must have a positive circuit
( each entity of the circuit has a positive influence on its own evolution) and to have
homeostasy ( the equilibrium state at which the system converges or oscillates), there
must be a negative circuit [3].

We use the approach of hybrid automata for the modeling of BRN. The formalism of
René Thomas is very suitable for the discrete modeling of BRN [2]. We further improve
this modeling approach by introducing time delays. We present two ways of using delays
for analysing a dynamical model. We are interested to find the paths and their temporal
regions and the infinite cycles in the model of BRN. We use HyTech [1], a verification tool
for linear hybrid systems, to obtain the equivalent temporal regions of paths and the initial
conditions, from where the system can enter into infinite cycles or invariance kernel.

Résumé

Les réseaux de régulation biologiques (RRB) représentent les interactions entre les ob-
jets biologiques. Par exemple, les réseaux de régulation génétiques sont des graphes
où les sommets représentent les gènes ou les produits (ARN ou protéines) et les arcs
représentent leurs interactions. Les interactions sont signées (+ pour activation, - pour
inhibition) et orientées. Les biologistes établissent des modèles moléculaires représentant
l’ensemble des relations connues pour un réseaux donné, qui correspondent aux gènes
et aux protéines régulatrices qui, en se liant avec ces gènes favorisent (effet positif) ou
empêchent (effet négatif) leur expression. Les biologistes utilisent les graphes d’interactions
pour générer le modèle dynamique en utilisant les approches continues ou discrètes [2].
Les premières approches pour étudier les dynamiques de RRB sont basées sur les systèmes
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d’équations différentielles dans lesquels chaque équation décrit l’évolution de la concen-
tration d’un type de macro-molécules. Dans les années 70, René Thomas a introduit
une approche booléenne dans laquelle chaque entité est allumée ou éteinte et qui capture
qualitativement la dynamique. Puis cette approche a été généralisée aux valeurs multi-
ples. Il a ensuite montré que la présence de circuits de rétroaction dans ces réseaux avait
une importance capitale pour le comportement du système. Par exemple pour avoir une
multistationnarité, le système doit présenter un circuit positif (chaque entité du circuit
a une influence positive sur sa propre évolution) et pour avoir une homéostasie. – état
d’équilibre vers lequel le système converge où autour duquel il oscille. – il doit présenter
un circuit négatif [3].

Nous utilisons l’approche de modélisation par automate hybride pour la modélisation
de RRB. Le formalisme de René Thomas est plus adéquat pour la modélisation discrète
de RRB [2]. Nous améliorons ce formalisme en introduisant les temps de délais. Nous
présentons deux façons d’utiliser les délais pour l’analyse du modèle dynamique. Nous
sommes intéressés pour : trouver les chemins et leurs régions temporelles dans le modèle
de RRB et aussi les propriétés caractéristiques des cycles infinis. Nous utilisons HyTech
[1], un outil pour la vérification des systèmes hybrides linaires, qui permet d’obtenir les
régions temporelles des chemins et les conditions initiales, à partir de ces conditions ini-
tiales, il existe des cycle infinis qui constituent le noyau d’invariance.
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Abstract

The knowledge of a genetic regulation graph isn’t sufficient to know the complete be-
havior of the system, because its dynamics is governed by a lot of parameters [2]. So,
it’s necessary to seek among the set of the possible parameter settings those which are
coherent with the existing data and/or the assumptions formulated on the system. This
approach is made tough because of the low number of really exploitable data, because
of the presence of noise and of the complex nature of the studied biological processes.
Current modelings of genetic regulation networks have a multitude of often unknown pa-
rameters, which result with an exponential number of models to study, and consequently
limits the developed exhausive approach in [1].

Taking into consideration of underlying biochemical processes of interactions of the
graph reduces number of possible models: for example the complex-forming can be rep-
resented by a ”process”, a transition taking both components of the complex at entry and
being able to generate it. The regulation network is thus represented by a graph having 2
types of nodes: biological entities (genes or proteins) and ”processes” whose actions are
described by logical formula. Once these informations coded in the formulas, a process
is active if its formula is evaluated with true in the current environment. When a process
p1 is included in the formula of another process p2, the process p1 is then replaced by its
formula in the process p2.

Taking into account this co-operation type information reduces the number of param-
eters. However, the presence of cycles can involve an indetermination for the evaluation
of a formula: the formula of a process p1 can contain a process p2, which contains the
process p1. So for the representation of a genetic regulation network, only cycles contain-
ing at least a biological entity are authorized. From the graph, it is then possible to build
a system of transitions reflecting system dynamics.

Finally, for each possible parameter setting, the coherence of dynamics with biologi-
cal knowledge and/or assumptions formulated is checked. For that, the knowledge and/or
the assumptions are translated into CTL temporal logical formulas. If the system of tran-
sitions does not satisfy CTL formulas (Model checking), the model is not considered any
more for the sequel of the study.

Résumé

La connaissance d’un graphe de régulation génétique n’est pas suffisante pour connaı̂tre
le comportement complet du système, car la dynamique du système est régie par tout un
ensemble de paramètres [2]. Il est donc nécessaire de rechercher parmi l’ensemble des
paramètrages possibles ceux qui sont cohèrents avec les données existantes et/ou avec les
hypothèses émises sur le système. Cette démarche est rendue difficile à cause du faible
nombre de données réellement exploitables, à la présence de bruit ainsi qu’à la nature
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complexe des processus biologiques étudiés. Les modélisations actuelles des réseaux de
régulation génétique possèdent une multitude de
paramètres souvent inconnus, ce qui conduit à un nombre exponentiel de modèles à con-
sidérer, et dès lors limite l’approche exhausive développée dans [1].

La réduction du nombre de modèles s’effectue grâce à la prise en compte des pro-
cessus biochimiques sous-jacents aux interactions du graphe: par exemple la formation
de complexe peut être représentée par un ”processus”, transition prenant en entrée les
deux composants du complexe et pouvant générer celui-ci. Le réseau de régulation est
donc représenté par un graphe ayant 2 types de nœuds : les entités biologiques (gènes
ou protéines) et les ”processus” dont l’action est décrite par une formule logique. Une
fois ces informations codées dans les formules, un processus est actif si sa formule est
évaluée à vraie dans l’environnement courant. Lorsqu’un processus p1 intervient dans la
formule d’un autre processus p2, le processus p1 est alors remplacé par sa formule dans le
processus p2.

La prise en compte de ces informations de type coopération, réduit le nombre de
paramètres. Cependant, la présence de cycles peut entraı̂ner une indétermination de lors
de lévaluation d’une formule : la formule d’un processus p1 peut contenir un processus
p2 qui lui même contient le processus p1. De ce fait, lors de la représentation d’un réseau
de régulation génétique, on ne s’autorisera que des cycles contenant au moins une en-
tité biologique. À partir de ce graphe, il est alors possible de construire un système de
transitions reflètant la dynamique du système.

Enfin, pour chacun des paramètrages possibles, on vérifie si la dynamique est cohérente
avec les connaissances biologiques et/ou hypothèses émises. Pour cela, les connaissances
et les hypothèses sont exprimées sous forme de formules temporelles CTL. Si le système
de transitions ne satisfait pas les formules CTL (Model checking), le modèle n’est plus
considéré pour la suite de l’étude.
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Abstract

The Gene Regulatory Networks (GRN) and their formal models [1] were conceived to
describe the interactions between genes inside the cell. They allow foreseeing the com-
plex evolutions of relative concentrations of several interacting genes. The work in [2],
shows an example of GRN which are modeled by using the discrete modeling approach
of R. Thomas. It has been shown that the computer tools can be used to analyse their
structure and functional properties [3]. This work shows the model-checking method to
explore a model that satisfies temporal properties. The model-checking was applied to the
analysis of the GRN after the enumerations of the model, such that for each enumeration
of the model, the properties estimated by biologists has been verified. The number of
possible enumerations for the same model of the GRN is exponential.

The use of constraint programming [4] allows to bypass this problem by generating the
enumerations of model directly validating the specified properties. Therefore, constraint
programming appears to be a promising approach for the analysis of these dynamics. The
goal of this work is to conceive and implement a combined approach (temporal logical
formulas and constraint programming) to select enumerations of a model for GRN. In our
context, the temporal properties are expressed in the form of constraints on our model
that will represent a set of solutions. The transformation of a temporal logic formula
to constraints on model is done by a mixed approach of model-checking and constraint
programming.

Résumé

Les Réseaux de Régulation Biologique (RRB) et les modèles qui les représentent formelle-
ment [1] ont été conçus pour décrire les interactions entre gènes à l’intérieur de la cellule.
Ils permettent de prévoir les évolutions complexes de concentrations relatives de plusieurs
gènes interagissant. Des exemples [2] ont été mis à jour par des biologistes, et des travaux
– utilisant la modélisation discrète de R. Thomas – sont menés pour traiter informatique-
ment ces réseaux afin de détecter des propriétés structurelles ou fonctionnelles [3]. Ces
travaux utilisent la méthode de model-checking qui consiste à explorer un modèle fini par
confrontation d’une propriété temporelle. Le model-checking a été appliqué à l’analyse
des RRB par énumération des modèles, chacun donnant lieu à la vérification d’une pro-
priété jugée pertinente par les biologistes. Mais les RRB étant des systèmes complexes,
le nombre d’énumérations possibles pour une même modélisation est exponentiel.

L’utilisation de la programmation par contraintes [4] permet de pallier ce problème en
générant directement les modèles validant les propriétés spécifiées. La programmation
par contraintes s’avère donc être une approche prometteuse pour l’analyse de ces dy-
namiques. Le but de ce travail est de concevoir et mettre en œuvre une approche com-
binée (formules logiques temporelles et programmation par contraintes) permettant de
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sélectionner des modèles pour des RRB. Dans notre contexte, les propriétés temporelles
sont exprimées sous forme de contraintes sur notre modélisation et définissent un en-
semble de solutions. La transformation d’une formule en logique temporelle à celle de
contraintes sur la modélisation se fait par une méthode mixte de model-checking et de
programmation par contraintes.
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Abstract

Nowadays, the Virtual Reality makes feasible the simulation and the (in virtuo) experience
of complex phenomena, to complete the in vivo or the in vitro investigations. We apply
this alternative method to different fields of biology : cutaneous neurobiology, vascular
physiology, hematology, immunology and oncology. Here, we present the definition of
a generic modelling framework and its implementation for the study of physiological
systems.

In the first place, the generic model is based on the reification of interactions into
autonous active objects. Thereby, the biological models can be organized in a layout of
autonomous systems. Therefore, the generic model infers two conceptions of autonomy:
the first one is used to design virtual reality systems and the second one is oriented towards
biological modelling.

The generic model is specialized into several modelling tools for biology. Thereafter,
the library composed by the generic models and the tools allows the building of applica-
tions.

Résumé

L’usage de la réalité virtuelle (RV) permet, aujourd’hui la simulation et l’expérimence
(in virtuo) de phénomènes complexes, pour compléter la recherche in vivo ou in vitro.
Nous appliquons cette méthode alternative à différents champs de la biologie : neuro-
biologie cutanée, physiologie vasculaire, hematologie, immunologie et oncologie. Nous
présentons ici, un cadre générique de modélisation et d’implémentation adapté à l’étude
des systèmes physiologiques.

En premier lieu, le modèle générique proposé s’appuie sur le principe de la réification
des interactions en objets actifs autonomes. Ensuite, il permet l’organisation des modèles
biologiques en un agencement de systèmes autonomes. Il rassemble alors deux concep-
tions de l’autonomie : l’une est destinée à concevoir les systèmes de réalité virtuelle et
l’autre a pour objet la modélisation en biologie.

Le modèle générique est dérivé en un certain nombre d’outils de modélisation pour la
biologique. La bibliothèque composée du modèle générique et des outils de modélisation
permet alors de réaliser différentes applications.
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Abstract

The genomic sequences are initially known under their linear form. However, it have also
a three- dimensional structure which can be useful for genomes analysis. This 3D rep-
resentation of the structure brings a new point of view for the sequences analysis. There
are few studies about DNA geometrical properties, especially for large DNA segments.
It is precisely on the latter point that synergy between data processing specialists and
biologists can be extremely beneficial, exploiting multidisciplinarity. ADN-Viewer1 is a
complete software developed to explore DNA 3D modeling. It is based on a local con-
formation model. Our objective is to confront the results predicted by this software with
real data (images) resulting from biological experiments. Thus, the deal is to try refin-
ing the 3D model by pairing real and predicted images. The molecules analysis under
Atomic Force Microscopy (AFM) will enable us to make a structural analysis of various
interesting genome areas. These images will be compared, paired and readjusted with the
predicted images by using analysis and image processing techniques. It would be relevant
to quantify the prediction error and to correct the three-dimensional conformation rules
by returning to the model.

Keywords

DNA space structure, Microscopic images, Increased reality, Trajectory extraction, Pat-
tern matching, Shape description.
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D’ALCHÉ-BUC Florence florence.dalche@ibisc.fr
DELAPLACE Franck Franck.Delaplace@ibisc.fr
DESMEULLES Gireg desmeulles@enib.fr
ESSABBAH Mouna mouna.essabbah@ibisc.fr
FLUTRE Timothée timflutre@gmail.com
FOSTER james foster@uidaho.edu
FROMENTIN Jonathan jonathan.fromentin@irccyn.ec-nantes.fr
GRONDIN Yohann jg69@le.ac.uk
HAEGEMAN Bart bart.haegeman@gmail.com
HAREL-BELLAN Annick ahbellan@vjf.cnrs.fr
HEAMS Thomas thomas.heams@agroparistech.fr
HENEGAR Corneliu corneliu@henegar.info
JARAMILLO Alfonso Alfonso.Jaramillo@polytechnique.fr
JORG Thomas thomas.jorg@gmail.com
JUNIER Ivan i.junier@gmail.com
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