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"But biotechnology will ultimately and usefully be better served by following the spirit 
of Eddington, by attempting to provide enough time and intellectual space for those who 

want to invest themselves in exploration of levels beyond the genome independently of 
any quick promises for still quicker solutions to extremely complex problems." 

Strohman RC (1997) Nature Biotech 15:199 
 

FOREWORD 
 

What are the salient features of the new scientific context within which biological modelling 
and simulation will evolve from now on ? The global project of high-throughput biology may be 
summarized as follows. After genome sequencing comes the annotation by ‘classical’ 
bioinformatics means. It then becomes important to interpret the annotations, to understand the 
interactions between biological functions, to predict the outcome of perturbations, while 
incorporating the results from post-genomics studies (of course, sequencing and annotation do not 
stop when simulation comes into the picture). At that stage, a tight interplay between model, 
simulation and bench experimentation is crucial. Taking on this challenge therefore requires 
specialists from across the sciences to learn each other’s language so as to collaborate effectively on 
defined projects.  
 
Just such a multi-disciplinary group of scientists has been meeting regularly at Genopole, a leading 
centre for genomics in France. This, the Epigenomics group, is divided into five subgroups. The 
consensus subgroup has as one of its present objectives the interpretation of transcriptome data from 
micro-arrays obtained, for example, from the exposure of cells to low level pollutants or from cells 
as they progress through the cell cycle. The membranes and intracellular structures subgroup 
focuses on membrane deformations involved in the functioning of the Golgi, in cell division or in 
attachment to surfaces, on the dynamics of the cytoskeleton, and on the dynamics of 
hyperstructures (which are extended, multi-molecule assemblies that serve a particular function). 
The organisation subgroup has adopted a systems biology approach with the application and 
development of new programming languages to describe biological systems which it has been 
applying to problems in the growth and differentiation of plants and in the structure and functioning 
of mitochondria. The observability subgroup addresses the question of which models are coherent 
and how can they best be tested by applying a formal system, originally used for testing computer 
languages, to an epigenetic model for mucus production by Pseudomonas aeruginosa, the 
bacterium involved in cystic fibrosis. The G cube (Genomic Graphonomy Group) subgroup works 
on networks of molecular interactions. Questions pertaining to the topology, dynamics and 
partitioning of molecular networks, and statistical inference of networks from post-genomic data, 
are discussed on a regular basis. 
 
The work of the first four subgroups underpinned the first and second conferences organised in 
Autrans in 2002, and in Dieppe in 2003. The work of all workgroups underpinned the conference in 
Évry which, as reported here, brought together over a hundred participants, biologists, physical 
chemists, physicists, statisticians, mathematicians and computer scientists and gave leading 
specialists the opportunity to address an audience of doctoral and post-doctoral students as well as 
colleagues from other disciplines. 
 
This book gathers overviews of the talks, discussions and roundtables, original articles contributed 
by speakers, and abstracts from attendees. We thank the sponsors of this seminar for making it 
possible for all the participants to share their enthusiasm and ideas in such a constructive way. 
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"Modeling and simulating biological processes in the genomic era": 
An account of a multidisciplinary thematic school  

held in Évry (France) in April 2004. 
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Introduction 
 
The global project of high-throughput biology may be summarized as follows. After genome 
sequencing comes the annotation using the techniques of ‘classical’ bioinformatics. It then becomes 
important to interpret the annotations, to understand the interactions between biological functions, 
and to predict the outcome of perturbations, while incorporating the results from post-genomics 
studies. This stage can only be achieved through modeling and simulation of biological processes 
and should be tightly coupled to bench experimentation. The recent shift in biology, with data 
accumulating much more rapidly than before at the molecular level, necessarily makes this 
scientific development a long-term trend. 
 

Two dozen researchers with various scientific backgrounds started in January 2001 to face 
these challenges in a stimulating year-round workshop that was initiated and supported by 
genopole® in Évry, France. Some of these scientists were initially more familiar with the field of 
modeling / simulation, while others were involved in various aspects of (post-) genomics. After 14 
months of work, they held in Autrans a small multidisciplinary seminar which brought together 60 
participants. Since then, the number of researchers directly involved in workgroups has 
approximately doubled, and the small seminar has become an oversubscribed thematic school. The 
estimated size of this rapidly-growing community presently amounts to about 250 people in France. 
 

This five-day thematic school comprised lecture sessions, evening discussions around images, 
and afternoon workshops on specific topics. The five lecture sessions dealt with the epistemology of 

                                                 
* Correspondence should be addressed to F. Képès, Epigenomics Project / genopole®, Évry, France 
(Francois.Kepes@genopole.cnrs.fr). 
 



modeling, simulation and emergent properties, formal models, macromolecular interaction 
networks, organization and morphogenesis. Each lecture started with a didactic and wide 
introduction and ended with a research-oriented part. The evening sessions were opportunities to 
interactively discuss a topic around images from real-world or virtual biology. One afternoon 
workshop was focused on function-dependent structures (summarized below) and another one on 
the integration and visualization of genomic data in the framework of human-computer interaction. 
Another workshop that spread over two afternoons compared various modeling paradigms applied 
to the same biological object. Poster sessions allowed ample discussion and some posters were 
highlighted by a short talk. 
 

The following is an attempt to capture some of the evanescent spirit of this school, and we 
apologize for any involuntary mis- or under-representation of particular aspects. 

 
 
Lecture sessions 
 
Epistemology of modeling: interdiscipline or indiscipline ? 
 

Pierre Sonigo (Institut Cochin, Paris) took on the central tenet of neo-Darwinism that the DNA 
in the form of a genetic program fully commands cells and organisms and that natural selection acts 
directly on this program.  He used the analogy of the Robot, where there is a master program, and 
the Forest, where there is not, to highlight two different interpretations of biological systems.  He 
pointed out serious problems with the Robot view.  For example, the assumption that selection 
could act just at the level of the gene is hard to reconcile with the gulf of complexity between the 
gene and selectable phenotypes.  In a forest, selection operates at every level and he argued in 
favour of the Forest view where molecules are in competition with other molecules, cells with other 
cells, organisms with other organisms etc. The global structure of the forest emerges from the 
interactions between individuals obeying local rules.  And in the Forest view of the cell emerging 
from interactions between individual constituents, DNA loses its quasi-divine status.  The Forest 
view has powerful implications for medicine and he illustrated these with reference to 
autoimmunity, cancer and differentiation and gave the example of gene therapy, where the 
introduction of a gene into a cell can be likened to the introduction of a new species into a particular 
ecosystem. 
 

A reductionist separates his world into system and environment and in his talk Marc van 
Regenmortel (CNRS / Université de Strasbourg) returned to the theme of the nature of an individual 
object.  Like Sonigo, van Regenmortel insisted on the importance of the context. Genes only 
provide a function in a context.  We cannot predict function de novo from sequence. We are 
accustomed to a causality of the form A causes B but the behaviour of a biological system must be 
explained not in a single cause but in hundreds of causes.  Hence the paradigm of cause leads to 
effect is not very useful for understanding cells.  Instead, the function of a constituent with respect 
to its context becomes important where function is about contributing to the survival or 
reproduction of a biological system.  The same protein structure can be associated with many 
different functions, so that there is no such thing like a "structure-function relationship". This latter 
statement from a person who has a strong personal experience in structural biology, was certainly 
striking. Van Regenmortel gave the example of a “specific” binding site on an immunoglobulin in 
which a binding site is a relational entity and can be considered as an emergent feature.  

 
These two talks were followed by a debate on the above topics, between both speakers and the 

participants. 



   
 
Simulation and emergent properties in biology (from microscopic to macroscopic) 
 

Three ways of approaching and studying emergent processes have been confronted during this 
session. 
 

Jean-Christophe Leloup, in work conducted with Albert Goldbeter (Université libre de 
Bruxelles), showed how the oscillatory circadian rhythm in flies and mammals emerge from a 
somewhat abstract description of genetic interactions. In Drosophila, two genes (PER and TIM) are 
involved in a negative feedback circuit : the encoded proteins form a complex that represses their 
transcription. This circuit underlies the circadian clock oscillator and is also found in mammals, 
where a second pair of genes with a similar behavior was shown to constitute a second oscillator, 
intertwined with the first one. These autonomous oscillations are nevertheless coupled to the light 
cycle of 24 hours. Modeling makes use of a differential approach, where variables correspond to 
genes and their products, phosphorylated or not. There are many more equations that describe the 
mammalian clock than the fly one, but the problems are similar. Most of the parameters have not 
been determined, and must be chosen so that the model  meets  biological data such as the 24h 
circadian rhythm, or diverse behavioural patterns encountered in wild type (the role of light), 
mutant flies or human pathologies of sleep. In the case of the more complicated mammalian 
circadian clock, where two negative feedback loops are intertwined, the theoretical model allowed 
to predict the role of each oscillator, and thus to address the dynamical bases of the emergence of 
oscillation as well as of the physiological disorders related to a perturbation of the clock.  
 

Luc Steels (Sony Computer Science Laboratory, Paris & Université libre de Bruxelles) 
addressed the question of self-organization and language evolution. The main hypothesis is that 
emergent processes are at the root of language evolution. This is in contrast with Chomski’s theory 
of the “ innate structures “. Linguistic arguments in favour of the emergent nature of language 
evolution are rooted in the study of this evolution itself, through language comparison and 
assessment of actual speech situations, where communication relies on a common (implicit) 
knowledge of part of the situation. The relationship between words and meaning is therefore very 
indirect, including several layers of categorization. The implicit plays a major role, each language 
differing from the others as to what is implicit (hence explicit). Starting from linguistic processes 
that give a hint of emergence, Steels uses multi-agent systems and learning robots endowed with a 
formal communication protocol to study the emergence of linguistic behaviors similar to real ones. 
In a community of 2 to 400 agents, what instruction must be given  to each agent to obtain an 
evolution of the communication and a consistency of the language between all the agents? This has 
been tested for the emergence of sounds (one sound can spread into the community) or for a real 
communication where a common ground of knowledge appears during the experiment. One of the 
open questions is : what is general enough in these models that might also apply to genetics? 
 

Eric Bonabeau (Icosystem Corp., Cambridge, Mass) discussed the modeling of self-organized 
systems from the bottom up. The emergent process under scrutiny was organization in social 
insects, where space must be introduced. Self-organizing processes are complex with many 
individuals involved, and with a global behavior  that is generally non predictable, and may even be 
anti-intuitive. Thus, the only way to model it is to use an agent based modeling, starting from the 
"bottom" interactions between agents, to obtain, and therefore understand, the global, emergent, 
"up" behaviour. 2-D simulations of ant behavior can be achieved with the very simple rule 
according to which each ant is attracted by the pheromone released by other ants. Some elementary 
physical rules, such as the drawback of protruding legs of dead bodies may be necessary for proper 



cemetery formations. In every instance, the presence of positive and negative feedback circuits is 
crucial. Simple 3-D agent-based modeling illuminated how coordination may emerge in the 
collective construction of wasp nests. In sum, the reverse approach, that consists of finding the 
elementary rules that correspond to a given structure, is quite appealing, but most difficult. This 
amounts to searching a very large space of rules, with choice criteria that are difficult to formalize. 
Genetic algorithms may be used, but the choice is most often intuitive and subjective.  
 
 
Formal models for biological modeling 
 

Gordon Plotkin (University of Edinburgh) gave the first talk on "biochemical CCS", a 
formalism derived from process algebras, for the modeling of biochemical networks of interactions 
(metabolic pathway, genetic regulatory network, signaling, etc). The fundamental idea is to see the 
biological processes like calculations and thus, as that appeared fertile in data processing, to study 
their naming, their composition, their modularity... under an algebraic point of view. In this 
approach, the elementary processes correspond to transformations (chemical or enzymatic 
reactions...), various binding processes (formation and dissociation of complexes) and 
translocations (diffusion, transport...). These elementary processes can be formalized in several 
manners, for example by a transition in a Petri net or by a differential equation. The latter approach 
is a traditional one, but Gordon Plotkin showed on several examples how one can model these 
elementary processes by a Petri net (in this case, one cannot express the kinetics of the chemical 
reactions). 
 

François Fages (INRIA, Rocquencourt) presented the BioCham project. BioCham 
(Biochemical abstract machine) is a specification language using rules to give a precise semantics to 
the biological network. BioCham appears as an environment integrating a rule based language 
dedicated to the specification of the molecules and their interactions, an interrogation language 
based on CTL (a temporal logic making it possible to simply express a large variety of biological 
questions about the behavior of the system) and an interface to NuSMV, a tool for model-checking 
making it possible to answer CTL requests. The syntax of BioCham makes it possible to define very 
simply molecules, proteins, their complexation and to annotate them with their functional field (or 
their site of connection). This syntax also corresponds to algebraic operators. The definition of 
various reactions, transformations, associations/dissociations, complexations etc., are represented 
by rules inspired by transition systems (an approach largely used to formalize the activity of a set of 
parallel processes in concurent and distributed systems). The proposed syntax was validated by the 
development of large examples such as the MAPK signaling pathway and the cell cycle.  

 
Vincent Danos (PPS, CNRS / Université Paris 7) gave a talk on biological combinatorics. After 

reminding us that a living being requires sugar to process information, and information to process 
sugar, Danos went on to ask three "big" questions. Can we understand this organization ? Which 
problems is this cellular organization solving ? What are the underlying computational principles ? 
Reverse and forward engineering of biological systems need a syntax. Danos discussed syntaxes 
addressing specific features of cellular computing: "Binding", a calculus for protein-protein and 
protein-DNA interactions, and "Enfolding", a calculus for membrane fusion, exocytosis and 
endocytosis. He illustrated "Binding" with the formalization of the lactose operon, and "Enfolding" 
with membrane traffic. The syntax was validated on the relatively large case of viral invasion.  
 

Christoph Teuscher (EPFL, Lausanne & UCSD, La Jolla) presented examples of computer 
architectures inspired by biological principles. These new hardware architectures are justified by the 
needs of new applications, by technological progress, and by new approaches to computation that 



are largely inspired by biological mechanisms. The first architecture exhibited properties of self-
repair and robustness. It comprised three levels: the molecule (an autonomous module of 
computation), the cell (a set of interacting molecules) and the organ (a set of interacting cells). The 
program corresponded to an artificial genome stored identically into each cell. The position of the 
cell in the machine determined the part of the program (genes) which will be carried out. A 
prototype was built: BioWall, a machine of 2400 molecules organized into a grid-like cellular 
automaton. The other types of architecture that were presented were POEtic machines, i.e. inspired 
by Phylogenesis, Ontogenesis and Epigenesis mechanisms. The objective was to develop a 
hardware architecture being able to evolve, grow, self-repair, adapt and replicate itself. Finally, the 
Amorphous Blending Membrane project is an attempt at implementing the notion of blending, a 
fundamental operation for knowledge representation.    
 
   
Macromolecular networks and statistical inference 
 

Xavier Gidrol (SGF/CEA/Évry) studies genetic networks, with the goal of understanding their 
dynamics in order to predict stable phenotypes (attractors) and predict in which phenotype the cell 
will end up. In particular, Gidrol discussed the case of protein Id2, whose overexpression induces 
cell proliferation. The goal here is to reconstruct the Id2 network in order to acquire knowledge 
about the gene regulatory network in the neighbourhood of Id2. After reminding us of P. Sorger's 
aphorism "Good experimentation is essential to realize the systems biology vision", he proposed 
several paths to get closer to an exhaustive, high-resolution view of the system. Some of these paths 
aimed at enlarging the Id2 transcriptional network, both upstream and downstream (using cells-on-
chips for instance). Some others addressed the validation issue. This talk was followed by a 
particularly long and exciting general discussion. 
 

The talk of Florence d’Alché-Buc (Programme d'Épigénomique, Évry & Université Paris 6) 
aimed at showing the benefits of a Machine Learning approach for modeling gene regulatory 
networks. The development of microarray technology makes it possible to compare simultaneously 
the expression of thousands of genes of a given organism (or tissue) in two conditions and offers 
new valuable pieces of information to construct gene regulatory networks. D’Alché-Buc introduced 
the task of constructing this network as a search of parameters for a model of gene interactions to be 
learned from experimental data. Then, she provided a survey of the problems and concepts of 
statistical learning. The central point was the formulation of the objective of the learning task as an 
optimization problem. Indeed, once the hypotheses space has been built, learning is tantamount to 
choosing the best hypothesis in the space. Is it justified to seek an optimal solution ? Not only is this 
task often unfeasible, but it is sometimes undesirable too. In the second part of her talk, D’Alché-
Buc introduced the graphical models for reverse modeling. First, she presented the work by Segal et 
al. who introduce module networks, a probabilistic method for identifying regulatory modules from 
microarray data. Then she showed how dynamic Bayesian networks used by Perrin et al. for gene 
networks inference were especially well suited to tackle the stochastic nature of gene regulation and 
gene expression measurement. D’Alché-Buc concluded her talk by listing a number of perspectives, 
including the elaboration of a set of benchmark problems. 
 

Wolfgang Banzhaf (Memorial University of Newfoundland, Canada) reminded us of the 
ubiquity of networks. To understand them, we should investigate their similarities and differences, 
the mechanisms for their generation and the interrelations between their structure and dynamics. 
Few steps have been made thanks to global characterization (scale free / small world topology) or 
local characterization (network motifs). Networks remain our best bet to catch emergent 
phenomena. Banzhaf then presented a method to compare natural regulatory networks from E. coli 



and S. cerevisiae, and artificial ones. The artificial regulatory network comprises 32 genes and is 
generated by a neutralist duplication and divergence process. Banzhaf extracted structural elements 
of the networks (86 elementary 3-node sub-graphs) which represent basic elements of complex 
networks. Very few motifs occurred with significantly higher probability than in random networks. 
There was a clear relation between the natural distribution of motifs and the distribution in artificial 
networks generated by a duplication and divergence process. No evolutionary selection pressure 
had been applied to the artificial system, though. Thus, it can be stated that the distribution outcome 
is more a reflection of the mechanism of its generation than a result of evolutionary pressures. 
 

Alessandro Vespignani (CNRS / Université Paris-Sud, Centre d'Orsay) introduced networks as 
a system that allows its abstract/mathematical representation as a graph. He argued on the ubiquity 
and variety of networks in physics, cybernetics, sociology, biology, etc. These networks are 
interconnected to form complex networks. They could form layers or have interdependencies.  
Vespignani provided an introduction to the general properties and possible generative mechanisms 
of such complex networks. By contrast to a complex system, a complicated system was described as 
a set of many elements assembled following a predefined blueprint imposed from outside. 
Consequently, the system shows expected properties and performs predefined tasks. On the other 
hand, complex systems which are composed of many interacting units show dynamical evolution 
and the capacity of self-organization. The outcome is a non-trivial architecture, unexpected 
emergent properties and cooperative phenomena. This was illustrated with protein-protein 
interaction networks (PIN) obtained from the two-hybrid technique. Finally, Vespignani proposed 
to use the global information provided by the PIN to functionally annotate proteins. This approach 
was based on maximizing unclassified interacting proteins with shared functionality and 
minimizing interacting classified proteins with different functionalities. It may serve as a general 
method to obtain statistical prediction of protein function from their interactions with reliability 
around 80% for highly interacting proteins. 
 
 
Organization and morphogenesis 
 

James Tabony (RDC/DSV/CEA, Grenoble) addressed the physicochemical processes 
underlying in vitro microtubule self-organization. His experimental work was interpreted in the 
framework of dissipative systems, for which theoreticians such as I. Prigogine have predicted that 
macroscopic self-organization can arise from a non-linear coupling of reactive processes with 
molecular diffusion. Tabony found that the in vitro formation of microtubules from tubulin shows 
this type of behavior. These preparations spontaneously self-organize by way of reaction and 
diffusion, and the morphology that develops depends upon the presence of a weak external factor, 
such as gravity or a magnetic field, at a critical bifurcation time early in the process. Thus, the 
presence of an external symmetry-breaking factor, such as gravity, can determine the morphology 
that subsequently develops. Once assembled from tubulin, microtubules grow and shrink from 
opposite ends. The shrinking end of a microtubule leaves behind itself a chemical trail of high 
tubulin concentration. Neighboring microtubules preferentially grow into these regions, thus 
progressively leading to self-organization in a manner that shows analogies with the way that ants 
self-organize. Numerical simulations of the reaction-diffusion process based on the chemical 
dynamics of a population of microtubules successfully predict the main features of the experimental 
behavior. Evidence is presented that processes of this type occur in vivo during embryogenesis of 
Drosophila egg.  
 

In his talk, Vincent Hakim (LPS, ENS, Paris) examined the synchronization properties of 
neuron networks. He investigated how the instantaneous firing rate of a neuron can be modulated by 



a noisy input. The results show that the firing-rate modulation is shaped by the subthreshold 
resonance. For weak noise, the firing-rate modulation shows a minimum near the preferred 
subthreshold frequency. For higher noise, such as that prevailing in vivo, the firing-rate modulation 
peaks near the preferred subthreshold frequency. Using numerical simulations of conductance-
based neurons and analytical calculations of one-variable nonlinear integrate-and-fire neurons, the 
dependence of this synchronization on the modulated noise has been analyzed. These results were 
discussed in connection with intrinsic neuron properties, including the characteristics of fast sodium 
channel that could determine the speed with which neurons respond to noisy inputs. 
 
 
Workshops 

One of the afternoon sessions was convened by Michel Thellier (Académie des Sciences & 
Université de Rouen) and Patrick Amar (Programme d'Épigénomique, Évry & Université Paris-
Sud). Thellier introduced the notion of function-dependent structures (FDS): dynamical structures 
that are created and maintained due to their functioning. To illustrate this concept, he used the 
example of the self assembly of three enzymes in a metabolic pathway. Using partial differential 
equations, he demonstrated that when the affinities between the successive enzymes are large 
enough, assemblies appear. Under specific conditions, the system can exhibit some regulatory 
behaviors such as sigmoidicity. He showed another kind of FDS which inhibits the overall process 
when the last product is not released by sequestering the enzymes. Amar presented a simulation 
program, Hsim, designed to study the dynamics, and in particular the assembly and disassembly of 
large numbers of molecules in a virtual cell. He described the program as a stochastic automaton 
coupled to a modeling language. The language allows the definition of molecular types, the 
description of interaction rules between pairs of neighboring molecules of given types, and the 
description of an initial state of the system. The simulator was demonstrated on an a metabolic 
pathway with a chain of five enzymes that progressively self-assemble and efficiently transform the 
initial substrate to the final product, and then dissociate when all the initial substrate has been 
transformed. He went on to demonstrate the growth of actin filaments in the virtual cell, where 
filaments tend to align along the cell axis, an emergent feature. 
 
 
Short talks and posters 
 

Some posters were highlighted by a short talk.  
 

S. Randall Thomas (CHU Necker, Paris) illustrated the application and the usefulness of 
mathematical modeling for physiologists. Actually, the complexity of the interactions among 
coupled flows at the level of kidney organisation and the very inaccessibility of the inner structure, 
prevent in vivo intervention and requires theoretical analysis to quantitatively formulate working 
hypothesis and predict new experiments. He described tools accessible on the web that provide a 
hierarchical collection of models « Big Kidney » at different scales and a quantitative database 
« QKDB ». The database is an open source built for and with the participation of the kidney 
modeling community. These tools are being developed using generic approaches, with a view 
toward easy adaptation to other fields. 

Jacques-Deric Rouault (NAMC, Université Paris-Sud, Centre d'Orsay) showed how DS2 
models (Dynamical Systems evolving in a Dynamical Structure) can be used to predict patterns 
appearing on Drosophila. He demonstrated his approach with a model using a few rectangular cells 
and a cell multiplication procedure on a 2-D space.  



 
Pierre Mazière (CNRS / Faculté de Pharmacie, Montpellier) described a new integrative 

language, called BioΨ, developed to describe biological functions with respect to five parameters: 
schedule, specification, localization, biochemical state and kinetics. Four scales of observation were 
chosen, functional motifs, functional domains, molecular entities and functional modules. The first 
level is built on about a hundred Basic Elements of Action whose combinations are sufficient to 
account for the ca. 3000 Enzyme Code descriptors. The application of the method was illustrated by 
the description of the Insulin receptor system.  
 

Cecilia Garmendia-Torres (IGM, Université Paris-Sud, Centre d'Orsay) showed how Msn2, a 
transcriptional activator which is involved in stress response in S. cerevisiae, shuttles periodically 
between the cytoplasm and the nucleus. She presented a model in which nuclear Msn2, after a 
delay, triggers the process which leads to its exit from the nucleus. She has determined that the part 
of Msn2 which confers the periodic migration contains a nuclear exit signal and a nuclear 
localization signal. The latter, once grafted onto a reporter protein bearing a stress-independent 
nuclear exit signal, is sufficient to trigger its oscillations. 

Paul François (LPS, ENS, Paris) is interested in modular regulatory networks. He described an 
evolutionary in silicio procedure that creates small protein-protein and protein-DNA networks 
performing basic tasks such as toggle switches or oscillators. Selection made use of genetic 
algorithms. One of the interesting outcome was the observation that protein-protein interactions 
were often dominating protein-DNA interactions in the solutions achieved by the artificial 
evolution. 
 
 
Conclusion 
 

Among the messages that we took away, a couple were particularly strong. Firstly, post-
genomic biology will be dominated by multi-disciplinary teams formed both from specialists and 
from a new breed of interdisciplinary students. Breeding should be facilitated by schools such as the 
present one. Secondly, the gap between biological and physical approaches to complex systems is 
being bridged. New concepts are being generated and we are facing exciting research challenges. 
Thirdly, the dialogue between simulation and bench experimentation should be strongly emphasized 
in the near future. More than ever before, the goal is now to foster collaborative interactions 
towards building together a better understanding of life. 
 
 



Poem 
 
La log vraisemblance pénalisée ou comment se débarrasser des biologistes… 
 
On a des tigres qui peuvent avaler plusieurs personnes.  
On fait appel aux informaticiens pour trouver quel est le tigre qui doit être pénalisé.  
Ces tigres sont discrets, et se cachent souvent dans les modèles de Markov  
 c'est pour cela qu'on les appelle « tigres Markov cachés ».  
On utilise le modèle graphique probabiliste  
 c’est  à dire qu’on dessine un animal qui est probablement un tigre.  
Souvent il se prend les pieds dans un réseau bayésien car on prononce "x1, x2, x3"   
 (terme  simple et magique  très utilisé par les fées locales qu’on appelle aussi   
 inféesformatiques et qui essaient par ce moyen de rendre l’invraisemblable probable …)  
 
On trouve grâce au graphe (ou au dessin)  
quel était le tigre à l’origine du carnage.  
On peut réitérer autant de fois que nécessaire …  
 
Il faut bien entendu vérifier l’hypothèse.  
 
Pour cela on envoie le biologiste vérifier et comme il se fait bouffer,  
on conclut que le modèle était correct  
ou que notre hypothèse était log-vraisemblable* !  
* clairement la pénalité est pour le biologiste… 
 
Georgia Barlovatz 
 
 
Further reading 
 

Some of the original papers presented at the Dieppe school in 2003 and at the Évry school in 
2004 have been peer-reviewed and published in the June 2004 issue of the Journal of Biological 
Physics and Chemistry. The present Evry seminar book contains the meeting abstracts, papers and 
courses that relate to the above topics, and detailed accounts of the thematic school. Just like the 
Autrans and Dieppe proceedings books, it is available from Genopole (seminaire.recherche@ 
genopole.com). 
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CONFERENCE SCHEDULE 
 
 
 
 
 
MONDAY MARCH 29TH

  GENERAL INTRODUCTION - INTERDISCIPLINE OR INDISCIPLINE ?  
 

8:30 - 10:30 Registration 
10:30 - 12:00 The robot and the forest 

   Pierre Sonigo  
12:00 - 13:30 Lunch 
13:30 - 15:30 Round table discussion about epistemology of modelling 

   Lead by : Pierre Sonigo and Marc Van Regenmortel 
15:30 - 17:00 Emergence in biology 

   Marc Van Regenmortel  
17:30 - 18:00 Short talks  

   Chairmen : Marie Dutreix, Patrick Amar 
18:30 - 19:00 Poster session 
19:00 - 21:00 Dinner 
21:00 - 22:00 Introduction to experimental approaches of the animal morphogenesis  

   Nadine Peyrieras  
 
 
 
 
TUESDAY MARCH 30TH

  SIMULATION AND EMERGENT PROPRERTIES IN BIOLOGY  
              (FROM MICROSCOPIC TO MACROSCOPIC) 
 

8:30 - 10:00 Modelling the circadian clock in Drosophila and mammals 
   Jean-Christophe Leloup – Albert Goldbeter 

10:30 - 12:00 Self-organisation and language evolution 
   Luc Steels 

12:00 - 13:30 Lunch 
13:30 - 15:30 Views on the choice of simulation tools, compared in the context of the 

same model: the bacteriophage Lambda (1) 
   Speakers : Denis Mestivier, Pierre-Yves Boëlle 

Chairmen: Pascal  Ballet, Abdallah  Zermirline 
15:30 - 17:00 Modelling self-organising systems from the bottom up 

   Eric Bonabeau 
17:30 - 18:00 Short talks 

   Chairmen : Marie Dutreix, Patrick Amar 
18:30 - 18:00 Poster session 
19:00 - 21:00 Dinner  
21:00 - 22:00 How the cell converts energy 

Giovanni Cappello 
 



 

WEDNESDAY MARCH 31ST FORMAL MODELS  FOR BIOLOGICAL MODELLING 
 

8:30 - 10:00 Modelling of biochemical networks of interactions  
   Gordon Plotkin  

10:30 - 12:00 The Combinatorics of Membrane Interactions 
   Vincent Danos 

12:00 - 13:30 Lunch 
13:30 - 15:30 Views on the choice of simulation tools, compared in the context of the 

same model: the bacteriophage Lambda (2) 
   Speakers: Pascal  Ballet, Abdallah  Zermirline, Adrien Richard  

Chairmen: Denis Mestivier, Kashayar Pakdaman 
15:30 - 17:00 The biochemical abstract machine BIOCHAM 

   François Fages 
17:30 - 19:00 Biologically-Inspired Cellular Computing Machines 

   Christof Teuscher   
19:00 - 21:00 Dinner 
21:00 - 22:00 Models for axes formation in higher organisms 
   Hans Meinhardt 
 
 
THURSDAY, APRIL 1ST MACROMOLECULAR NETWORKS (STATISTICAL INFERENCE) 
 

8:30 - 10:00 Network motifs in natural and artificial transcriptional regulatory networks  
   Wolfgang Banzhaf 

10:30 - 12:00 The Topology of Protein Interaction Networks 
   Alessandro Vespignani 

12:00 - 13:30 Lunch 
13:30 - 15:30 Group 1 : Virtual reality immersion into the 3-D conformation of DNA 

Presenter : Rachid Gherbi 
Group 2 : Structures depending of their functioning 
Presenter : Michel Thellier 

15:30 - 17:00 Technological developments for genetic network inference  
   Xavier Gidrol  

17:30 - 19:00 Machine learning for gene networks modeling 
   Florence d’Alché-Buc 

19:00 - 19:45 Cocktail party 
19:45 - 21:00 Concert 
21:00   Buffet 

 
 
FRIDAY, APRIL 2ND

  ORGANIZATION AND MORPHOGENESIS 
 

8:30 - 10:00 Microtubule self-organisation as an example of the development of order in 
living systems 

   James Tabony 
10:30 - 12:00 Synchronization and oscillations in neuronal networks 

   Vincent Hakim 
12:00 - 12:30 Conclusion and handing over of satisfaction questionnaires 
12:30 - 13:30 Lunch 
13:30 - 16:00 The Dynamic Geometry of Developing Organisms 

Brian Goodwin 
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Abstract

We show that network motifs found in natural regulatory networks may also be found in an artificial
regulatory network model created through a duplication / divergence process. It is shown that these
network motifs exist more frequently in a genome created through the aforementioned process than
in randomly generated genomes. These results are then compared with a network motif analysis of
the gene expression networks ofEscherichia ColiandSaccharomyces cerevisiae. In addition, it is
shown that certain individual network motifs may arise directly from the duplication / divergence
mechanism.

1 Introduction

Analysis of network motifs has recently become of interest with respect to transcriptional reg-
ulation networks. Methods are mainly based on searching for connection patterns among small
numbers of nodes. Here we shall introduce a class of artificial regulatory networks which can be
used to compare results obtained through the same methods as have been applied to natural reg-
ulatory networks ofEscherichia ColiandSaccharomyces Cerevisiae. We shall see that the high
frequency of certain network motifs detected in natural systems can be found in artificial systems
as well, provided they are generated by a gene duplication and divergence process. This leads us
to believe that the actual frequency distribution of motifs (”motif fingerprint”) in natural regula-
tory networks is as much if not more a consequence of the process of network generation than of
subsequent evolutionary selection.

The artificial regulatory network model presented here has previously been shown to generate
networks which exhibit scale–free and small world network topologies [12]. Specifically, if the
network generation process is one of duplication and divergence (similar to that presented in [16],
though working on an actual genome level) we can show such global connectivity statistics. In this
contribution, we extend those observations to network motifs and demonstrate that certain motifs
frequent in natural regulatory systems also occur with regularity in this model.

It has also been shown in the past that the regulatory network model is able to reproduce
dynamic phenomena found in natural genetic regulatory networks, for instance shifts in onset and
offset of gene expression (heterochrony) based on single bit-flip mutations [3]. As such, this model
can relate changes in time and intensity to tiny pattern changes on bit strings which could possi-
bly provide the algorithmic “ missing link ” between genotypes subject to constant evolutionary
changes and the remarkably stable phenotypes found in the real world.

2 Background

2.1 Regulatory Networks

Regulatory networks are an important new research area in biology [6, 8]. With the realization
that in higher organisms only a tiny fraction of DNA is translated into proteins, the question of
determining the function of the remaining DNA becomes all the more pertinent. A reasonable



answer for the function of this remaining unexpressed DNA appears to be regulation. According
to Neidthardt et al. [15], 88% of the genome of the bacteriumE. Coli is expressed with 11%
suspected to contain regulatory information (also see Thomas [19]). Given the selective pressures
on bacterial genomes, this would point to a very prominent role for regulation in general.

In addition, it has been recognized that understanding the differences between species and thus
the key to evolution lies in the DNA information controlling gene expression [11]. Since many
evolutionary effects can be traced back to their regulatory causes, regulatory networks mediate be-
tween development and evolution and thus serve to help unfold the patterns and shapes of organism
morphology and behavior [10, 2].

Studying models of regulatory networks can help us to understand some of these mechanisms
by providing lessons for both natural and artificial systems under evolution.

2.2 Network Motifs

There has recently been significant interest in studying static network motifs as a tool for un-
derstanding regulatory networks [14, 17, 23]. Complex networks have previously been classified
by global characteristics such as scale–free [1, 4, 5, 9, 22] and small world network connection
topologies [20, 21]. In order to investigate networks further beyond their global features requires
an understanding of the potential basic structural elements which make up complex networks.

It has been proposed that studying so called “network motifs” can lead towards such an under-
standing [13, 14, 17]. Network motifs may be defined as the structural elements (subgraphs) which
form the basic elements of more complex networks. Whereas an edge usually connects two nodes,
network motif analysis starts with three nodes and their corresponding connections.

Interestingly, certain network motifs occur with significantly higher probability in natural reg-
ulatory networks than in random networks [14]. It has also been shown that network motifs may
be conserved over evolutionary time, for instance in the yeast protein interaction network [23].

In order to detect all n–node network motifs, we have implemented an algorithm similar to one
devised by Milo et al. [14]. The algorithm scans all rows of the adjacency matrixM of connections
between nodes searching for non–zero elements(i, j) which represent a connection from nodei to
node j. The algorithm then recursively traverses the neighboring vertices connecting vertexi and
j until a specific n–node motif is detected. The constituent vertices and edges of a motif are then
compared to previously found motifs in order to ensure that none have been overcounted. It must
also be noted that the total number of motifs of a given type is counted and possible isomorphisms
are considered the same motif type. Table 1 in the Appendix lists all 3-node connection patterns in
directed graphs, including auto-connections, up to isomorphism. We shall later refer to particular
motifs with their motif ID (given in the table) only.

3 Artificial Regulatory Network Model

The artificial regulatory network (ARN) model presented here is based on work by one of the au-
thors [3, 2]. The ARN consists of a bit string representing a genome with direction (i.e. 5’→ 3’ in
DNA) and mobile “proteins” which interact with the genome through their constituent bit patterns.
In this model, proteins are able to interact with the genome most notably at “regulatory” sites lo-
cated upstream from genes. Attachment to these sites produces either inhibition or activation of
the corresponding protein. It can thus be interpreted as a regulatory network with proteins acting
like transcription factors.

The genome itself can be created through a series of duplication / divergence events. First,
a random 32–bit string is generated. This string is then used in a series of length duplications
followed by mutations in order to generate a genome of lengthLG. A “promotor” bit sequence of
8–bits was then arbitrarily selected to signal the start of a gene on the genetic string analogous to



an open reading frame (ORF) on DNA. The actual gene length is set to a fixed length oflg = 5
32–bit integers which results in an expressed bit pattern of 160 bits per gene. Therefore, genes can
be created by complete duplications of previously created genes, mutation, and / or combinations
of the end and starting sequences of the genome during duplication.

Immediately upstream from the promotor sites exist two additional 32–bit segments which
represent the enhancer and inhibitor sites. As previously mentioned, attachment of proteins (tran-
scription factors) to these sites results in changes to protein production for the corresponding genes
(regulation). In this model, we assume only one regulatory site for the increase of expression and
one site for the decrease of expression of proteins. This is a radical simplification since natural
genomes may have 5–10 regulatory sites that may even be occupied by complexes of proteins [2].

Processes such as transcription, and elements such as introns, RNA–like mobile elements and
translation procedures resulting in a different alphabet for proteins are neglected in this model.
This last mechanism is replaced as follows: Each protein is a 32–bit sequence constructed by a
many–to–one mapping of its corresponding gene which contains five 32–bit integers. The protein
sequence is created by performing the majority rule on each bit position of these five integers so as
to arrive at a 32–bit protein. Ties (not possible with an odd number forlg) for a given bit position
are resolved by chance.

Proteins may then be examined to see how they may “match” with the genome. This com-
parison is implemented by using the XOR operation which returns a “1” if bits on both patterns
are complementary. In this scheme, the degree of match between the genome and the protein bit
patterns is specified by the number of bits set to “1” during an XOR operation. In general it can be
expected that a Gaussian distribution results from measuring the match between proteins and bit
sequences in the random genome [2].

By making the simplifying assumption that the occupation of both of a gene’s regulatory sites
modulates the expression of its corresponding protein, we may deduce a gene–protein interaction
network comprising the different genes and proteins which can be parameterized by strength of
match.

By examining the interaction networks at different matching strengths (we call thresholds) we
may obtain different network topologies for the same connected network components. An example
is shown in Figs. 1 and 2. Each node in the diagram represents a gene found in the genome along
with its corresponding protein forming a gene–protein pair. Edges in the diagram represent some
form of influence of one gene’s protein on another gene. For the diagrams presented, a random
genome was created by the previously mentioned duplication and mutation procedure with the
network interaction diagrams being created at threshold levels of 21 and 22. Here and later we do
not discern between enhancer and inhibitor sites, although such an analysis would be necessary to
understand the actual function of motifs.

It must be stressed that although the actual genome has not changed, by simply changing the
threshold parameter, we can obtain different network topologies. It may be noted by the more
astute reader that the diagrams in Figs. 1 and 2 possess different numbers of genes and proteins.
This is due to the fact that only connected gene–protein pairs are displayed in the diagrams. Should
a change in the parameterized threshold lead to the creation of an isolated node, it is deleted from
the diagram. Also note that only the largest network of interactions is displayed here.

It is possible to have multiple clusters of gene–protein interactions that are not interconnected.
This is likely to occur as the threshold level is increased. As connections between gene–protein
pairs are lost due to the threshold, each cluster of gene–protein pairs begins to become isolated
from the others. This often occurs abruptly indicating a phase transition between sparse and full
network connectivity.

The end result of this process would be first isolated pairs of nodes, then nodes without con-
nections which would disappear from the network completely.



Figure 1: Sample of a gene–protein interaction network for a duplication/divergence genome at a
threshold of 21 bits.

Figure 2: The same gene–protein interaction network at a threshold of 22 bits.

4 Results

The network motif finding algorithm was applied to 800 instances of the artificial regulatory model
generated by the duplication / divergence process. As a control it was additionally applied to
800 networks whose genomes were generated randomly (by choosing the full number of bits at
random). Results of motif counting are shown in Figs. 3 and 4. For both methods of network
generation, the genome length was set at 131072 (12 duplication events in the case of duplication
/ divergence). For networks generated by duplication / divergence the mutation rate was set at 1%.
In both cases the threshold had to be determined. We observed that the ratio of the number of
edges to the number of vertices for the two natural regulatory networks was approximately 2 to 1.
Therefore, in our artificial regulatory network framework, the threshold was chosen by iteratively
raising the threshold until the network generated had a ratio that was equal to or less than 2 to 1.

This was then compared to the results of applying the algorithm to the transcriptional networks
of Escherichia Coli[17, 18] andSaccharomyces cerevisiae[7], see Figures 5 and 6. Milo et al.
defined network motifs as n–node subgraphs which occur significantly more than at random [14].
We prefer a more general definition here, and speak instead of a characteristic motif fingerprint if
talking about the count in regard to a particular network. It can be seen in Figs. 3 - 6 that the most
frequent natural motifs (ID 22 and ID 12) are both well represented in duplication/divergence type
artifical networks whereas only one of them can be detected in fully random networks.

Table 2 in the Appendix lists all regulatory networks looked at for this manuscript, and lists
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Figure 3: Average of frequency of occurrence of network motifs in 800 instances of the artificial
network model generated by a duplication / divergence procedure.
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Figure 4: Average of frequency of occurrence of network motifs in 800 randomly generated in-
stances of the artificial network model.

the distribution of all motifs. Note that for artificial networks we have chosen average numbers of
counts, whereas there is only one example each for the natural regulatory systems.

5 Conclusions

A look at the table might convince us that there is a clear relation between the natural distribution
of motifs and the distribution in artificial networks generated by a duplication and divergence
process. No evolutionary selection pressure has been applied in artificial systems, though. Thus it
can be stated that the distribution outcome is more a reflection of the mechanism of its generation
than a result of evolutionary pressures (although evolutionary pressures are certainly responsible
for fine-tuning of distributions).1

It might be pointed out that from the simplest elements of a network, two nodes connected by a

1The authors are aware of the fact that duplication / divergence events might interweave with selective pressure.
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Figure 5: Frequency of occurrence of network motifs in the transcriptional network ofEscherichia
Coli
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Figure 6: Frequency of occurrence of network motifs in the transcriptional network ofSaccha-
romyces cerevisiae.

link (or one node, connected by a link to itself), an arbitrary number of patterns can be generated by
duplication and divergence. The Bi-Fan (a 4-node) motif found in abundance in natural regulatory
networks, can be easily generated from the above element by simple duplication. In the same vain,
the feedforward loop consisting of 3 nodes (ID 14) can be generated from a 2-node motif with an
autoconnection by a partial duplication and two mutations effecting a loss of the autoconnections.

So far we have not examined the case of enhancing and inhibiting connections, a fact that fur-
ther complicates motif analysis. It remains to be seen whether dividing networks into their smallest
components will teach us something useful about the overall structure of regulatory networks.
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Appendix

Motif
Motif ID 0 1 2 3 4 5 6 7 8 9

Motif
Motif ID 10 11 12 13 14 15 16 17 18 19

Motif
Motif ID 20 21 22 23 24 25 26 27 28 29

Motif
Motif ID 30 31 32 33 34 35 36 37 38 39

Motif
Motif ID 40 41 42 43 44 45 46 47 48 49

Motif
Motif ID 50 51 52 53 54 55 56 57 58 59

Motif
Motif ID 60 61 62 63 64 65 66 67 68 69

Motif
Motif ID 70 71 72 73 74 75 76 77 78 79

Motif
Motif ID 80 81 82 83 84 85

Table 1: Network motifs and their ID



Network IDs Count in Network IDs Count in
ID AlonID D/D Rand E.Coli S.Cerv ID AlonID D/D Rand E.Coli S.Cerv

0 6 2424 126 35 751 45 A 1 0 0 0
1 A 4 1 0 1 46 110 0 0 0 0
2 12 490 246 40 246 47 A 0 0 0 0
3 A 11 3 26 24 48 A 0 1 3 0
4 14 6 3 0 0 49 A 0 0 0 0
5 A 0 1 0 0 50 A 0 0 0 0
6 A 12 3 124 138 51 A 0 0 0 1
7 A 0 0 8 0 52 A 0 0 0 0
8 A 0 2 1 0 53 A 0 0 1 0
9 A 0 0 2 0 54 A 0 0 0 0
10 A 0 1 0 0 55 A 0 0 0 0
11 A 0 0 0 0 56 A 0 0 0 0
12 36 27659 124 587 8800 57 A 0 0 0 0
13 A 8 2 76 104 58 A 0 0 0 0
14 38 15 3 2 44 59 A 0 0 54 4
15 A 0 2 1 1 60 A 0 0 12 0
16 A 20 3 11 22 61 A 0 0 0 0
17 46 0 0 0 1 62 A 0 0 0 0
18 A 0 0 0 0 63 A 0 0 0 0
19 A 0 0 2 1 64 A 10 0 0 0
20 A 0 0 1 0 65 A 0 0 0 0
21 A 0 0 0 0 66 A 0 0 0 0
22 A 5016 2 3353 2987 67 A 0 0 0 0
23 74 36 3 0 18 68 238 0 0 0 0
24 A 5 1 0 0 69 A 0 0 0 0
25 78 3 0 0 0 70 A 0 0 0 0
26 A 0 0 0 0 71 A 0 0 0 0
27 A 6 3 53 25 72 A 0 0 0 0
28 A 0 0 32 0 73 A 0 0 6 0
29 A 0 3 0 0 74 A 0 0 3 0
30 A 0 0 0 0 75 A 0 0 0 0
31 A 14 0 713 0 76 A 0 0 46 0
32 A 0 0 0 0 77 A 0 0 0 0
33 A 3 0 0 0 78 A 0 0 0 0
34 A 0 1 0 0 79 A 0 0 0 0
35 A 0 0 0 0 80 A 0 0 0 0
36 A 0 0 0 0 81 A 0 0 0 0
37 A 0 0 0 0 82 A 0 0 0 0
38 98 0 1 0 0 83 A 0 0 0 0
39 A 0 1 0 0 84 A 0 0 0 0
40 102 0 0 0 0 85 A 0 0 0 0
41 A 0 0 0 0
42 A 6 1 14 3
43 A 0 0 0 0
44 108 0 0 0 0

Table 2: Network motifs and their distribution. D/D: Duplication/Divergence genomes; Rand:
Random genomes. AlonIDs shown as A are autoconnected nodes without a code in Alon’s system.
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Abstract

In this article we present the Biochemical Abstract Machine BIOCHAM and advocate its use
as a formal modeling environment for networks biology. Biocham provides a precise semantics
to biomolecular interaction maps. Based on this formal semantics, the Biocham system offers
automated reasoning tools for querying the temporal properties of the system under all its possible
behaviors. We present the main features of Biocham and report on our modeling experience with
this language.

1 Introduction

In networks biology, the complexity of the systems at hand (metabolic networks, extracellular
and intracellular networks, networks of gene regulation) clearly shows the necessity of software
tools for reasoning globally about biological systems. Several formalisms have been proposed in
recent years for modeling biochemical processes either qualitatively [23, 22, 11] or quantitatively
[20, 14, 1, 13, 3]. State-of-the-art tools integrate a graphical user interface and a simulator, yet few
formal tools are available for reasoning about these processes and proving properties of them. Our
focus in Biocham has been on the design of a biochemical rule language and a query language of
the model in temporal logic, that are intended to be used by biologists.

Biocham is a language and a programming environment for modeling biochemical systems,
making simulations, and querying such models in temporal logic. Biocham is composed of :

1. a rule-based language for modeling biochemical systems,

2. a simple simulator,

3. a powerful query language based on Computation Tree Logic CTL,

4. an interface to the NuSMV [9] model checker for automatically evaluating CTL queries.

Biocham shares several similarities with the Pathway Logic system [11] implemented in Maude.
Both systems rely on an algebraic syntax and are rule-based languages. One difference is the use
in Biocham of CTL logic which allows us to express a wide variety of biological queries, and
the use of a state-of-the-art symbolic model checker for handling the complexity of highly non-
deterministic models.

The first experimental results of this approach for querying models of biochemical networks
in temporal logic have been reported in [4, 5], on a qualitative model of the mammalian cell cycle
control [8, 16] and in [5] on a quantitative model of gene expression [3]. In this paper we describe
the Biocham system which provides a modeling environment supporting this methodology.



2 A Simple Example

The Mitogen-Activated Protein Kinase (MAPK) cascades are a well-known example of signal
transduction, since they appear in many receptor-mediated signal transduction schemes. They are
actively considered in pharmaceutical research, for their applications to cancer therapies. The
MAPK/ERK pathway is indeed hyperactivated in 30% of all human cancer tumours [17].

The structure of a MAPK cascade is a sequence of activations of three kinases in the cytosol.
The last kinase, MAPK, when activated, has an effect on different substrates in the cytosol but also
on gene transcription in the nucleus.

Since this cascade has been studied a lot, mathematical models of it appear in most model
repositories, like for instance that of Cellerator [25] or the SBML repository page [12], both com-
ing from [18]. This cascade was also the first example treated by Regev, Silverman and Shapiro
[23] in the pi-calculus process algebra which was an initial source of inspiration for our own work.

Models based on ordinary differential equations (ODE) allow us to reproduce simulation results
like the one pictured out in Figure 1, where the concentration of the visualized compounds is
represented on the vertical axis and time on the horizontal axis. In Figure 2, the concentrations
axis has been simply split and rescaled to the maximum value for each compound.

RAFK
RAF
MEK
MAPK
RAF~{p1}
MEK~{p1}
MEK~{p1,p2}
MAPK~{p1}
MAPK~{p1,p2}

Figure 1: Simulation result of an ODE model of the MAPK cascade.

It is possible to see from such simulations how the cascade evolves in time. It is possible
to change input quantities to check for a significant change in the outcome of the simulation.
Similarly, the sensibility of the system to the values of the parameters can be checked by running
different simulations with different values of the parameters.

Our aim in Biocham is to introduce complementary techniques to automate reasoning on all
possible behaviors of the system modeled in a purely qualitative way. Taking the above model,
one sees that it is built quite directly from the enzymatic reactions and Michaelis-Menten kinetics.
Abstracting the kinetics part, one gets a system of biochemical reactions that can be interpreted as
a non-deterministic transition system over boolean variables denoting the presence or absence of
the compounds in the signaling cascade. The source code of this example is given in the appendix
in Biocham syntax (explained in the next section) and in graphical form in Figure 4. The semantics
of Biocham (explained in sections 3.2 and 3.3) ensures that the set of the possible behaviors of the
boolean modelover-approximatesthe set of all behaviors of the system for all kinetic parameter’
values.
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RAF~{p1}
MEK~{p1}
MEK~{p1,p2}
MAPK~{p1}
MAPK~{p1,p2}

Figure 2: Same simulation as figure 1, side by side rescaled view.

Biocham uses the Computation Tree Logic (CTL) [10] as a query language for querying the
temporal properties of the system under all possible conditions. A biological query like for exam-
ple “Is the activation of the second kinase of the cascade (MEK) compulsory for the cascade ?”
asks whether the phosphorylated form of MEK, noted in BiochamMEK {̃p1}, is necessary to the
production of the activated MAPK, notedMAPK {̃p1,p2 }, which is the output of the cascade,
that is whetherMEK {̃p1} is a checkpoint. In Biocham, one expresses this query by the CTL
formula

biocham: !(E(!(MEK˜{p1}) U MAPK˜{p1,p2}))
true

This formula expresses the non (!) existence (E) of a path on whichMEK {̃p1} is absent (!)
until (U) MAPK {̃p1,p2 } becomes present, that is to say thatMEK {̃p1} is a checkpoint. This
formula is checked automatically by the system.

The same query about a complex with a phosphatase, such as the complexMEK {̃p1}-MEKPH,
is false. These complexes are thus not checkpoints. Thewhy command computes a counterexam-
ple in the form of a pathway which validates the negation of the query:

biocham: !(E(!(MEK˜{p1}-MEKPH) U MAPK˜{p1,p2}))
false
biocham: why
Step 1 Initial state
Step 2 rule 1 RAF-RAFK present
Step 3 rule 21 RAF˜{p1} present
Step 4 rule 5 MEK-RAF˜{p1} present
Step 5 rule 24 MEK˜{p1} present
Step 6 rule 7 MEK˜{p1}-RAF˜{p1} present
Step 7 rule 23 MEK˜{p1,p2} present
Step 8 rule 13 MAPK-MEK˜{p1,p2} present
Step 9 rule 27 MAPK˜{p1} present
Step 10 rule 15 MAPK˜{p1}-MEK˜{p1,p2} present
Step 11 rule 28 MAPK˜{p1,p2} present



This means that the complexes with a phosphatase (xxxPH) are intermediate products that do not
strictly participate in the signal transduction. They are here to regulate the cascade, but they are
not mandatory for the signal transduction in this model. A similar trace is obtained when asking a
simple accessibility query likeEF(MAPK˜{p1,p2 }) , that is the existence (E) of a path on which
at some time point (F) MAPK is fully phosphorylated.

It is worth noting that imposing the absence of an intermediate product is generally difficult
in an ODE based simulation tool, without touching the model. Complex CTL queries thus have
no natural counterpart in a numerical model and complement the information that can be deduced
from interaction maps.

Querying a Biocham model in CTL temporal logic provides a mean to analyze exhaustively all
possible behaviors of the system from first principles of enzymatic reactions, in particular when
numerical data are not available. The simulation of Biocham models is also possible. Since a
Biocham model is highly non-deterministic, simulations are randomized, which means that at each
time step, one of the possible reactions happens. Figure 3 depicts one random simulation of the
MAPK cascade, that is one but only one possible behavior of the system at the boolean abstraction
level.
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Figure 3: Random simulation of the Biocham model of the MAPK cascade

Biocham has been designed in the framework of the ARC CPBIO on “Process Calculi and
Biology of Molecular Networks” [2] which aims at pushing forward a declarative and composi-
tional approach to modeling languages in systems biology. The largest example treated so far with
Biocham is a model of the Mammalian cell cycle control [4] developed after Kohn’s map [16], in-
volving 500 proteins and genes and 147 rule patterns which expand into 2733 rule instances. The
computational results reported in [4] show the feasibility of this approach on such large examples as
the CTL queries can be evaluated in a few seconds using state-of-the-art symbolic model-checking
tools.



3 Modelling Biochemical Processes in Biocham.

3.1 A simple algebra of biochemical compounds

Biocham manipulates formal objects which represent chemical or biochemical compounds, rang-
ing from ions, to small molecules, macromolecules and genes. Biocham objects can be used also
to represent control variables and abstract biological processes.

Syntax:
object = molecule| abstract
molecule = name| molecule-molecule| molecule∼{name,...,name} | gene| ( molecule )
gene = #name
abstract = @name

In the simplest and the most flexible syntactical form, a molecule is simply given a name.
Multimolecular complexes are denoted with the linking operator -. This binary operator is assumed
to be associative and commutative, hence the order of the elements in a complex does not matter.
Note that the same hypothesis is made in Pathway Logic [11] and other systems [19]. In the cases
where one would like to distinguish between different orders of association, one can denote the
different complexes with specific names. A third syntactical form serves to write modified forms
of molecules, like attaching the set of phosphorylated sites with the operator∼. Several sets can
be attached. The order of the elements is irrelevant.

Example: cdk1 , cdk1-cycB andcdk1˜ {tyr15,thr161 }-cycB are valid Biocham no-
tations for, respectively, the cyclin dependent kinase one, the complex cdk1 with cyclin B, and
the phosphorylated form at sites tyrosine 15 and threonine 161 of cdk1 in the complex cdk1-
cycB.(cdk1-cycB)˜ {tyr15,thr161 } is another notation for the same phosphorylated form
of the complex without making precise the constituent which is phosphorylated. Precising or not
the phosphorylated constituent defines two formally different complexes.

The fourth syntactical form is used to denote genes or gene promotors, with a name beginning
with #. These objects are assumed to beunique, which has a consequence on the way reactions
involving such objects are interpreted by Biocham, as explained in the next section.

Example: DMP1-#p19ARFcan be used to denote the binding of protein DMP1 on the promotor
of the gene producing protein p19ARF noted#p19ARF.

The same assumption of uniqueness is made on abstract objects that are noted with a ’@’.
Abstract objects can be used to represent particular phases of a process, complete subsystems or
abstract biological processes.

Example: @UbiPro can be used to denote the Ubiquitine/Proteasome subsystem and write this
formal object as a catalyst in degradation reaction rules.

3.2 Reaction rules

Biocham reaction rules are used primarily to represent biochemical reactions. They can be used
also to represent state transitions involving control variables or abstract processes, or to represent
the main effects of complete subsystems such as protein synthesis by DNA transcription without
introducing RNAs in the model.



Syntax:
reaction = name: reaction

| solution => solution
| solution =[object]=> solution
| solution =[solution => solution]=> solution
| solution<=> solution
| solution<=[object]=> solution

solution = | object| solution + solution| ( solution )

A solution is thus a sum of objects, the characterdenotes the empty solution. The order and
multiplicity of molecules in a solution are ignored, only the presence or absence of objects are
considered.

The following abbreviations can be used for reaction rules:A<=>B for the two symmetrical
rules,A=[C]= >B for the ruleA+C=>B+Cwith catalyst moleculeC, andA=[C= >D]= >B for the
ruleA+C=>D+B.

Example: cdk1 + cycB = > cdk1-cycB is a complexation rule.cdk1-cycB =[Myt1]= >
cdk1˜ {thr14 }-cycB is a phosphorylation rule with catalyst Mytosine 1. This rule is equiva-
lent tocdk1-cycB + Myt1 = > Myt1 + cdk1˜ {thr14 }-cycB .

A reaction transforms one solution matching the left-hand side of the rule, into another solu-
tion in which the objects of the right-hand side have been added. The molecules in the left-hand
side of the rule which do not appear in the right-hand side may be non-deterministically present or
consumed in the resulting solution. This convention defines theboolean abstractionof stoichio-
metric models used in Biocham. It reflects the capability of Biocham to reason about all possible
behaviors of the system with unknown concentration values and unknown kinetics parameters [1,
3].

Following the uniqueness assumption, molecule parts marked as ”genes” with the ’#’ notation,
or any compound built on such a molecule (such asDMP1-#p19ARF for instance) are not multi-
plied. These objects remain unique and they are deterministically consumed in the form in which
they appear in the left-hand side of the rule. The same goes for control variables, noted with a ’@’,
which are deterministically consumed.

Biocham has also a rich pattern language with constraints which is used to specify molecules
and sets of reaction rules in a concise manner. Patterns introduce the special character ? and
variables noted with a name beginning with a $ to denote unspecified parts of a molecule. These
variables can be constrained with simple set constraints. The description of Biocham patterns [6] is
however beyond the scope of this paper. The appendix contains the Biocham model of the MAPK
cascade of the introductory example written with a set of 16 reaction rule patterns which expand
into 30 rule instances.

3.3 Kripke semantics

A Biocham model is a set of reaction rules given with an initial state. The formal semantics of a
Biocham model is a Kripke structure, that is a triple formed of a set of states, a transition relation
between states and a labeling function associating to each state the set of atomic propositions true
in that state. This formal semantics gives a mathematical meaning to Biocham models and provides
a firm ground for :

• comparing different modeling formalisms and languages,

• comparing different models of a same biological system,



• importing models from other sources,

• and designing and implementing automated reasoning tools.

A Kripke structureK is thus a triple(S,R,L) whereS is the set of states,R⊆ S×S is a total
relation (i.e. for any states∈ S there exists a states′ ∈ Ssuch that(s,s′) ∈ R), andL : S→ 2A is a
labeling function overA the set of atomic propositions. A path inK starting from a states0 is an
infinite sequence of statesπ = s0,s1, ... such that(si ,si+1) ∈ R for all i ≥ 0.

Clearly, one can associate to a Biocham model a Kripke structure, where the set of statesS
is the set of all tuples of boolean values denoting the presence or absence of the different bio-
chemical compounds (molecules, genes and abstract processes), the transition relationR is the
union (i.e. disjunction) of the relations associated to the reaction rules, and the labeling function
L simply associates to a given state the set of biochemical compounds which are present in the
state. Reaction rules in Biocham are asynchronous in the sense that one reaction rule is fired at a
time (interleaving semantics), hence the transition relation is the union of the relations associated
to the reaction rules. On the other hand, in a synchronous semantics for Biocham, the transition
relation would have been defined by intersection. The choice of a synchronous semantics has been
rejected in Biocham as it would bias fundamental biological phenomena such as the masking of
a relation by another one and the resulting inhibition or activation of biological processes. Note
that as explained in the previous section, the boolean abstraction of enzymatic reactions used in
Biocham associates several transitions to a single Biocham reaction rule, one for each case of
possible consumption of the molecules in the left-hand side of the rule.

That Kripke structure defines the semantics of a Biocham model as a non-deterministic transi-
tion system where the temporal evolution of the system is modeled by the succession of transition
steps, and the different possible behaviors of the system are obtained by the non-deterministic
choice of reactions.

3.4 Importing biochemical models from other formalisms

Since the basic building block of a Biocham model is an (enzymatic) reaction, it is quite easy
to import any model based on such reactions into Biocham. This is the case of most graphical
map-based models, but also of some ODE models, derived from the mass-action law or Michaelis-
Menten kinetics. A well known source of such models is KEGG [15], which provides (graphical)
maps of metabolic and signaling pathways. Biocham has been designed to provide such maps with
a simple yet precise semantics.

In this respect, the Biocham project is part of the workpackage entitled “Towards a Bioinfor-
matics Semantic Web” in the EU network REWERSE1. In parallel to this effort, the CMBSlib [26]
web site2 has been created as an open repository of computational models of biological systems,
in order to:

• compare differentmodelsexpressed in the same formalism,

• compare differentformalismsandtools for a same model,

• cross-fertilize modeling experience and language issues between designers.

This library currently includes models of biological processes obtained from the literature and by
translation from KEGG maps or ODE models into different formalisms. It is open to all contribu-
tions in any (ascii) format and in most exotic formalisms.

1The 6th EU Framework Programme Network of Excellence REWERSE stands for REasoning on the WEb with
Rules and SEmantics, seehttp://www.rewerse.net

2http://contraintes.inria.fr/CMBSlib



4 Querying Biocham Models in Temporal Logic CTL.

Thanks to its simple Kripke semantics, Biocham supports the use of the Computation Tree Logic
CTL [10] as a query language for querying the temporal properties of Biocham models. This
methodology introduced in [4, 5] is implemented in Biocham with an interface to the state-of-the-
art symbolic model checker NuSMV [9].

CTL basically extends propositional logic used for describing states, with operators for rea-
soning over time and non-determinism. Several temporal operators are introduced in CTL:Xφ
meaningφ is true at next transition,Gφ meaningφ is always true,Fφ meaning finally true, and
φUψ meaningφ is always true untilψ becomes true. For reasoning about non-determinism, two
path quantifiers are introduced:Aφ meaningφ is true on all paths,Eφ meaningφ is true on some
path. In CTL, all temporal operators must be immediately preceded by a path quantifier (e.g.AFGφ
is not in CTL, butAF(EGφ) is).

s |= α iff α ∈ L(s),
s |= Eψ iff there is a pathπ from s such thatπ |= ψ,
s |= Aψ iff for every pathπ from s, π |= ψ,
π |= φ iff s |= φ wheres is the starting state ofπ,
π |= Xψ iff π1 |= ψ,
π |= Fψ iff there existsk≥ 0 such thatπk |= ψ,
π |= Gψ iff for every k≥ 0, πk |= ψ,
π |= ψUψ′ iff there existsk≥ 0 such thatπk |= ψ′ andπ j |= ψ for all 0≤ j < k.

Table 1: Inductive definition of the truth relationss |= φ andπ |= φ in a given Kripke structureK.

CTL is expressive enough to express a wide range of biological queries. Simplest queries are
about reachability: is there a pathway for synthesizing a proteinP, EF(P) ? About pathways: can
the cell reach a states while passing by another states2, EF(s2∧EF(s)) ? is states2 a necessary
checkpoint for reaching states, ¬E((¬s2) U s)? can the cell reach a states without violating
certain constraintsc, E(c U s)? from an initial stateI, is it possible to synthesize a proteinP
without creating nor using proteinQ, I ⇒ E(¬Q U P)? About steady states and permanent states:
is a certain (partially described) states of the cell a steady state,s⇒ EG(s)? a permanent state,
s⇒ AG(s)? can the cell reach a given permanent states from the initial stateI, I ⇒ EF(AGs)?
must the cell reach a given permanent states from the initial stateI, I ⇒ AF(AGs)? can the system
exhibit a cyclic behavior w.r.t. the presence of a productP, EG((P⇒ EF ¬P)∧ (¬P⇒ EF P))?
The latter formula expresses that there exists a path where at all time points wheneverP is present it
becomes eventually absent, and whenever it is absent it becomes eventually present. This formula
is not expressible in LTL [10], where formulas are of the formAφ with φ containing no path
quantifier.

The formal semantics of CTL in a fixed Kripke structureK is given in table 1, as the inductive
definition of the truth relation stating that a CTL formulaφ is true at states, writtens |= φ, or true
along pathπ, writtenπ |= φ (the clauses for ordinary boolean connectives are omitted).πi denotes
the suffix ofπ starting atsi .

5 The Challenge of the Virtual Cell

High-throughput technologies addressing cell functions at a whole genome scale are revolutioniz-
ing cell biology. The challenge of virtual cell projects is to map molecular interactions within the
cell, and to build virtual cell models predicting the effects of a drug on a given cell.



Virtual cell environments, like for instance the Virtual Cell project [24] or Cellerator [25],
maintain a library of models of different parts of the cell, among different living organisms. ODE
models typically range from a tenth of variables to 50 variables like in the Budding Yeast cell
Cycle model of [7]. On the other hand, qualitative models represented by interaction maps allow
for the global modeling of a large number of interacting subsystems.

A formal model of the Mammalian cell cycle control has been developed in the ARC CPBIO
[4, 2] after Kohn’s map [16]. This model transcribed in Biocham involves 500 proteins and genes
and 147 reaction rule patterns which expand into 2733 reaction rule instances. Performance results
of CTL querying in this model are reported in [4]. Symbolic model checking techniques used in
Biocham are efficient enough to automatically evaluate CTL queries about biochemical networks
of several hundreds or thousands of rules and variables [4, 5]. It is worth noting however that this
is far below the size of digital circuits that the same model checking algorithms can treat. The
reason for this discrepancy in performance comes from the high level of non-determinism which
results from the competition between reaction rules and the soup aspect of biochemical solutions.

Combining ODE models with purely qualitative models like current Biocham models is an
important issue for managing the complexity of concurrent interacting models. This combination
is under investigation within the framework of non-deterministic hybrid systems.

6 Learning Reaction Rules from Temporal Properties

With such a simple syntax and semantics for describing reaction rules in Biocham, it is possible to
apply learning techniques to reaction rules discovery. We have done some preliminary experiments
using the inductive logic programming system Progol [21] for the automatic discovery of missing
Biocham reaction rules in a simple model of the cell cycle with 10 variables, given a set of acces-
sibility properties. The basic experiment consists in furnishing a set of examples of accessibility
relations and a set of counterexamples, and letting the inductive logic program search for a set of
reaction rules satisfying the accessibility properties of the system. In the first phase of validation
of the learning technique, where we are, the models we use are known models, from which we
compute a set of temporal properties, and remove one or more reaction rules to check whether the
missing rules can be recovered by learning from the temporal properties.

More generally, the basic idea is to specify the intended or observed temporal properties of the
system with CTL formulas, and apply learning techniques such as inductive logic programming,
in order to correct the model by suggesting to add or modify Biocham rules in the model3.

7 Conclusion and perspectives.

Biocham is a free software4 for modeling biochemical processes and querying these models in
temporal logic. The largest example treated so far is a model of the mammalian cell cycle control
[4] after Kohn’s diagram [16]. Other models have been imported from interaction maps available
on the Web and ODE models. This shows the simplicity of the scheme and the flexibility of this
approach.

The Pathway Logic of [11] is close to Biocham for the algebraic representation of cell com-
pounds and the representation of molecular interactions by rewriting rules. However, the boolean
abstraction used in Biocham and the state-of-the-art symbolic model checker NuSMV permit the
handling of potentially larger models. The choice of CTL for expressing biological queries pro-
vides also more expressiveness than LTL, which is used in Pathway Logic. Much can be gained by

3We investigate this approach in the 6th PCRD EU project APRIL 2 ”Applications of Probabilistic Inductive Logic
Programming”,http://www.aprill.org .

4Biocham system can be downloaded fromhttp://contraintes.inria.fr/BIOCHAM



exchanging Biocham and Pathway Logic models, cross-fertilizing our modeling experiences and
comparing language issues in particular w.r.t. the pattern language. The CMBSlib open repository
[26] has been created for this purpose as well as for comparison with very different formalisms.

Currently, Biocham is primarily oriented towards the qualitative modeling of biochemical pro-
cesses and the querying of the temporal properties of boolean models. This approach can be
generalized however to numerical models by relying on to constraint-based model checking tech-
niques [5]. In this extension, called Biocham2, variables can denote real values expressing the
concentrations of molecules, and rules are extended with constraints to denote the relationship be-
tween the old and the new values of the variables. In particular, biochemical systems described by
differential equations can be handled in this framework using time discretization methods, and can
be combined with boolean models. The modeling power of such non-deterministic hybrid systems
is under investigation.
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Appendix: Biocham model of the MAPK signaling cascade

Here is the full code of the MAPK example given in section 2. The phosphorylation sites for
MEKandMAPKare declared first, and then the Biocham rules are given, sometimes with pattern
variables (noted$P) which are constrained in thewhere part of the rules. In this model, the first
rules are reversible, the other ones are directional. The initial state is partially defined.

% MAPK cascade in solution (no scaffold)
%
% adapted from:
% http://www-aig.jpl.nasa.gov/public/mls/cellerator/notebooks/MAPK-in-solution.html
% by Sylvain Soliman <Sylvain.Soliman@inria.fr>
% Nov. 26, 2003
%
% original source:
% Levchenko, A., Bruck, J., Sternberg, P.W. (2000) .Scaffold proteins may
% biphasically affect the levels of mitogen- activated protein kinase
% signaling and reduce its threshold properties. Proc. Natl. Acad. Sci. USA
% 97( 11):5818-5823. http://www.pnas.org/cgi/content/abstract/97/11/5818

declare MEK˜parts_of({p1,p2}).
declare MAPK˜parts_of({p1,p2}).

RAF + RAFK <=> RAF-RAFK.

RAF˜{p1} + RAFPH <=> RAF˜{p1}-RAFPH.

MEK˜$P + RAF˜{p1} <=> MEK˜$P-RAF˜{p1}
where p2 not in $P.

MEKPH + MEK˜{p1}˜$P <=> MEK˜{p1}˜$P-MEKPH.

MAPK˜$P + MEK˜{p1,p2} <=> MAPK˜$P-MEK˜{p1,p2}
where p2 not in $P.



MAPKPH + MAPK˜{p1}˜$P <=> MAPK˜{p1}˜$P-MAPKPH.

RAF-RAFK => RAFK + RAF˜{p1}.

RAF˜{p1}-RAFPH => RAF + RAFPH.

MEK˜{p1}-RAF˜{p1} => MEK˜{p1,p2} + RAF˜{p1}.
MEK-RAF˜{p1} => MEK˜{p1} + RAF˜{p1}.

MEK˜{p1}-MEKPH => MEK + MEKPH.
MEK˜{p1,p2}-MEKPH => MEK˜{p1} + MEKPH.

MAPK-MEK˜{p1,p2} => MAPK˜{p1} + MEK˜{p1,p2}.
MAPK˜{p1}-MEK˜{p1,p2} => MAPK˜{p1,p2} + MEK˜{p1,p2}.

MAPK˜{p1}-MAPKPH => MAPK + MAPKPH.
MAPK˜{p1,p2}-MAPKPH => MAPK˜{p1} + MAPKPH.

% Are present in the initial state, the following molecules:

present({
RAFK,
RAF,
MEK,
MAPK,
MAPKPH,
MEKPH,
RAFPH
}).

% All the other ones, which are complexed forms or phosphorylated forms
% are absent

absent({?-?,?˜{p1}˜?}).

The last line of the file uses patterns to declare absent from the initial state all molecules that
are complexes (?-? ) or phosphorylated atp1 (?˜ {p1}˜? ). It is equivalent to the following
sequence:

absent(RAF-RAFK).
absent(RAFPH-RAF˜{p1}).
absent(MEK-RAF˜{p1}).
absent(MEK˜{p1}-RAF˜{p1}).
absent(MEKPH-MEK˜{p1}).
absent(MEKPH-MEK˜{p1,p2}).
absent(MAPK-MEK˜{p1,p2}).
absent(MAPK˜{p1}-MEK˜{p1,p2}).
absent(MAPKPH-MAPK˜{p1}).
absent(MAPKPH-MAPK˜{p1,p2}).
absent(RAF˜{p1}).
absent(MEK˜{p1}).
absent(MEK˜{p1,p2}).
absent(MAPK˜{p1}).
absent(MAPK˜{p1,p2}).

When loading the model into BIOCHAM, one can see the expanded rules and the rule num-
bering used to explain the answer to the CTL query of section 2.

BIOCHAM 1.1 (C) 2003, 2004 INRIA, France,



by N. Chabrier-Rivier, F. Fages and S. Soliman.
http://contraintes.inria.fr/BIOCHAM
biocham: load_biocham(’EXAMPLES/MAPK/mapk.bc’).

biocham: expand_rules.
1 RAF+RAFK=>RAF-RAFK.
2 RAF-RAFK=>RAF+RAFK.
3 RAF˜{p1}+RAFPH=>RAFPH-RAF˜{p1}.
4 RAFPH-RAF˜{p1}=>RAF˜{p1}+RAFPH.
5 MEK+RAF˜{p1}=>MEK-RAF˜{p1}.
6 MEK-RAF˜{p1}=>MEK+RAF˜{p1}.
7 MEK˜{p1}+RAF˜{p1}=>MEK˜{p1}-RAF˜{p1}.
8 MEK˜{p1}-RAF˜{p1}=>MEK˜{p1}+RAF˜{p1}.
9 MEKPH+MEK˜{p1}=>MEKPH-MEK˜{p1}.
10 MEKPH-MEK˜{p1}=>MEKPH+MEK˜{p1}.
11 MEKPH+MEK˜{p1,p2}=>MEKPH-MEK˜{p1,p2}.
12 MEKPH-MEK˜{p1,p2}=>MEKPH+MEK˜{p1,p2}.
13 MAPK+MEK˜{p1,p2}=>MAPK-MEK˜{p1,p2}.
14 MAPK-MEK˜{p1,p2}=>MAPK+MEK˜{p1,p2}.
15 MAPK˜{p1}+MEK˜{p1,p2}=>MAPK˜{p1}-MEK˜{p1,p2}.
16 MAPK˜{p1}-MEK˜{p1,p2}=>MAPK˜{p1}+MEK˜{p1,p2}.
17 MAPKPH+MAPK˜{p1}=>MAPKPH-MAPK˜{p1}.
18 MAPKPH-MAPK˜{p1}=>MAPKPH+MAPK˜{p1}.
19 MAPKPH+MAPK˜{p1,p2}=>MAPKPH-MAPK˜{p1,p2}.
20 MAPKPH-MAPK˜{p1,p2}=>MAPKPH+MAPK˜{p1,p2}.
21 RAF-RAFK=>RAFK+RAF˜{p1}.
22 RAFPH-RAF˜{p1}=>RAF+RAFPH.
23 MEK˜{p1}-RAF˜{p1}=>MEK˜{p1,p2}+RAF˜{p1}.
24 MEK-RAF˜{p1}=>MEK˜{p1}+RAF˜{p1}.
25 MEKPH-MEK˜{p1}=>MEK+MEKPH.
26 MEKPH-MEK˜{p1,p2}=>MEK˜{p1}+MEKPH.
27 MAPK-MEK˜{p1,p2}=>MAPK˜{p1}+MEK˜{p1,p2}.
28 MAPK˜{p1}-MEK˜{p1,p2}=>MAPK˜{p1,p2}+MEK˜{p1,p2}.
29 MAPKPH-MAPK˜{p1}=>MAPK+MAPKPH.
30 MAPKPH-MAPK˜{p1,p2}=>MAPK˜{p1}+MAPKPH.

It is possible to export a.dot file of the rules, to use with the Graphviz5 visualization suite.
The generated map is depicted in Figure 4.

5http://www.research.att.com/sw/tools/graphviz/
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Abstract

The kinesin-microtubules dynamics is characterized byInterference Total Internal Reflection Mi-
croscopy(ITIRM). The Neurospora kinesin step is measured with nanometer precision and a time
resolution of six microseconds, in absence of external load. We observe that, without external
force, the kinesin 8-nanometer step occurs in less than 70 microseconds and the step has no inter-
nal structure at this time scale.

1 Introduction

The kinesin-microtubule is a protein complex, which catalyzes ATP hydrolysis:ATP ⇒ ADP +
Pi. During the enzymatic reaction, the kinesin-microtubule complex converts chemical energy into
mechanical work. Together with dynein-microtubule and myosin-actin complexes, it is responsi-
ble for intracellular transport, mitosis and many other biological processes. Kinesin is a dimer of
two identical subunits; it contains two motor heads and a coiled-coil stalk. This two-headed motor
moves processively [1] along microtubules towards the plus-end, and travels over a mean distance
of more than 1µm without releasing from the microtubule. Recent experiments [2] also indicate
that small mutations in the amino-acid sequence induce a change, or a loss, of the motor direction-
ality. Weak mutations also affect the processivity of the enzyme. Optical tweezers experiments
have shown that kinesin develops a force of a few picoNewton (stall force≈ 6-7 pN) and that
the motion is achieved by discrete steps of 8 nanometers [3, 4]. This distance corresponds to the
periodicity of theαβ-tubulin arrangement in microtubules. Each step requires the hydrolysis of
one ATP molecule [5]. Energy studies [6] show that for a load of 5 pN the kinesin efficiency can
reach 50%.
The mechanism by which the molecular motors achieve such a high efficiency is still poorly un-
derstood. As well, the effect of the amino-acid mutations on the dynamics of kinesin cycle, and
kinesin directionality has to be investigated. A detailed description of the kinesin motion is essen-
tial to understand those mechanisms [7, 8]: it includes the measurement of the power-stroke time
scale, the shape of the step and its internal structure. It is also necessary to determine how the
energy is dissipated and in which part of the kinesin cycle the dissipation occurs.
In order to measure the step details of kinesin we develop a novel technique for imaging small
particles with high spatial and temporal resolution: the Interference Total Internal Reflection Mi-
croscopy (ITIRM ) [9, 10]. This technique, described in section 2, allows us to follow the kinesin
motion without external manipulation and it makes possible measurements at zero force.
The experiments described in this paper are performed on kinesin carrying a small cargo (200 nm
bead) and without external load.



2 Interference Total Internal Reflection Microscopy

A single particle (i.e. a small bead) moves through a sine-like spatially modulated light. The par-
ticle necessarily scatters the light proportionally to its local intensity: going across the modulation
with constant speed, the particle appears as a blinking dot. The modulation is obtained by interfer-
ence of two laser beams, with opposite wave vectors

−→
kx, undergoing total internal reflection at the

glass/water interface. In this setup, the fringe periodicity is:

d =
λ0

2nglass cos θ
(1)

whereλ0 is the laser wavelength,θ is the incidence angle at the glass/water interface, andnglass is
the glass refraction index (usually 1.52).
The resulting light is:

I(x, z) ∝
(
1 + cos

2π · x
d

)
e−z/ζ (2)

whereζ is the penetration length of the evanescent wave.
Measurement of the temporal variations of the bead luminosity allows us to estimate its position
in the fringes. If the collected light scattered by the bead varies betweenImin andImax, the bead
positionx(t) can be expressed as a function of the scattered intensityI(t):

x(t) =
d

2π
sin−1

[
I(t)− (Imax + Imin)/2

(Imax − Imin)/2

]
(3)

The particle is localized with a precision that only depends on our ability to realize a pure
sine-like modulation. The time resolution of this setup depends on the detection speed, which can
easily go up to many megahertz with fast detectors (avalanche photo diodes or photomultipliers).
On the other hand, the main limitation to the time resolution is imposed by the number of photons
collected per sample: use of very high sample rates is actually limited by the shot-noise.
The experimental setup is described in Fig. 1. The laser beam is compressed (L1 andL2 in Fig. 1)
and splitted by using the beam splitterBS1: two beams are produced, identical in intensity, phase
and polarization. The lensL3 focuses the beams on two, diametrically opposed, points of the ob-
jective back focus plane. In such a way a small region of the specimen (15×15µm2) is illuminated
by two parallel laser beams and a standing wave is established at the glass/water interface.
The light scattered from the probe is collected by the same objective, focused by the lensesL4, L5

andL6 and measured with a bandwidth of 500 kHz by the avalanche photo-diode (Hamamatsu).
Data are acquired using an analog-digital converter (Keithley instruments ), with a sample
rate of 150 ksample/s. Experiments are carried out using an Olympus 60X TIRF objective (numer-
ical aperture 1.45) and a CCD camera. The laser source is a second harmonic YAG (Coherent
Verdi ), with a wavelengthλ0=532 nm and a longitudinal coherence length of several hundreds
meters. Its power is typically set to 500 mW. In our experiments the period of the fringes (Eq. 1)
is typically∼200 nm and the field depthζ is around 100 nm.
The resolution of this setup has been calibrated using a piezoelectric stage, which moves a bead
stuck to the coverglass. Fig. 2a shows the signal from a 100 nm bead, moving through the fringes:
the piezo-electric stage makes a step of 10 nm every 200 ms. The motion is reflected by sudden
variations of the intensity and the bead position can be calculated from Eq. (3). Fig. 2b shows the
bead position: it can be determined with an accuracy of∼ 1 nm at that time scale (66µs/sample).
This accuracy is limited by the mechanical instabilities, whose power spectrum is plotted in Fig. 3.
The noise spectrum is dominated by a broad peak around 300 Hz, whose the amplitude is few
nanometers. The main reason of this noise is the extreme sensitivity of the optical setup to the
vibrations. In fact, we observe that the noise is strongly reduced near the sine antinodes, where
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Figure 1: Schematic of the experimental setup. Interference Total Internal Reflection configuration
through the TIRF objective. The two laser beam are focused on the diameter of the back focus
plane, in order to light the sample with two parallel beams with opposite wave vectorkx. The light
scattered by the probe is recorded using an avalanche photo-diode.

the positional resolution decreases. The signal/noise ratio should be improved by reducing the
acoustic noise and by stiffening the setup.

3 Material and Methods

Nkin460GST is expressed in BL21 (DE3)E. coli and is purified as described in [11, 12].
Preparation of the microtubules : The MAP-rich tubulin (from Cytoskeleton ML113) is poly-
merized at a concentration of 2 mg/ml (concentration adjusted with BRB80 : 80 mM K-PIPES pH
6.9, 1 mM MgCl2, 1 mM EGTA, 1 mM GTP) and at a temperature of 37◦C for 30 minutes. Then
taxol is added at a final concentration of 20µM to stop the polymerization-depolymerization pro-
cess for 20 minutes at 37◦C. Unpolymerized tubulin is removed by centrifugation at 30000 RPM,
for 15 minutes at 30◦C. The pellet is rinsed and resuspended with BRB80 supplemented with 10
µM taxol).
Bead assay: Microtubules are introduced in a flow chamber and incubated for 3 minutes to ad-
sorb on the poly-L-lysine-coated coverglass. The chamber is rinsed with BRB80+taxol and with
filtered casein solution (2 mg/ml) to avoid non specific interaction. After a last wash with MOPS
buffer (MOPS 20 mM - pH 7.2, MgCl2 5 mM, NaCl 200 mM), the kinesin-coated beads are mixed
with the motility buffer and injected into the chamber. Kinesin-coated beads are prepared in mix-
ing highly diluted preparation of kinesins (diluted in filtered casein at equimolar concentrations)
and carboxylated latex beads (200 nm diameter; Polysciences cat 07304). After 5-10 minutes
incubation, filtered casein at 1 mg/ml is added to this mix. The motility buffer is MOPS buffer
supplemented with 20µM ATP, 1 mM phosphocreatine, 50µg/ml creatine phosphokinase and an
oxygen scavenging system (3 mg/ml glucose, 100µg/ml glucose oxidase and 20µg/ml catalase),
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Figure 2: A single colloid (diameter 200 nm) is fixed on the coverglass, while the sample holder
is moved in 10 nm steps by means of a calibrated piezoelectric stage. The bead blinks moving
through interference fringes in the near field and its luminosity is recorded by the Photo-detector.
The data are acquired with a time resolution of 60µs. a) light intensity (in arbitrary units) collected
by the avalanche photodiode.b) the position (in nanometers) of the bead is calculated from this
luminosity according to Eq. (3).
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Figure 3: Noise Power Spectrum of a bead stuck on the coverglass (bottom line), driven by a
piezoelectric stage. Top line is the noise power spectrum calculated for a bead linked to a kinesin.

2 mM DTT. The coverslip is sealed with VALAP (vaselin, lanolin, paraffin at 1:1:1). Observations
are performed at room temperature (approximately 25◦C).
In order to obtain a sufficient low concentration of kinesins per bead, we worked with a concentra-
tion just above the threshold under which we do not observe any motility events.

4 Results

When the microtubules are injected into the observation chamber, they are partially aligned by the
flow. We take advantage of this effect to roughly line them up, perpendicularly to the interference
fringes. The kinesin-coated beads come randomly in touch with the microtubules and they move
along of them through the interference pattern.
As described previously, the bead blinks moving through the interference pattern and its luminos-
ity is measured. Fig. 4a shows the intensityI(t) as a function of time (dots·), acquired with 6µs of
time resolution. In order to improve the signal/noise ratio, the signal is smoothed by performing a
sliding average with a time average of 5 milliseconds (continuous line in Fig. 4).
A comparison between Fig. 2a and Fig. 4a highlights a qualitative difference: the curve measured
with the molecular motor is more noisy than the one obtained with the piezo-electric stage. This
observation seems to be obvious, because the bead-kinesin link has a finite stiffness, and the teth-
ered bead wiggles because of the brownian motion. In Fig. 2a we also observe that the noise
decrease significantly around the minima and the maxima of the intensity. Of course, the signal
from a bead wiggling only in thexy-plane (the plane parallel to the surface) should appear less
noisy near the sine antinodes, where the lateral sensitivity (along thex-direction) is reduced. Con-
versely, in Fig. 4a the noise does not significantly depend on thex-position. This difference can be
explained taking in account the bead motion in the evanescent field perpendicularly to the surface
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Figure 4: Measured intensity as a function of time.a) Data recorded with time resolution of 6
microseconds (red line) and smoothed with a 5 milliseconds sliding average. Notice the disconti-
nuities in intensity variations, corresponding to the kinesin steps.b) Bead position as a function of
time, calculated from a portion of curvea according to Eq. (3).



(along thez-direction). This suggests that a significant part of the noise is due to the brownian
motion in the direction perpendicular to the surface.
The analysis of the brownian motion of the tethered bead supplies an important information about
the bead response time. This time determines the physical limit of the time resolution of the ex-
periment. It can be determined by performing theintensity-intensityautocorrelation function, as
described in Ref. [9, 10]. The autocorrelation analysis (data not shown) indicates that the temporal
resolution is∼ 70µs in our experiments.
Fig. 4b shows a detail of curvea, where the bead positionx(t) has been calculated according to
Eq. (3), over intervals of half a period. We observe the typical motion of kinesin, with discrete 8
nanometer steps and plateaus alternately. These observation is consistent with the previous exper-
iments [3, 11].
The data are too noisy to determine the step details. In order to overcome this problem, several
steps are averaged. Of course, different steps can be averaged only after synchronization and the
accuracy in synchronization determine the final resolution of the mean step and it is basically
limited by the signal/noise ratio of the data. We first proceed by an automatic detection of the
8-nanometers steps, using the algorithm proposed by D. Smith [13], then each step is fitted to a
step-like function (Eq.4) to determine its middle positiont0 (Fig. 5a) and its rising timeα−1.

Θ(t) =
8

π
arctan

[
α(t− t0) +

π

2

]
nm (4)

Steps with a rising time> 1 ms are considered anomalous and are discarded.
Fig. 5b shows the kinesin step after averaging: the noise is appreciably reduced and the step
time can be evaluated. As the step ends are not well defined, we measure the time necessary to
move from 10% to 90% of the total step height. The experimental data supply a step timeτs =
(60± 10)µs to move from 0.8 nm to 7.2 nm. Of course, the actual movement of kinesin might be
faster, becauseτs is essentially limited by the bead response time and to our ability to synchronize
the steps before averaging. However, the measured timeτs is an upper limit to the step time in
absence of external load. This result is consistent with earlier experiments [8] performed under
load. In addition, we also notice that, at this time scale and within the experimental uncertainty,
there is no evidence neither for an internal structure of the step nor for sub-steps.

5 Conclusion

We present a simple and versatile technique to track a small bead, with nanometer precision and a
time resolution of six microseconds. This technique is used to characterize the motion of kinesin-
coated beads along of microtubules, in absence of external forces.
The typical kinesin motion, with discrete 8 nanometer steps and relatively long dwell times, is
observed. At the same time, the brownian motion of the bead, wiggling around the kinesin posi-
tion, hides the short-time details of the steps. In order to overcome this effect, and improve the
signal/noise ratio, we develop a simple algorithm to line up the steps and average them. In such a
way, brownian motion is averaged over many events and the final resolution is only limited by the
number of available steps and the bead response time, which is∼ 70µs in our experiments.
Summarizing, we can state that the kinesin takes less than 70µs to make 8-nanometer steps, and
that at this time scale no fine step details are observed.
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Figure 5: Analysis of the rising time of the kinesin step:a) A single 8 nm step step: the continuous
line is the best fit between data and Eq.(4).b) the average 8-nm step: the rising timeτs is lower
than 70µs.
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Abstract 
 
Biologists are now in front of the result of a large work on the genomes (sequencing, alignment, 
transcriptome). The genomic information resulting from this, show however some characteristics 
that make them very difficult to interpret and to exploit. They are stored in huge amount of data, are 
heterogeneous, and are geographically distributed. These data are recorded in structured or semi-
structured formats within public or private databanks, and constitute an important factual data 
source (GenBank, SwissProt, or Decrypthon). But, genome knowledge could not be limited to DNA 
or protein annotated sequences. Indeed, there is a significant quantity of information relating to 
these genes, recorded in an unstructured format within millions publications (Medline, PubMed). 
This paper presents GenomeExplorer, a new modeling and software solution to integrate textual and 
factual genomic data based on adapted federator description format. Moreover, GenomeExplorer 
offers us a user-friendly visualization of this information within an immersive environment. The 
visualization is based on a well-adapted graphical paradigm that automatically helps to build a 
graph-based representation. This solution allows biologist to suitably explore huge sets of genomic 
data, but it could be applied to other application fields. This kind of graphical exploration has the 
advantage to highlight some global topological characteristics, which are uneasily visible using 
traditional exploration tools. Finally, some results produced by GenomeExplorer software on 
various sets of biological data, are presented. 
 
 
1  Introduction 
 
The ADN-Viewer [8] [9] software offers us to visualize the complex spatial trajectory of huge 
naked DNA augmented by genetic annotated information provided by GenoMedia [10] platform. 
The third dimension in DNA visualization, allows biologists a new representation to go from 
genetic approach (studying targeted genes) to a genomic ones (studying whole genome). In this 
kind of immersive visualization, the biologists interact more directly and intuitively with their 
objects of interest. The fact to visualize a whole annotated genome, thanks to ADN_Viewer, shows 
the possibility of exploring large genomic data within an immersive environment. However a 
greatest part of genome knowledge is not in annotated DNA or protein sequences. Indeed, there is a 
significant quantity of information relating to these genes, stored in unstructured manner in the 
million genomic publications.  
 

Our objective is to elaborate new solutions in order to virtually explore both textual and factual 
genomic data. The textual data result from Medline [16] and factual ones come from the many other 
databases, such as GenBank [14], SwissProt [15], or Decrypthon [13]. 



 

 
In this paper, we firstly situate this work compared to existing ones, in order to highlight the interest 
of our approach. This approach is mainly based on the definition of a genomic data federator 
language, answering the requirements and specificities of genomic databases. This language must 
take into account the heterogeneity resulting from textual and factual data. Then we explain the 
representation methods to view these data within an immersive framework. Finally, we present 
some results produced by GenomeExplorer software on various sets of biological data.  
 
 
2 Situation 
 
A synthetic and short state of the art relating to our problems is difficult to do, because the field is 
on the crossing point of three main ones: automatic text processing, heterogeneous data integration, 
and visualization. However, the focusing on genomic applications restricts this work. So we only 
present here below the references that are on the intersection of the former fields. 
 
2.1 Textual information extraction 
 
J. T. Chang and S. Raychaudhuri [6] have written a clear tutorial about the problems concerning the 
natural language processing (NLP) in the specific Bioinformatics field. Several problems of the 
NLP are particularly present in the publications biology field, such as these characteristics:  

- A very frequent use of the acronyms. 
- A strong polysemia in the biological terms and their acronyms. 

It is necessary to analyze the context to solve ambiguity on these acronym or terms. In ACROMED 
[4] system developed by J Pustejovsky, the author proposed a solution to automatically build 
biological acronyms databases. Moreover in the purpose to extract semantic relations between the 
biological entities from text (such as positive retroaction), we need to efficiently solve the anaphora 
problem [5]. 
 
2.2 Genomic factual data exploration 
 
Two main obstacles prevent from doing a simple exploration in factual biological data: 

- The variability and heterogeneity of the genomic data. 
- The huge genomic data mass that permanently grows.  

The huge mass makes difficult the selection, visualization and interpretation of these data. In 
addition, heterogeneity and multiplicity of data sources reduce transparent integration for the user, 
within applications such as GenoMEDIA [10] or GenoStar [18]. 
 
2.3 Genomic data visualization 

2.3.1 ADN-Viewer 
 
The main characteristic of ADN-Viewer [8] [9], compared to other visualization applications, lies in 
the fact that such visualization is carried out within an immersive environment. Moreover, it allows 
us to apprehend whole genome, but also by fragments, as in the majority of the DNA visualization 
tools. The immersive environment facilitates also collaborative work: several people can interact 
with the objects while discussing. The third dimension offers users additional degrees of freedom, 
and helps the use of concepts that are not revealed in two dimensions. It is important for us to 
preserve ADN-Viewer user-interface modalities, in order to build coherent and integrated software 
dedicated to the analysis of genomes within an immersive environment. Finally, the immersive 



 

exploration of textual and factual data must take into account the biologist needs. Many other 
visualization tools exist focused on proteins such as Rasmol [18], VMD [19]. However, the protein 
data are relatively small and do not need a complex processing. 

2.3.2 Sequence Word 
 
The closest work that could correspond to our approach concerns the representation of factual 
genomic databases in a virtual reality context [1]. In order to use the human orientation capabilities, 
the authors present a solution where genes are positioned in a landscape ground, allowing actors to 
explore the data. The genes can be gathered spatially according to several clustering criteria, by 
using BLAST [11] algorithm calculating an alignment score. In the virtual world, a distance 
between objects represents this score. The paper highlights the following points:  

- The approach of immersive visualization brings new knowledge, which is latent in the 
data, and difficult to extract without adequate representation.  

- The representation facilitates the modeling of the crossed references, frequently used in 
biological data, thanks to additional freedom degree in the immersive environment. 

- It is significant for biologist to represent certain data credibility in this space.  
 

2.3.3 BioBiblioMetrics 
 
B. J. Staplet and G Benoit [2] propose a 2D visualization prototype of textual and factual biological 
information. The genes are extracted from the Medline [16] documents starting from MeSH [17] 
thesaurus terms. In this paper, they propose to use the mutual information coefficient to measure 
bibliographical proximity between two genes names or aliases. This genes bibliographical 
information is visualized by a graph. A node represents each gene; the minimal bibliographical 
relation (user-defined co-occurrence threshold) between two genes is represented by an edge. 
Finally the length of these edges represents the proximity degree between each pair of genes. The 
genes references, found automatically by the system in the factual database, are used to increase or 
to decrease edges values. The integration of the textual and factual data is treated with an interesting 
way, but it would be interesting to look further the linguistic analysis of textual documents. 
 
 
3 A federator genomic data description language 
 
In order to efficiently integrate textual and factual data, we need to define a common format that 
must accommodate and integrate knowledge resulting from structured databanks (GenBank [14], 
SwissProt [15], or Decrypthon [13]), as unstructured information extracted from texts relating to 
genomic publications (Medline [16]). We describe in this section how we used the specific 
characteristics of the factual and textual genomic data to find an adapted description format for this 
kind of data. 
 
3.1 Factual genomic databases specificities 
 
The factual genomic databases are very heterogeneous (format or quality), but involve some 
specific characteristics. Indeed, they are often focused on biological object of interest (protein, 
gene...), described by an attribute set. Moreover, these objects are often compared one to another by 
a measurement (sequence alignment score, functional similarity…). 
 
 



 

3.2 Requirements in text information extraction 
 
It seems furthermore that the most interesting textual data for biologists are the interaction 
relationships between biological objects (genes expression, genes regulation, proteins 
interaction…). So, formal modeling as binary relationships between biological objects, as well as in 
factual databases case, comply with biologist’s requirements. For example, using text corpora, they 
could extract co-occurrence relationship between two biological terms, or more specific semantic 
relationships (like inhibition). 
 
3.3 Definition of federator data format  
 
In both above cases, these binary relationships are valuated, by co-occurrence measurements or 
alignments (numerical values), or by semantic relations extracted from texts (symbolic values). It 

seems that this format, which is based on the concept of multi-valuated objects and relationships, is 
particularly adapted to describe both textual and factual genomic data. 
 

These values can be numeric, symbolic, or textual (Table 1). So we define a format with the 
following characteristics: the identifiers represent objects. The objects and relationships are 
associated to a values list, which characterizes them. The values can be textual (label, genetic 
sequence…), numeric (like co-occurrence score), or symbolic (type of interaction, like positive 
retroaction…). 

 

 

Table 1: Genomic data translation the federator language (textual data in italic) 

 
 
4 Representation modalities in an immersive framework 
 
We recall the goal of this work: find a genomic data exploration system, as much textual as factual. 
Even if the characteristics of the federator format allow us to integrate these two kinds of data, it 
remains to define a visualization paradigm. This paradigm must be adapted at the same time to this 
format and to the user's needs. We present in this section how we map the data to a visual 
representation. 
 

 symbolic numeric textual 
Object kind of sequence (protein, DNA) 

function 
size, 

entropy, 
curvature 

textual sequence, label, 
id, term name 

(binary) 
Relationship 

textual relation extraction 
(inhibition, interaction…) 

co-occurrence, 
alignment 

consensus sequence 

<data> 
 
<object id ="0" value0 ="" ... valueN=""/> 
<object id ="1" value0 ="" ... valueN=""/> 
... 
<relation id1="0" id2="1" value0 ="" ... valueN=""/> 
<relation id1="0" id2="1" value0 ="" ... valueN=""/> 
... 

</data> 



 

4.1 Graph visualization 
 
The selected federator format is a list of objects with their binary relationships. These data may be 
interpreted as a graph, where biological objects are nodes and relationships between us are edges. 
So we choice to visualize data by 3D graph. The advantage of this system is the visualization has no 
reality references (on the contrary to metaphoric representation) and is independent from data. 
 
4.2 Visualization description format 
 
Visualizing data by a 3D graph results from the following motivation: invent a system that ensures 
independence between data and their representation. This motivation was transformed into 
requirements because of the data source format heterogeneity. Indeed we didn’t want to import this 
heterogeneity in the visualization system. However it remains to choice how graphically represents 
each value (both object and relationship values) within a 3D graph. In order to map dynamically 
data to their 3D graph representation, a language was defined. To do that, we started to build a short 
inventory of the graphic 3D object characteristics. 

 

Object (Node) Relationship (Edge)            Federated data 

 

Graphic  
attributes  

  

 

Symbolic 

 

numeric 

 

symbolic 

 

numeric 

Placement  x, y, z   

Size  dx, dy, dz  weight 

Length    length 

Color pink, green, purple… r, g, b pink, green, purple… r, g, b 

Shape sphere, cube  line, cylinder  

Transparence  a  a 

 

Table 2: Graphic characteristics summary which may be used in description format 

 
Taking into account the description data format, these graphic characteristics can be classified 

in the three following groups: symbolic, numeric, or both. So within 3D graph visualisation, 
numeric object values may be represented by numeric graphic properties, like node placement, node 
size, node color or node transparency. Numeric relationship values may be vizualized by edge 
length, edge weigth, edge color, or edge transparency.  
 
 
 



 

<view> 
 

<object objectorm="sphere" color="blue"> (default color and shape) 
 
<label map="value1"/> 
(value1 (textual) is the node label in visualisation) 
<size map="value2"/> 
(value2 (numeric) is the node size) 

 
<objectcolor map="value3"> 

<objectdomaincolor value="human" mapto="white"/> 
<objectdomaincolor value="mouse" mapto="black"/> 

</objectcolor> 
(la value3 (discrete : {human,mouse}) is the node color, according to  
defined domain values) 

</object> 
 
<relation relationform="line" color="green"> (default color and shape)  

<label map="value1"/> 
(value1 (textual) of the relations is an edge label in visualisation) 
 
<length map="value2"/> 
(value2 (numeric) of the relations is the edge length in visualisation, e.g. 
distance between node) 
... 
<a map="value3"/> 
(value3 (numeric) of the relation is edge transparency in visualisation) 

</relation> 
</view> 

 
Each symbolic values may be represented by a predefined shape or color, according to the kind of 
value (object or relationship value). Finally, the textual values may be visualized by a label within 
the 3D graph representation. 
 
4.3 Graphs representation problems 

4.3.1 Edge-valued graphs representation problems 
 
We see in the preceding section that an edge length, within the 3D graph representation, can 
represent numerical relationships values. We are faced of the following problem: mapping numeric 
data value to an edge length (distance between two graph nodes) adds new geometrical constraints 
in 3D Euclidian space. Sometimes these new constraints cannot be solved. For example, the Figure 
1 represents a graph with the wished distances between its edges. This triangle can never be drawn 
on 3D Euclidian space respecting the wished distance constraints between its edges. 
 

 

Figure 1: Distance constraints without graphic solutions 

 
An approach, proposed by Eades [12], consists in simulating two kinds of force between each 

graphic object. In order to place two nodes that are in relations respecting distance constraints, he 
proposed to apply them an attraction force, to minimize the difference between an initial random 
distance in the graphic world, and the wished distance. Moreover, a repulsion force is applied on 
two close nodes, which are not in a relation. After several iterations, this dynamic property allows 



 

system to converge into a satisfactory solution where all the distances are as closed as possible than 
desired edges lengths. 

4.3.2 Huge graph visualization problems 
 
The main disadvantage of above approach is its complexity. Each node reacts to the presence of all 
its connected neighbors by an attraction force, and moves according to the presence of all the other 
nodes per repulsion. The complexity strongly decreases by applying a visibility threshold on the not 
connected nodes. All the nodes, which are too much far according to this fixed threshold, do not 
repulse. This complexity decreasing is not enough efficient, in order to represent huge biological 
data (a million nodes or edges). In front of this kind of data (Decrypthon [13]), it was necessary to 
use segmentation algorithms in order to make some partitioning on the graph. However, in very 
huge graphs, classical clustering algorithms on graph are unsuitable. 

We firstly use an algorithm to extract connected components. Indeed, this is the easiest way to 
segment huge graphs, where the topological structure is generally unknown. However, the result 
obtained on Decrypthon was disappointing: the Decrypthon graph is relatively connected, except 
some satellite nodes. So this clustering was insufficient to really decrease complexity. But we have 
a first result on the Decrypthon topology. 

Another algorithm to detect articulation points was used to segment the graph in its bi-
connected components. When an articulation point is removed from a connected graph, this one 
becomes not connected. This clustering was then tested on a part of Decrypthon and allowed us to 
extract several bi-connected components (see Figure 4 and Figure 5). Each component has only 
single interaction with the others, so nodes placement in each component could be much more 
quickly processed. The components are then placed in Euclidean space and connected by their 
articulation point. A complementary approach using Kruskal’s algorithm, extracts a maximum 
spanning tree from a graph. The force-directed placement complexity depends on edges number. 
Graphs like Decrypthon [13], contain million of edges, so it is necessary to use an effective method 
in order to place the nodes. The Kruskal’s algorithm extracts the weightiest edges and preserves the 
graph connectivity. The force-directed placement process is then applied on this maximum 
spanning tree. This method makes it possible to deal with huge graphs, but this is a weak 
approximation, if the edge value is not a transitive function. 
 
 
5 Results 
 
We present in this section some examples about results obtained with GenomeExplorer for 
exploring factual and textual biological data. The first example deals with block duplications 
between the 16 S. cerevisiae chromosomes. The second example concerns with data from public 
databases, like Decrypthon [13]. In the last example, the data come from textual processing on 
Medline [16] papers abstracts. 
 
5.1 Factual data: Yeast gene block duplications 
 
The first results show the visualization of block duplications in the Yeast chromosomes. In this 
experiment, each object is one of the two Yeast chromosome arm. For instance, 1R is the right arm 
of the first Yeast chromosome, and 2L is the left arm of the second chromosome... For each object, 
the value value1 gives the chromosome name; the value value2 gives the chromosome size, the 
value value3 gives right or left arm. In each binary relationship between chromosomes, the value 
value1 is the number of same blocks shared by two chromosomes (if this number is null, this 
relationship is not created). 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2: Partial traditional 2D visualization   
(3 of 16 Yeast chromosomes) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3: Immersive synthetic visualization          
(32 Yeast chromosome arms) 

 
5.2 Factual data: a huge genomic set from Decrypthon  
 
Decrypthon [13] is a huge protein alignment network, where each protein is compared to another 
(500000 proteins). Here is a sample of the data available on the Decrypthon web site. 

These data are interesting but too huge to be correctly exploited (39 Go). A work about large graph 
management was carried out in order to visualize this kind of data. Here is an output of the first 
results. 
 

ID=GM_0341259 550 405 438 0 0 ID=GM_0139128 261 43 76 0 0 51 34 11 16 34 26 43 5.55 F922A317DB8B53AE 
ID=GM_0524625 314 141 194 0 0 ID=GM_0507857 1778 948 1001 0 0 62 54 19 27 54 29 46 6.42 AB4A23F6531FF818 
ID=GM_0491325 99 46 85 0 0 ID=GM_0000235 324 67 106 0 0 45 40 10 20 40 21 40 5.18 E42839C174C39C17 
ID=GM_0278014 123 23 97 1 8 ID=GM_0027567 607 345 427 0 0 58 83 22 33 75 26 46 5.39 47D9C19CD99FB3C4 
ID=GM_0348030 146 48 114 1 2 ID=GM_0048942 796 552 620 0 0 53 69 14 32 67 25 42 6.24 AA4747D4EBC53C7A 
… 
ID=GM_0029820 705 444 647 1 13 ID=GM_0258468 1162 929 1127 2 18 139 217 50 93 186 31 54 23.97 378C78B1D558D830 
ID=GM_0388572 362 313 353 1 1 ID=GM_0433870 101 6 47 0 0 58 42 16 24 41 23 44 5.50 8D7919A24AED51ED 
ID=GM_0388572 362 27 289 3 8 ID=GM_0387259 273 2 264 4 8 313 271 85 133 255 27 52 60.83 16DB267495B93023 

 

Data translation Representation settings 

<data>  
  <object id="0" value1="1R"  

value2="0.2" value3="right"/>  
  ...  
  <object id="31" value1="16L"  

value2="0.9" value3="left"/>  
  ... 
  <relation id1="2" id2="6" value0="14.0" /> 
   ...  
  <relation id1="27" id2="29" value0="8.0" /> 
</data> 

<view> 
  <object objectform="cube" color="red"> 
    <label map="value0"/> 
    <size map="value1"/> 
    <objectcolor map="value3"> 
      <objectdomaincolor value="left" mapto="red"/> 
      <objectdomaincolor value="right" mapto="blue"/> 
    </objectcolor> 
  </object>     
  <relation relationform="line" color="green"> 
    <length map="value0"/> 
  </relation> 
</view> 



 

 
5.3 Textual data 
 
We did another experiment by visualizing co-occurrence relationships between several biological 
terms used in Medline abstracts corpora [16]. This co­occurrence relationship is a mutual 
information measurement defined by the following formula:  
 

( )
YX

YX
YXIM

+
×

=
,2

, ,    Where X and Y are terms 

 
In this experiment, nodes represent the terms and lines represent the co-occurrence relationships 
measurements. The distance between nodes is inversely proportional to the co-occurrence score 
between terms. 

 

Figure 6: Bibliographic proximity network (from PubMed) of terms relating to cancer 
(pRb, FAP, P53, BCRA1...)  

 
 
 

 

Figure 4: Global proteins sequences alignment 
of a bi-connexe component of Decrypthon (1) 

 

Figure 5: Global proteins sequences alignment 
of a bi-connexe component of Decrypthon (2) 



 

6 Conclusion and future work 
 
In this paper, our objective was to elaborate new solutions in order to virtually explore both textual 
and factual genomic data. This approach is mainly based on the definition of a genomic data 
federator language, answering the requirements and specificities of genomic databases. This 
language takes into account the heterogeneity resulting from textual and factual data. The 
representation methods to view these data within an immersive environment were presented and 
successively tested on various sets of biological data. 
 

Some aspects of this work must be discussed. On the one hand, the federator genomic data 
description format can describe textual data (extracted from abstracts) as much as factual data (from 
genomic databases), separately or simultaneously. On the other hand, the independence between 
data description format and visualization methods offers biologists a total freedom in their 
representation choices. Moreover, this independence allows users to experiment different visual 
representations for the same genomic data. This allows users to extract interesting characteristics, 
visible by comparing several representations, thanks to human cognitive skills, but invisible in a 
single representation. 
 

Furthermore, both the immersive aspect and the possibility of exploring huge data in a synthetic 
way constitute the strong points of our system, because it offers a global point of view of the data 
subjacent structure. These characteristics are particularly interesting when biologists wish to explore 
a mass of data without precisely knowing what they seek. For example, the partial analysis of 
Decrypthon data shows directly several clusters within the representation. 
 

The co-occurrence measurement of terms is a rather good starting point for a textual abstract 
corpus exploration. On the one hand, it is a very synthetic representation of the lexical relations 
existing between the terms, and on the other hand, it reduces considerably the search space for the 
following phase of semantic relations extraction from genomic texts. It is necessary in the future to 
look further into the textual linguistic analysis.  
 

Finally, this study was concretized by a software development, named GenomeExplorer, which 
was used to generate the results presented in this paper. 
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The Dynamic Geometry of Developing Organisms 
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As an organism develops from an egg or a bud into the adult form there is an orderly and 
progressive change of shape, revealing a dynamic that is organised in the four dimensions of space-
time. The generic scientific term for such dynamic order in space is a field. Familiar examples are 
electromagnetic, hydrodynamic, and gravitational fields. These are described by equations that 
define the state of a field at any point in terms of a specific mathematical relationship to other 
spatial points in the field, specifying its intrinsic relational order. 

In biology the space-time order of a developing organism is described as a morphogenetic field, 
in analogy with the fields of physics, but there is as yet no consistent theory that defines the specific 
type of order that underlies morphogenesis. However, there are mathematical models that provide 
significant insight into the type of dynamic process that is at work, suggesting what type of ordering 
relationships may be involved in bringing about the cellular and tissue-level changes of form that 
transform the morphology of the organism during its development. In this article I shall describe 
briefly work on morphogenetic fields in plants and in animals that give insights into the ways in 
which molecular processes may be controlled to produce macroscopic changes. This can guide 
research that allows us to connect large-scale to small-scale dynamics in developmental processes. 
The basic ideas about morphogenetic fields have been presented [8,18], but the present article looks 
for a more direct connection with the genetic and molecular level in developing cells and tissues. 
 
 
1 Plant Morphogenesis 
 
The phenomenon that I shall concentrate on in plants is the process known as phyllotaxis: the 
generation of spatial patterns of leaf order by the vegetative meristem of the growing plant. There 
are essentially three different leaf arrangements in flowering plants, of which there are about 
250,000 different species. Each species follows one of these patterns, known as distichous or 
opposite ; whorled or decussate, tricussate, etc depending on how many leaves there are in a whorl ; 
and spiral. Spiral phyllotaxis is the most frequently observed pattern, found in about 80% of higher 
plant species. It has been known for many years that these patterns, although stably inherited, are 
not determined by genes: the vegetative meristem of a species with decussate phyllotaxis can, for 
instance, be disturbed by an oblique surgical incision that results in the production of two meristems 
each of which generates spiral phyllotaxis [14]. Also, plants with spiral phyllotaxis can undergo 
transition to a whorled pattern of flower organs in the floral meristem, and vice-versa [10]. The 
general question that this leads us to is : what kind of field dynamic in meristems is capable of 
generating the variety of patterns observed as alternative states of the field ? Included in these 
alternatives are infrequent but inherited patterns that do not belong to the three major patterns 
described for the majority of plants. The problem posed by phyllotaxis at the macroscopic level is, 
then, to describe a morphogenetic field that, with appropriate initial and boundary conditions, can 
generate the observed variety of phyllotactic patterns and explain their different frequencies across 
the diversity of higher plant species.  
 

There have been many contributions to this problem by different scientists over the course of the 
past 100 years, but a particularly comprehensive treatment has been provided by Douady and 
Couder in a series of articles published in 1996 (J. theoret. Biol., 178, pp 255, 275, and 295). They 
show how a morphogenetic field in the meristem, governed by a particular type of spatial 



relationship that describes how existing leaf primordia inhibit new leaf initiation as a function of 
distance, together with the conical geometry of the meristem, can account for the various patterns of 
leaf formation observed. They also show that the differential abundance of the different patterns 
among the different species, with spiral the most common, can be understood in terms of the 
intrinsic stability of the different phyllotactic modes. This model shows us, in principle, how leaf 
phyllotaxis can be generated by a single type of morphogenetic field, the various patterns arising as 
a result of different initial and boundary conditions governed by parameters of the model. The 
parameter values that stabilise different phyllotactic patterns are assumed to be specified by genes 
whose action can select the particular trajectory followed by the morphogenetic field so that one 
species follows one pattern and another a different one. However, a specific morphogenetic pattern 
can be transformed into another by a change in the boundary conditions of the field, as in a surgical 
cut through the meristem, or by change of parameter values during development, governed by a 
change in gene activity, as in a switch from spiral leaf pattern to a whorled pattern of organs in the 
flower. 
 

Despite its capacity to provide a dynamic explanation of phyllotaxis in principle, the limitation 
of a theoretical model of morphogenesis of the type studied by Douady and Couder is that it does 
not tell us precisely what type of field we are dealing with, nor does it inform us about the 
molecular nature of the processes involved. It operates at a level of abstraction that gives us 
important insights into the type of explanation required in terms of spatial ordering principles, but it 
necessarily fails to tell us the details of how the process is realised in terms of molecules and forces 
involved. In the same way, the electromagnetic field fails to explain the nature of the entities that 
express it, such as photons, or the origin of the forces whose effects are observed. Nevertheless, it 
gives us very significant insights into the process we seek to understand, defining many of its 
constraints. Maxwell’s equations for electromagnetic fields capture essential relationships 
underlying the phenomena, although they need to be significantly modified to describe quantum 
electrodynamics. 
 

Recently there have been studies by Reinhardt et al. [13] indicating the nature of the molecules 
involved in generating phyllotactic patterns that reveal a field dynamic different in detail to that 
assumed by Douady and Couder (1996). They assumed an inhibitory influence, possibly carried  by 
a morphogen from a leaf primordium, that decreases with distance, allowing a new leaf to form at a 
critical distance from a developing leaf. However, the evidence presented by Reinhardt et al. is that 
the influence is an induction of primordium formation by auxin. A new leaf acts as a sink for auxin 
that gets transported away from the site, thus preventing new leaf formation in its neighbourhood. 
The inhibition assumed by Douady and Couder is then replaced by removal of an inducer from the 
new leaf rather than a direct inhibitory action by a morphogen. The field rule is therefore effectively 
inverted so that instead of permissive regions of low inhibition allowing new leaf formation in a 
scalar field, we have domains of elevated auxin, a morphogen that induces leaf initiation, and 
transport of auxin away from the new leaf and its boundaries in the meristem as the leaf develops, 
preventing new leaf initiation in its neighbourhood. The dynamics is more complex than a scalar 
field of inhibition because there is now a vector component that governs where the peaks of auxin 
occur in the field, arising from polarised transport of the morphogen. The field is therefore closer to 
a hydrodynamic flow field, with sources and sinks and a vector field of flux direction and rate 
throughout the meristem.  
 

The elegant studies of Reinhardt et al. take the question of morphogenetic fields in plants in 
some very interesting and challenging directions. Clearly they do not explain phyllotaxis, which 
requires both a coherent model of the whole and an experimentally valid molecular dynamic, as in 
the construction of the Navier-Stokes equations for hydrodynamic fields in liquids. The vector field 
component underlying auxin flow direction is governed by the spatial location of auxin pumps in 
the cell membrane, such as PIN1, a protein that is localised to the apical side of cells in the outer 



layers of the meristem, transporting auxin apically,  but orientated for basal transport in developing 
vascular cells of the developing leaf. Thus there is a field of regulatory influence that underlies the 
production and localisation of PIN1 in cells that needs to be explained in terms of molecular 
organising forces in order to model this morphogenetic field. Modelling the close coupling between 
oriented pumping across cell walls, cell differentiation, and auxin flow patterns throughout the 
meristem to produce the coherent macroscopic patterns of leaf arrangements observed in leaf 
phyllotaxis presents an interesting challenge for those seeking to provide an integrated 
understanding of this robust morphogenetic process. Clearly any model that seeks to explain the 
phenomena must achieve the same range of integrated understanding of phyllotactic patterns and 
their transformations as the model of Douady and Couder does. 
 
 
2 Morphogenesis in Animals 
 
Animal morphogenesis has deep similarities with the process in plants, but also has significant 
differences. There is a coherent dynamic throughout the embryonic domain that gives rise to a 
particular structure such as a limb or an eye, a heart or a sex organ, similar to the coherence that 
gives to the leaf primordium its spatial order. There is also a higher-order spatial pattern that 
generates the spatial relationships between the various organs within the normal animal body as a 
whole, as there is in the plant meristem, producing the pattern of relationships that results in 
phyllotaxis. There is thus a hierarchy of ordering relations in the developing organism that can be 
partially uncoupled, revealing what are called developmental modules. The partial autonomy of 
these modules results in the possibility of inducing ectopic eyes or limbs or flower organs that are 
recognisable units of form though they are out of place in relation to the normal pattern. My 
concern here is to examine possible connections between intracellular distributions of particular 
classes of molecule that can be regarded as morphogens in animal embryos and the macroscopic 
patterns they may produce at the tissue level. In this sense I am looking at relationships similar to 
those between polar transport proteins like PIN1 and a morphogen such as auxin, which affect 
growth and form in the meristem, but now asking what type of molecular action may be involved in 
generating the patterns of geometrical change that are observed in animal embryos.  
 

I shall base the model that follows on a ideas presented by Fred Cummings, a research colleague, 
in a series of papers connecting geometrical transformations in animal embryos to the action of 
morphogens that affect cell-cell adhesion and tissue deformation [2-6]. The core idea underlying 
Cummings’ work is to connect the spatial patterns of morphogens localised within cell membranes 
to the systematic changes in the curvature of cell sheets that underlies morphogenetic processes 
such as budding and tentacle formation in hydroids, bryozoa, and ascidians ; gastrulation, 
neurulation, and segmentation in chordates ; and formation of the heart, lungs and gastrointestinal 
tract in vertebrates. This approach was described briefly in [9]. Cummings has also applied the 
general ideas of his model to plant phyllotaxis [7]. This model works at a high level of abstraction 
but seeks to link changing patterns of gene activity and molecular distibutions to morphogenetic 
movements. The core idea is a closed dynamic cycle in which cell adhesion molecules localised in 
membranes of polarised cells comprising sheets of embryonic tissue induce shape changes in the 
tissue, and these geometrical changes cause differential change in the concentration and distribution 
of cell adhesion molecules.  
 

Cummings assumes that there are two different types of cell adhesion molecule, present in 
concentration NA and NB , activated by diffusible ligands A and B. The rate of production of ligand 
A is proportional to the concentration of activated adhesion molecule NA in the cell, while its 
production is inhibited by NB, and similarly for ligand B, so that the two together act as a kind of 
toggle switch : where NA is high, NB  is low, and vice versa. Since ligands can diffuse between cells, 
activated adhesion molecules are governed by partial differential equations of the type familiar to 



biologists through the work of Turing [17] and Meinhardt [11] on morphogen patterns. However, 
Cummings’ model generalises this so that there is no need for a pair of morphogens with different 
diffusion constants to produce spatial patterns, as in reaction-diffusion models. Spatial patterns can 
form simply as a result of the kinetics of production of the cell adhesion molecules in the partial 
differential equations describing their production and spatial patterning. 
 

While the kinetics of these cell adhesion molecules is hypothetical, there are categories of 
signalling molecules in cells that have a similar type of behaviour to those described above as a 
switch, in particular members of the Wnt family (Wg or wingless in Drosophila), which are 
accompanied by  modulating G proteins. Wnt/Wnt interaction may be the primary example of the 
switch described above [16,12,15,19], while Delta and Notch constitute another example  [1]. Since 
Wnt proteins control many developmental pathways, including cell adhesion molecules  [19], these 
identified regulatory molecules may underlie the kinetics assumed for the reciprocally coupled pair 
of cell adhesion molecules NA and NB, the morphogens of the model.  
 

In general, as the geometry of the developing tissue changes under the action of the cell adhesion 
molecules, the pattern of their distribution in space will change in accordance with the property that 
for any particular geometry there will be a particular spatial solution of the partial differential 
equations, starting with defined initial and boundary conditions. There is thus a closed causal loop 
from morphogen distribution to geometry and back to morphogen pattern, which can change as the 
cycle proceeds. The system has dynamic autonomy. Cummings [6] has shown that various 
morphogenetic patterns, such as gastrulation and segmentation, can be generated by this type of 
model. The computations require the use of conformal coordinates for position in the tissue, and 
coupling between morphogen concentrations and functions defining local curvature of cell sheets. 
However, very few parameters are used and solutions appear to be robust. There are also ways in 
which one can include switching between gene regulators as size and geometry of the developing 
embryo change.  
 

The value of such a model is the realisation of a basic pattern generator for animal embryos that 
produces three dimensional morphologies, doing so by a continuous unfolding for shape from 
simple initial conditions such as a symmetric ball of cells (e.g., an asexual bud in hydroids or 
ascidians), or as a blastula in higher organisms undergoing sexual reproduction. There are many 
molecular candidates for molecules that can influence cell shape such as those suggested  involving 
Wnt, and including  interactions between the Wnt/β-catenin branch and a Wnt/Ca2+ branch that 
extends the influence to the cytoskeleton and modulating proteins. Cummings’ model is intended to 
do no more than provide a candidate for a new type of morphogenetic dynamic that is autonomous 
and includes specification of geometry in the developing organism. As such, it is an original 
contribution to thinking that links the different levels of morphogenesis from genes and molecules 
to the three-dimensional form of the whole developing organism, using plausible mechanisms. 
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1 Introduction 
 
Rhythmic phenomena occur at all levels of biological organization, with periods ranging from less 
than a second to years [1]. Among these rhythms, circadian oscillations, which occur with a period 
of about 24 h, play a key physiological role in the adaptation of living organisms to their 
periodically varying environment. These circadian rhythms can occur in constant environmental 
conditions, e.g. constant darkness, and are therefore endogenous. Experimental advances during the 
last decade have permitted to largely unravel the molecular bases of circadian rhythms in a number 
of organisms, the most studied so far being Drosophila [2]. Significant progress has also been made 
on the mechanism of circadian rhythms in Neurospora [3], cyanobacteria [4], plants [5] and 
mammals [2]. 
 

Oscillatory behaviour often originates at the cellular level from regulatory feedback loops which 
involve many parameters and interacting variables. Relying only on sheer intuition to predict the 
dynamics of such complex regulatory systems rapidly meets with limitations. Analyzing the origin 
of oscillations has therefore much to gain from theoretical models closely related to experimental 
observations. Some of the roles and advantages of theoretical models in biology are listed in Table 
1 [6]. These considerations on the use of theoretical models apply to the study of biological 
processes in general, but pertain with particular weight to biological rhythms that only occur in 
precise conditions. Determining these conditions is a primary goal of a modelling approach. 
 

• Provide a unified theoretical framework accounting for available experimental observations, 
that corroborates or not experimental conclusions. 

• Conceptualization leads to clarification of hypotheses. 
• Analyze complex situations involving multiple, coupled variables, for which it becomes 

impossible to rely only on sheer intuition. 
• Models show that certain types of behavior only occur in precise conditions, in a domain 

bounded by critical parameter values, in contrast to what may be predicted by merely verbal 
descriptions. 

• Determine the qualitative and quantitative effects of each parameter and identify key 
parameters. 

• Rapid exploration of different mechanisms and of large ranges of conditions. 
• Possibility to ask questions which may be inaccessible to experiments or hard to address 

experimentally. 
• Testable predictions: suggestion of experiments, which will either validate the model or call 

for its modification. 
• Optimal situation: provide counterintuitive explanations or surprising predictions. 
• Mathematical structure underlines link with similar phenomena in other contexts. 

Table 1: Some roles and advantages of theoretical models in biology [6]. 
 



 

Models have so far been applied primarily to ultradian biochemical oscillations, characterized by 
periods ranging from seconds to minutes [1]. Theoretical models for circadian rhythms were at first 
borrowed from the physical literature, as exemplified by the use of the van der Pol oscillator for 
modelling properties of circadian oscillations. This line of research is still pursued to study, for 
example, the effect of light on the human circadian system [7].  
 

Besides these abstract models, a complementary approach rests on the study of models more 
directly related to the biochemical regulatory processes that underlie circadian rhythms. These 
models can be viewed as extensions of a general three-variable model proposed by Goodwin [8] 
soon after the principles of genetic regulation were established. Anticipating many of the 
subsequent experimental findings on circadian clock mechanisms, this author suggested that 
negative feedback on gene expression can lead to oscillations in protein and mRNA levels. 
Goodwin's model is still used, e.g. to study the phase shifting of circadian rhythms by inhibitors of 
protein synthesis in Neurospora [9]. Given the increasing availability of experimental data, more 
detailed theoretical models can now be considered for circadian rhythms. Such models based on 
transcriptional regulation have so far been proposed for the circadian clock of Drosophila [10-14], 
Neurospora [9,14] and mammals [15,16]. 
 

2 Model for circadian rhythms in Drosophila 
 
The model for circadian oscillations in Drosophila is represented schematically in Figure 1. The per 
and tim genes are transcribed in the nucleus before the mRNAs are transported into the cytosol 
where they are translated. The PER and TIM proteins are multiply phosphorylated and form a 
complex that enters the nucleus [2]. Through interaction with the products of the activator genes 
clock and cyc (not shown in the Figure) the PER-TIM complex inhibits the expression of the per 
and tim genes. The model for circadian rhythms in Drosophila incorporating the formation of the 
PER–TIM complex is described by a set of ten kinetic equations [11]. Light controls the rhythm by 
triggering the destruction of the TIM protein through an ubiquitin-proteasome mechanism that 
requires TIM phosphorylation [2].  
 

The model schematized in Figure 1 predicts the occurrence of sustained oscillations in constant 
darkness (DD), as observed experimentally. Shown in Panel A of Figure 2 are the oscillations in 
total PER protein (Pt), per mRNA (MP), and nuclear PER–TIM complex (CN) obtained in 
conditions corresponding to DD; such conditions are achieved in the Drosophila model by holding 
at a constant low value parameter vdT which measures the maximum rate of TIM degradation (see 
Figure 1). Although the environmental conditions remain constant, the PER–TIM control system 
generates autonomous oscillations with a period close to 24 h for the set of parameter values 
considered.  
 

When plotting the time evolution of the system as a function of the concentrations of two of the 
biochemical variables, sustained oscillations obtained in conditions of constant darkness (Figure 2, 
Panel A) correspond to a trajectory that takes the form of a closed curve (Panel B). For a given set 
of conditions (i.e. of parameter values), this closed curve can be reached regardless of initial 
conditions and is generally unique; hence the name of limit cycle given to this type of trajectory 
associated with periodic behaviour. Because perturbations do not change in the long run their period 
or amplitude, limit cycle oscillations represent a particularly stable mode of periodic behaviour. 
Such stability holds with the robust nature of circadian clocks that have to maintain their amplitude 
and period in a changing environment while retaining the capability of being phase shifted by light 
or temperature. 



 

 
Figure 1: Scheme of the model for circadian oscillations in Drosophila [6,11]. The model is based 
on the negative regulation exerted by the PER–TIM protein complex on the expression of the per 
and tim genes; light controls the rhythm by enhancing the rate of TIM degradation, vdT. The model 
incorporates gene transcription in the nucleus, accumulation of the corresponding mRNAs in the 
cytosol where the associated protein synthesis takes place, protein and mRNA degradation, 
phosphorylation-dephosphorylation reactions involving PER and TIM, protein transport into and 
out of the nucleus, formation of a PER-TIM complex and regulation of gene expression by the 
nuclear form of this complex. Nuclear processes are shown in red and the effect of light is indicated 
by the blue arrows. 
 
 
 

 
Figure 2: Oscillations in continuous darkness and evolution toward the limit cycle [6]. (A) Shown 
is the temporal variation in per mRNA (MP) and in the total amount of PER protein (Pt), together 
with the variation in nuclear PER-TIM complex (CN). (B) Evolution toward a limit cycle 
corresponding to sustained oscillations in Panel A. The limit cycle is reached here from initial 
conditions located near the unstable steady state. The arrow indicates the direction of movement 
toward and along the limit cycle. 
 



 

Light triggers degradation of the TIM protein in Drosophila. Incorporating a periodic variation 
of the light-controlled parameter into the model for the Drosophila circadian clock allows us to 
simulate the entrainment of circadian oscillations by light-dark (LD) cycles. In such conditions, the 
maximum TIM degradation rate vdT varies in a square-wave manner as it increases up to a higher 
value during each light phase. As the duration of both the light and dark phases is equal to 12 h in 
the case considered, the system is entrained precisely to the 24 h external periodicity. The effect of 
continuous light (LL) is simulated by holding parameters vdT at a constant high value. As observed 
in the experiments, the oscillations in the model are readily damped in LL when increasing vdT up 
to a higher, constant value.  
 

The induction of phase shifts by light pulses represents one of the most conspicuous properties of 
circadian rhythms. Since we have incorporated the effect of light into the model for Drosophila 
circadian rhythms [11], we can determine in this model the response to light pulses as a function of 
the phase at which the system is perturbed, and we can use the results to construct phase response 
curves (PRCs) that can be compared with those determined experimentally, as for the case of the 
wild type and the short period perS mutant [11]. 
 

Another interest of theoretical models is to shed light on the conditions in which light pulses can 
suppress circadian rhythmic behavior. The possibility that critical pulses of light may achieve such 
an effect by bringing the oscillatory system back to the singularity has long been explored both 
experimentally and theoretically by Winfree [17]. The models considered here allow us to address 
this issue explicitly [18] and to show that there exist a domain of duration and amplitude for the 
light pulse that can suppress the oscillations and bring the system to a stable steady state. 
 

3 Model for circadian rhythms in mammals 
 
The model for circadian oscillations in mammals is represented schematically in Figure 3. As the 
situation in mammals resembles that observed in Drosophila [2], this model is closely related to the 
model for Drosophila (Figure 1). Nevertheless, there are several differences between these two 
models. Instead of TIM, it is the CRY protein that forms a regulatory complex with a PER protein. 
Several forms of these proteins exist (PER1, PER2, PER3, CRY1, CRY2). The PER-CRY complex 
inhibits the expression of the Per and Cry genes in an indirect manner, by binding to the complex 
CLOCK–BMAL1; the latter, formed by the products of the Clock and Bmal1 genes, activates Per 
and Cry transcription. Besides this negative regulation of gene expression, indirect positive 
regulation is also involved. Bmal1 expression is subjected to negative autoregulation by BMAL1, 
via the product of the Rev-Erbα gene. The complex between PER2 and CRY1 or CRY2 enhances 
Bmal1 expression in an indirect manner, by binding to CLOCK–BMAL1 and thereby reducing the 
transcription of the Rev-Erbα gene. Light can entrain circadian rhythms in mammals by inducing 
the expression of the Per genes. 
 

The model can account for autonomous, sustained circadian oscillations in conditions 
corresponding to continuous darkness. In agreement with experimental observations, Bmal1 mRNA 
oscillates in antiphase with Per and Cry mRNAs, and the proteins undergo similar oscillations and 
follow their mRNA by a few hours. Sustained oscillations only occur in an appropriate range of 
parameter values. Outside this range, rhythmic behavior disappears and the system evolves toward a 
stable steady state; such an evolution is often accompanied by damped oscillations. Given the large 
number of parameters considered in the model it is difficult to thoroughly assess its sensitivity to 
changes in parameter values. Useful insights can nevertheless be obtained by determining, for each 
parameter, one at a time, the range of values producing sustained oscillations as well as the 



 

variation of the period over this range, while keeping for the other parameters the basal values. This 
sensitivity analysis allows us to identify the key parameters of the system. The model also accounts 
for the entrainment by light-dark cycles. However, the phase of the oscillations after entrainment 
can be very sensitive to the choice of other parameter values. Thus, different phases can be obtained 
in LD for parameter values yielding comparable periods of circadian oscillations in DD. 
 

The existence of intertwined positive and negative regulations in the scheme of Figure 3 raises 
the possibility that the mechanism producing sustained oscillations may not be unique. To test 
whether the oscillations rely primarily, as expected, on the indirect negative feedback loop 
involving the inactivation of the CLOCK–BMAL1 complex via its binding to PER–CRY, we tried 
to determine whether oscillations still occur when preventing this inactivation. When silencing the 
negative feedback loop involving the PER–CRY complex, e.g. by setting to zero the rate of 
synthesis of the PER protein, oscillations disappear and the system evolves toward a stable steady 
state, as observed in mice for the double mutants mPer1/mPer2 [2]. 
 
 
 

 
Figure 3: Model for circadian oscillations in mammals involving interlocked negative and positive 
regulations of Per, Cry, Bmal1 and Rev-Erbα  genes by their protein products [14]. We focus on the 
case where BMAL1 exerts a direct negative feedback on the expression of its gene. The role of the 
Rev-Erbα gene product in the indirect regulation of Bmal1 expression by BMAL1 (indicated in 
grey) is considered in a second stage (the grey loop then replaces the direct negative feedback 
exerted by BMAL1). The kinetic equations governing the time evolution of the model are given in 
[15], together with the definition and values of the parameters. 
 



 

It is noteworthy that the model also predicts the possibility of sustained oscillations in the 
absence of Per mRNA or PER protein. Indeed, the model indicates that the negative autoregulatory 
feedback exerted by CLOCK–BMAL1 on the expression of the Bmal1 gene suffices to produce 
sustained oscillatory behaviour in all the other variables. At least two oscillators are thus coupled 
within the circadian control system. The first oscillator relies primarily on the indirect negative 
feedback exerted on the expression of Per and Cry through the binding of PER–CRY to the 
CLOCK-BMAL1 activating complex. The second mechanism capable of generating sustained 
oscillations is based on the negative feedback exerted by CLOCK-BMAL1, via REV-ERBα, on the 
expression of the Bmal1 gene. The latter mechanism should become unmasked only when the other 
feedback becomes inoperative, provided that parameter values are such that they allow for sustained 
oscillations. Parameter values may indeed be such that in the absence of the PER–CRY feedback 
loop the system evolves, with or without damped oscillations, to a nonoscillatory state. It is also 
possible that the second oscillatory mechanism is only capable of producing damped oscillations, 
which could become sustained when entrained by a periodic signal such as temperature cycles.  The 
possibility of a second oscillatory mechanism in mammals holds with the observation that in 
mPer1/mPer2 deficient mice, rhythmicity can be restored for several days by an extended light 
pulse (K. Bae and D. Weaver, personal communication).   
 

Of particular interest is the effect of the maximum rate of PER phosphorylation, Vphos because 
the phosphorylation status of PER has been related to disorders of the sleep-wake cycle in humans. 
Thus, a mutation of hPER2 that reduces its ability to be phosphorylated by casein kinase Iε has been 
linked with the familial advance sleep phase syndrome, FASPS [19]. In this syndrome, sleep onset 
and offset occur very early in a 24h LD cycle, and the phase of sleep is advanced by 3-4 h. This 
phenomenon can be accounted for by the model upon decreasing the value of the PER 
phosphorylation rate [15]. 
 

The behavior outside the range of entrainment also bears on physiological disorders of the sleep-
wake cycle. Lack of entrainment corresponds to the non-24h sleep-wake syndrome in which the 
phase of the sleep-wake pattern constantly changes with respect to the LD cycle [20]. Such free-
running circadian oscillations have been observed both in blind [21] and sighted subjects [22].  
 

The theoretical model for the mammalian clock thus allows us to address not only the molecular 
mechanism of circadian rhythms but also the dynamical bases of physiological disorders related to 
perturbations of the circadian clock. 
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A crucial step in the development of a higher organism is the generation of the primary body axes. 
How are these axes generated? How is their orthogonal orientation guarantied? How is the internal 
patterning along an axis accomplished? How are legs and wings inserted at the correct place, with 
the correct orientation in relation to the main body axes? How are segment formed? I have proposed 
molecular-realistic models for the steps mentioned above. These models reveal the minimum 
molecular requirements that have to be satisfied to accomplish these steps. Most of these models 
found direct support from more recent molecular-genetic observations.  
 
 
1 An ancestral axis: the patterning of the freshwater polyp Hydra and of the brain 

region in higher organisms 
 
Radial-symmetric animals such as Cnidarians are regarded to be close to the common ancestor 
before bilaterality emerged during evolution. Comparison of the expression patterns of homologous 
genes in Hydra and in higher organisms suggest the following scenario (Fig. 1): 
 
 

 
 
Figure 1: Relation of the axis in the freshwater polyp Hydra to those of higher organisms. A 
hypothetical common ancestor (A) of Hydra (B) and vertebrates (D) is assumed to have a cup-
shaped radial-symmetric geometry. The bottom of the cup-shaped organisms (left) gave rise to the 
foot in Hydra and to the most anterior part of vertebrates, the forebrain and heart (Nkx2.5 
expression, light grey at left in each figure). In contrast, the opening of the gastric cavity gave rise 
to the so-called mouth opening in Hydra and to the anus of higher organisms (Wnt-expression). An 
essential intermediate step is assumed to be a widening of the blastoporus. (C) The Spemann-
Organizer, initiated on the blastoporus, is a new organizing region that initiates and elongated the 
midline, which is responsible for the organization of the dorsoventral axis.  
 



1. The hypostome with the gastric opening of the hydra (the so-called “head”) corresponds to the 
most posterior pole, the anus of higher organisms (Wnt-expression). 

2. The Hydra-foot corresponds to the most anterior part of higher organisms, the forebrain and 
heart. This is indicated by the Nkx2.5 expression. 

3. The tentacle/hypostome border corresponds to the Midbrain/Hindbrain border (posterior border 
of  Otx-expression). 

4. A narrow zone next to the gastric opening, the region of Gsc/Brachyury expression enfolded to 
form the trunk in higher organisms. 

 
Thus, hydra can be regarded as a living fossil, telling us about evolutionary early axis formation 
before bilaterality and trunk formation was invented. In this view it is straightforward that the 3’-5’ 
Hox gene pattern, typical for the trunk of higher organisms, is absent in hydra: in the common 
ancestor the trunk was not yet there. The system that were patterning once the body of the ancestor 
was later used to pattern essentially the fore- and midbrain of vertebrates. The trunk, the largest 
portion of higher animals was added during further evolution by an enfolding of a narrow zone 
between the tentacle zone and the gastric opening.  
 
 
2 How to organize a single axis: pattern formation by autocatalysis and lateral 

inhibition 
 
Some small specialized regions obviously play a decisive role for the overall organization of the 
developing organism. Such organizing regions direct pattern formation in the surrounding tissue. 
Pattern formation requires that originally equivalent cells become different from each other. We 
have proposed that biological pattern formation is based on local self-enhancement and long-range 
inhibition. It can be shown that the mechanism proposed by Turing (1952) is also based on this 
principle although Turing has not interpreted his mathematically abstract concept in this way.  

 

 
 
Figure 2: Stages in the generation of elementary patterns by local self-enhancement and long 
ranging inhibition. Shown are the initial, an intermediate and the final activator distribution. Top: 
Monotonic gradients are formed if the range of the activator is comparable to the size of the field. 
The pattern orients itself along the longest extension of the field. This is appropriate to supply the 
tissue with positional information. Centre: a more or less regular arrangement of peaks results in 
fields that are large compared to the range of the inhibitor. Bottom:  stripe-like distributions result if 
the autocatalysis saturates (Meinhardt, 1989).  
 



A molecular realization of this concept requires a substance (or a cascade of substances) that has an 
autocatalytic feedback on its own synthesis. A simple molecular interaction with pattern-forming 
capability could consist of an ‘activator’ a(x) whose autocatalysis is slowed down by a long ranging 
‘inhibitor’, h(x). The following equation provides an example: 
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These equations describe the change of the activator and inhibitor concentration per time unit. 
The concentration change of the activator is proportional to an autocatalytic production term (a2), 
and that the autocatalysis is slowed down by the action of the inhibitor (1/h). As any other 
biological substance, the activator molecules become degraded. It is natural to assume that the 
number of disappearing activator molecules is proportional to the number of activator molecules 
present. The autocatalysis must be non-linear since the production rate must overcome the 
disappearance by the linear decay. The simulations in Fig. 2 shows that this interaction is able to 
generate basic pattern observed in development, gradients, periodic patterns and stripes. 
 
 
3 Gene activation: a pattern formation in the ‘gene space’ 
 
The generation of signals by the exchange of molecules via diffusion works only in small fields. In 
larger fields the time required to exchange information by randomly moving molecules would be 
much too long. Therefore, the signals generated at small scales have to be translated into more 
permanent cell states that can be maintained upon further growth. The obvious means is a stable 
concentration- (and thus space-) dependent activation of genes. The choice of a particular pathway 
under the influence of a morphogenetic signal requires the activation of particular genes and the 
suppression of alternative genes. This situation has formal similarities with pattern formation. 
Pattern formation in space requires an activation at a particular position and the inhibition in the 
remaining part. Analogously, the selection of a particular pathway requires the activation of a 
particular gene and the suppression of the alternative genes. Thus, cell determination can be 
regarded as a pattern formation among alternative genes. Based on this similarity, I have proposed 
that gene activation requires a direct or indirect feedback of a gene product on the activation of its 
own gene and their mutual competition such that only one of the alternative genes can remain active 
in a particular cell. (Fig. 3). Meanwhile many such autoregulatory genes have been found.  
 

Based on ligation experiments with early insect embryos I have proposed that starting from a 
default gene activity, other genes become activated in a step-wise manner. Each further step 
requires a higher morphogen concentration. This process comes to rest if the actually activated gene 
corresponds to the local morphogen concentration (Fig. 3). The patterning of the hindbrain under 
the control of retinoic acid follows this mode of regulation. To require higher and higher 
morphogen concentrations for such a promotion, the system has to be less and less sensitive for the 
morphogen. In order that these less-sensitive feedback loops are able to dominate over the more 
sensitive loops, the ‘higher’ genes must be stronger in the autoregulation.  Due to the positive 
feedback in the gene activation together with the unidirectional promotion, the process is essentially 
irreversible. A reduction of the signalling molecules is without effect since the morphogen is not 
required for the maintenance of the gene activity.  



 
 
Figure 3: Space-dependent gene activation by a morphogen gradient. (A) An analogy: a flood can 
displace a barrel to a higher level on a staircase. After lowering of the water level, the barrel 
remains on a particular level that corresponds to the highest level the flood has obtained. (B-D) A 
set of genes 1, 2... is assumed whose gene products feed back on the activation of the corresponding 
genes. In addition, all genes compete with each other for activity. This has the consequence that 
only one of the genes can be active within one cell. Depending on the local level of the morphogen, 
a promotion from gene 1 to gene 2  and so on takes place until the local morphogen concentration is 
insufficient for a further step. Sharply confined regions of gene activities emerge despite the fact 
that the initiating signal is graded. The once achieved gene activation is maintained even if the 
promoting signal is no longer available. 
 
 
 
4 Somite formation: sequential conversion of a periodic pattern in time into a 

periodic pattern in space 
 
The formation of somites (Fig. 4 a, b) is a crucial step in the primary anteroposterior patterning of 
vertebrates. Somites are the precursors of many essential structures including the vertebrae and the 
body musculature. During such a metamerization two patterns are laid down. A periodic pattern 
consisting of a serial repetition of homologous structures. Superimposed is a sequential pattern, 
which makes the repetitive subunits different from each other. For instances, only the thoracic 
somites form vertebrae that bear rips. 

 
To be compatible with classical observations I proposed in 1982 that somites are generated by a 

stepwise conversion of a periodic pattern in time into a periodic pattern in space (Fig. 4). Although 
somites are separated from the presomitic mesoderm in an anterior-to-posterior sequence, the 
counter-intuitive prediction was made that the specification of anterior and posterior half-somites 
occur by wave-like processes that are initiated at the posterior end of the presomitic mesoderm and 
move toward anterior until they come to rest at the correct distance from the last formed half-
somite. The prediction has been confirmed by the observation of the c-hairy1 gene in the chicken 
(Palmeirim et al., 1997) that behaves as expected for a signal generating the posterior half-somite. 
(Fig. 4 c, d). Also the prediction that this oscillation is used to activate genes that specify the 
individual character of the somites has found meanwhile support. 
 



 
 
Figure 4 : Somite formation. (a, b) In chicken, somites separate from the non-segmented presomitic 
mesoderm (PSM) in an anterior-to-posterior sequence. At 25hr of incubation about 5 somites are 
visible. Ten hours later, about 12 somites are present. (c) Model (1982): Under the influence of 
positional information (top), cells oscillate between two states, A (white) and P (black). Only cells 
above a threshold can participate. This leads to a first  A/P border. At such a border, the two states 
stabilize each other mutually. Each full further cycle leads to an additional pair of half-somites. In 
the course of time a transition from a periodic pattern in time to a periodic pattern in space occurs. 
The model predicted that waves originate at the posterior pole, move towards anterior and come to 
rest were the next somite has to be formed. This scheme found full support by the observation of the 
oscillating expression of c-hairy in the presomitic mesoderm of the chick by Palmeirim et al. 
(1997). 
 
 
Further readings:  

• Many simulations in an animated form and references can be found on our website 
http://www.eb.tuebingen.mpg.de/meinhardt 

 
• For the modelling axes formation in vertebrates see: 

o Models for organizer and notochord formation. Comptes Rendus Biol., 323: p23-p30, 
2000. 

o Organizer and axes formation as a self-organizing process. Int. J. Dev. Biol., 45: 
p177-p188, 2001. 

o The radial-symmetric hydra and the evolution of the bilateral body plan: an old body 
became a young brain. BioEssays, 24: p185-p191. 

 
• The elementary mechanisms of biological pattern formation are treated in the book “Models 

of Biological Pattern formation” (1982; Academic Press). A remake of this book is available 
for download at: http://www.eb.tuebingen.mpg.de/dept4/meinhardt/82-book/Bur82.htm  
  

• A book in which the beautiful patterns on tropical seashells have been used as a natural 
picture book to illustrate principles of pattern formation: “The Algorithmic Beauty of Sea 
Shells”. 2003, 3rd Edition; Springer, Heidelberg, New York: 
http://www.springer.de/cgi/svcat/search_book.pl?isbn=3-540-44010-0  
This book contains a CD with animated simulations and programs that run on a PC. In these 
programs, parameter can be changed and the effect on the pattern formation can be 
inspected. New interactions can be introduced if the programs are recompiled 
(corresponding BASIC compilers are freely available from the web).  

 



 

                          
 
Since a mollusc can enlarge its shell only at the growing edge, the patterns are time records of a 
one-dimensional patterning process. This allows to decode that underlying patterning process. 
Above are two examples. The oblique lines in Oliva prophyria result from travelling waves of 
pigment production in the shell-forming zone. Remarkable are the branches, which result from a 
spontaneous trigger of backwards waves – an unusual behaviour for waves in excitable media. The 
triangles on Conus marmoreus (right) result from two travelling waves, a slow one that switches 
pigmentation on and a fast one that switches it off.  
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Abstract 
 
We address the physical chemical processes underlying biological self-organisation by which a 
solution of reacting chemicals spontaneously self-organises. Theoreticians have predicted that 
macroscopic self-organisation can arise from a non-linear coupling of reactive processes with 
molecular diffusion. In addition, the presence of an external symmetry-breaking factor, such as 
gravity, can determine the morphology that subsequently develops. We have found that the 
formation in vitro of microtubules, a major element of the cellular skeleton, from tubulin, shows 
this type of behaviour. These preparations spontaneously self-organise by way of reaction and 
diffusion, and the morphology that develops depends upon the presence of a weak external factor, 
such as gravity or a magnetic field, at a critical bifurcation time early in the process. Once 
assembled from tubulin, microtubules grow and shrink from opposite ends by reactive processes 
involving the addition and loss of free tubulin. The shrinking end of a microtubule leaves behind 
itself a chemical trail of high tubulin concentration. Neighbouring microtubules preferentially grow 
into these regions, whilst avoiding regions of low tubulin concentration. The chemical trails 
produced by individual microtubules thus activate and inhibit the formation of neighbouring 
microtubules and this progressively leads to self-organisation in a manner that show analogies with 
the way that ants self-organise. Numerical simulations of the reaction-diffusion process based on 
the chemical dynamics of a population of microtubules successfully predict the main features of the 
experimental behaviour. These simulations provide insight as to how self-organisation occurs at a 
microscopic level and how weak external factors trigger this process. Evidence is presented that 
processes of this type occur in vivo during both embryogenesis and in the course of the cell cycle. 
 
 
1 Introduction 
 
The mechanisms by which biological self-organisation occur from a largely unstructured state, such 
as is initially present in a developing egg or seed, remain poorly understood. Although over the last 
two decades, studies in molecular biology have started to reveal some of the genes involved, our 
understanding of the physical-chemical laws underlying these phenomena remain uncertain. There 
are two possible physical-chemical approaches that might account for biological self-organisation 
and pattern formation; one is based on static interactions and statistical physics; the other is based 
upon non-linear chemical dynamics and co-operative phenomena. This article is wholly concerned 
with the latter approach. 
 

Normally, solutions of reacting chemicals do not self-organise. On the contrary, in living 
organisms, order and form develop spontaneously by way of biochemical processes from a state 
that initially is largely devoid of these properties. For example, during the early stages of embryonic 



 

development, patterns of certain gene products come about that determine the morphology and 
body plan of the organism that subsequently develops. Identifying and putting a name to the 
molecules that form these patterns does not as such tell us anything about the physical chemical 
process of how the pattern comes about. In addition, the early stages of biological development is 
characterised by the fact that beyond a certain critical stage, cells of identical genetic content take 
different developmental pathways so as to become differentiated from one another. 
 

One way of describing these phenomena is to identify all the molecules involved and establish 
how biological functions are related to them. This is the classical biochemical approach. However, 
another approach is slowly developing. Some scientists are asking whether a certain number of 
global biological properties might not be described in terms of what are now known as 'complex' 
systems and 'emergent' phenomena. A 'complex' system [1-3] is comprised of a population of units 
that mutually effect one another and show non-linear dynamics. In such systems, a certain number 
of new 'emergent' phenomena arise. These 'emergent' properties are not properties intrinsic to the 
individual elements present in the system, but on the contrary come about from the way that the 
individual elements 'talk to one another' and behave as a collective unit. In many 'complex' systems, 
self-organisation is an important 'emergent' phenomenon. A particular feature of some of these 
systems is that self-organisation can be strongly affected by the presence of weak external factors 
that break the symmetry of the system and so modify its collective behaviour. Striped arrangements 
often arise; when they do, they are nearly always the result of an outside external perturbation that 
induces a directional bias on the actions of the individual. 
  

Living systems consume energy in one form or another and this implies that they are out of 
thermodynamic equilibrium. Systems that are far-from-equilibrium are often characterised by non-
linear dynamics and consequently living systems provide many examples of self-organisation by 
collective processes [3, 4]. A well-studied example of this type of behaviour is the formation of ant 
colonies. A moving ant leaves behind itself trails of chemicals, known as pheromones, which can 
attract or repulse other ants. An ant encountering a trail of an attractive pheromone will change its 
direction to follow the trail. This ant, will, in its turn, deposit more pheromone on the trail thus 
reinforcing it [5]. The self-amplification of attractive and repulsive pheromone trails leads to the 
self-organisation of the ant population. It turns out that there are many similarities between the 
collective behaviour of ants and the manner by which microtubules self-organise. 
 

One of the advantages of this type of process is that ants can rapidly establish the shortest route 
between a food supply and their nest [3, 6, 7]. Consider a situation where there are two identical 
food supplies close to an ant colony. One source is slightly closer to the nest than the other. As ants 
return to the nest with food, they leave chemical trails that are followed by other ants. These ants 
reinforce the trails, and so more and more ants follow the paths to the two food supplies. However, 
from the closer of the two sources it takes less time for an ant to return to the nest. This leads to a 
larger number of ants taking this path, thus reinforcing the strength of its chemical trail, compared 
with the longer path. Hence, progressively more and more ants take the shorter path to the closer 
food supply until they all follow this route. If the food supplies are at exactly equal distance from 
the nest, then a weak external factor will suffice to favour one pathway over the other and hence 
determine which of the two food sources the ants consume. It is easy to see that the choice as to 
which route develops is determined at an early stage of the process before the reinforcement of the 
pathway has gone very far. As pathway reinforcement progresses, then it takes the application of an 
increasingly stronger external factor to induce a change whereby the alternate pathway develops. In 
the absence of such an effect, the deciding external factor need only be present for a critical period 
at the beginning of the process. Once pathway reinforcement has started, it will continue until the 
food source is completely consumed. At the beginning of this process, the distribution of ants is 
unstable to weak external factors. This is a simple example of a bifurcation in a non-linear dynamic 
system.  



 

The behaviour described above is a typical example of 'emergent' properties in a 'complex' 
system. A question that arises is how processes of this type might come about at a molecular level 
by way of biochemical reactions within biological objects such as an egg or a cell. Although 
solutions of reacting chemicals or biochemicals do not normally self-organise, nevertheless, since 
the 1930's some theoreticians have predicted that certain types of chemical reaction, when 
sufficiently far-from-equilibrium, might show  'complex' chemical dynamics which gives rise self-
organisation [8-17]. At a molecular level, self-organisation results from a combination of reaction 
and diffusion. Chemical energy is consumed, and starting from an initially homogenous solution, a 
stationary chemical pattern made of periodic variations in the concentration of some of the 
reactants, develops. We are all familiar with the fact that diffusion leads to mixing and the loss of 
order. The idea, that the contrary might arise, i.e. a suitable coupling of diffusion with reaction can 
bring about a partial separation of chemical products is not at all intuitive and constitutes a change 
of paradigm. 
 

The first scientists to have outlined this possibility seem to have been Kolmogorov [8] in 1937 
and Rashevsky [9] in 1940. In 1952, Turing published a fully developed theoretical model of self-
organisation by reaction and diffusion [10]. Over the next 30 years, starting from considerations of 
out-of-equilibrium thermodynamics [11], Prigogine, Glansdorf and Nicolis made very substantial 
developments to the subject [12-15]. Self-organised structures of this type are often called reaction-
diffusion or Turing-like structures. They also go under the name of dissipative structures. The latter 
term was widely used by Prigogine and co-workers because a dissipation of chemical energy is 
required to drive and maintain the system sufficiently far-from-chemical equilibrium that self-
organisation occurs. Even though such terms were not used at the time, what these theoreticians 
predicted was that biological self-organisation could arise as an 'emergent' phenomenon in a 
'complex' system by molecular processes of reaction and diffusion. Rashevsky, Turing, Prigogine 
and others, all postulated that such mechanisms might provide an underlying basis for biological 
morphogenesis and self-organisation. 
 

In addition to self-organisation, such reaction-diffusion systems can also show bifurcation 
properties [2, 14]. For a bifurcation of the bistable type, there exists a critical moment at which the 
initial state is unstable [18]. At this moment, early in the self-organising process, the presence of a 
weak external field, such as gravity or a magnetic field, can determine the morphology of the state 
that subsequently develops. For certain reaction-diffusion systems, Kondepudi and Prigogine [19, 
20] explicitly calculated that terrestrial gravity could have this effect. Once the bifurcation has 
occurred, the system evolves progressively along the selected pathway to the pre-determined 
morphology. It behaves as though it retained a memory of the conditions prevailing at the 
bifurcation.  
 

These concepts, although a subject of interest and debate for many years, are only now beginning 
to be progressively accepted by biologists. There are several reasons for this long delay. The first is 
conceptual; there has been (and still is) a great reluctance to accept that pattern and form can arise 
from non-linear chemical dynamics and not from static interactions. However, another more 
practical reason is that until relatively recently there were no examples of chemical and biochemical 
systems accepted as behaving in this way. For example, in chemistry, although the Belousov-
Zhabotinsky reaction, discovered in 1951 [23, 24], was cited by Glansdorff and Prigogine [13] as an 
example of a dissipative structure, it was not until 1990 that a similar type of reaction, first 
discovered in 1917, was at last accepted by the majority of workers in the field as the first example 
of a Turing-like structure [21, 22]. The same situation has prevailed in biology. Many authors have 
compared the morphologies that occur in biological organisms with the mathematical predictions of 
reaction-diffusion theories. There is a substantial body of literature in this area [25-28].  Workers 
[29-31] have demonstrated that the patterns of calcium waves that come about in vivo in the cytosol 
arise from reaction-diffusion processes. However, one of the factors that has been lacking is the 



 

concrete example of a molecular biochemical system behaving in the general manner predicted by 
Rashevsky, Turing, Prigogine, and others. Until the work reported here on the self-organisation of 
microtubules, first published in 1990 [32], there were no in vitro examples of a simple biochemical 
system in a test tube, known to self–organise in the general manner predicted by Kolmogorov, 
Rashevsky, Turing, Prigogine, and others. 
 

Under appropriate conditions, in vitro preparations of microtubules, a major component of the 
cytoskeleton, show this type of behaviour [32-49]. These microtubule preparations spontaneously 
self-organise by a combination of reaction and diffusion, and the morphology of the state that forms 
depends upon external factors such as gravity at a critical bifurcation time early in the process.  
 
 
2 Microtubules 
 
The interior of the cell is organised by the cytoskeleton. The latter is composed of three filamentary 
components; microtubules, actin and intermediate filaments. Microtubules are long tubular shaped 
objects, with inner and outer diameters of about 16 nm and 24 nm respectively [50, 51]. They arise 
from the self-assembly of a protein, tubulin, by way of reactions involving the hydrolysis of a 
nucleotide, guanosine triphosphate (GTP), to guanosine diphosphate (GDP). Their length is 
variable; but often they are several microns long.  
 

Microtubules have two major roles; they organise and control the structure of the cytoskeleton, 
and they permit and control the directional movement of intracellular particles and organelles from 
one part of the cell to another. They participate in many fundamental cellular functions including, 
the maintenance of shape, motility, signal transmission, and play a determining role in the 
organisational changes that occur during the early stages of embryogenesis. Microtubules are a 
significant component of brain neuron cells and they make up the mitotic spindles that separate 
chromosomes during cell division. 
 

Tubulin has a monomer molecular weight of about 50 KDa, a diameter of about 4 nm, and 
occurs as a dimer of the alpha and beta monomer forms. Microtubules can be formed in vitro by 
warming a solution of purified tubulin in the presence of GTP, from about 7 to 35°. During this 
process, a series of chemical reactions occurs and GTP is hydrolysed to GDP. Once microtubules 
are formed, chemical activity continues through processes whereby tubulin is added and lost from 
opposing ends of individual microtubules by reactions involving GTP hydrolysis. There is hence a 
continual consumption or dissipation of chemical energy through the system.  
 

One of the particularities of microtubules is that due to differences in reactivity at opposing ends, 
they frequently grow from one end whilst shrinking from the other. Since the rates of growth and 
shrinkage are often comparable, individual microtubules change position and appear to move at 
speeds of several microns per minute. Tubulin is incorporated at the growing end as the complex 
tubulin-GTP and liberated at the shrinking end as tubulin-GDP. The shrinking end of a microtubule 
leaves behind itself a chemical trail of high local concentration in tubulin-GDP. Whilst 
progressively diffusing out into the rest of the solution, this tubulin-GDP is progressively 
reconverted to tubulin-GTP by the excess GTP present, at which point it is once again available to 
be incorporated at the growing end of neighbouring microtubule. Likewise, the growing end creates 
a region depleted in tubulin-GTP. Neighbouring microtubules will preferentially grow into regions 
of high tubulin-GTP concentration whilst avoiding the regions of low concentration. The chemical 
trails produced by individual microtubules activate and inhibit the formation of their neighbours. 
Thus, neighbouring microtubules "talk to each other" by depleting and accentuating the local 
concentration of active chemicals in a manner that has analogies with the self-organisation of ants. 
Under appropriate conditions, the population of microtubules can behave as a 'complex' system and 



 

the coupling of reaction with diffusion progressively leads to macroscopic variations in the 
concentration and orientation of the microtubules. 
 
 
3 Microtubule self-organisation in vitro 
 
 When microtubules are assembled as described above, then under appropriate conditions 
spontaneous macroscopic ordering occurs [32]. Following assembly in spectrophotometer cells 
measuring 4 cm by 1 cm by 0.1cm, a series of periodic horizontal stripes of about 1 mm separation 
progressively develop in the sample over about 5 hours. Once formed, the striped pattern remains 
stationary for between 48 to 72 hours, after which the system runs out of reactants. The preparations 
are of high optical birefringence and this indicates that the microtubules are strongly aligned with 
respect to one another. The microtubules in each striped band are oriented at either 45° or 135°, but 
adjacent stripes differ in having alternating orientations. This pattern of variations in orientation can 
be observed by placing the sample between crossed linear polars with a wavelength retardation 
plate placed at 45° between them (Fig. 1). The retardation plate produces a uniform background 
having a mauve interference colour. Microtubule orientations, such that their birefringence adds to 
the birefringence of the wavelength plate, produce a blue wavelength shift, whereas orientations 
that subtract cause a yellow shift. Sample regions made up of microtubule orientations that are 
either acute or obtuse, differ by producing yellow or blue interference colours respectively and this 
give rise to the alternating blue and yellow bands illustrated in Fig. 1. In addition to these changes 
in orientation, periodic variations in microtubule concentration, of about 30% of the mean, also 
occur from stripe to stripe [37]. The concentration pattern coincides with the pattern of variations in 
microtubule orientation. 
 

The 0.5-mm stripes also contain within them another series of stripes of about 100 µm 
separation. These, in their turn contain other sets of stripes of about 20 µm, 5 µm and 1 µm 
separation. Some of these structures are shown in Fig. 2. In samples made up in larger sample 
containers, an additional level of ordering several mm in separation arises. These large stripes in 
turn contain the lower levels of organisation already mentioned. Hence, similar types of pattern 
spontaneously develop encompassing distances ranging from a few microns up to several 
centimetres. The range of dimension over which these microtubule structures occur is typical of 
those found in many types of higher organisms. Cells are about 20 µm in size, eggs are often about 
a mm, and a developing mammalian embryo is several centimetres long. When microtubules are 
assembled in small sample containers about 100 µm in size, self-organisation still occurs but with 
periodicity's that are consistent with the size of the sample. This observation demonstrates that 
microtubule self-organisation by the processes described here also occurs in containers of the 
dimensions of a cell or an embryo. 
 

Striped morphologies occur when the microtubules are prepared in upright sample containers, 
but a different pattern (Fig. 1) arises when they are prepared in the same containers lying flat [34, 
35]. This behaviour is attributed to the determining role of the gravity direction during s tructure 
formation. So as to test this hypothesis, microtubules were assembled in flat horizontal containers 
fixed to the turntable of a record player, and with the long axis of the sample oriented along the 
direction of the centrifugal field (0.14 g). A s triped morphology once again forms, and the direction 
of the stripes is perpendicular to that of the applied centrifugal field [34]. 
 

Once formed, the structures are independent of their orientation with respect to gravity. To 
establish at what moment the sample morphology depends upon the gravity direction, the following 
experiment was carried out [35]. Microtubule formation was simultaneously instigated in twenty 
identical rectangular sample cells. Initially all the cells were upright. Consecutive cells w ere then 
turned from vertical to horizontal at intervals of one minute, and the samples examined 12 hours 



 

later, after the structures had formed. Twenty minutes after instigating microtubule formation, when 
the last sample was turned from vertical to horiz ontal, there are no obvious signs of a striped 
structure. Since the structure forms while the cells are flat, one might expect that they might all 
form the horizontal pattern. This is the case for samples inverted during the first few minutes. 
However, sam ples those were upright for six minutes or more, all formed striped morphologies 
identical to preparations that remained vertical all the time. The final sample morphology depends 
upon whether the sample was horizontal or vertical at a critical period, six  minutes after instigating 
assembly, and at an early stage in the formation of the self -organised structure. The process can be 
described as a bifurcation between pathways leading to two different morphological states, and in 
which the direction of the sam ple with respect to gravity determines the morphology that 
subsequently forms. 
 

To establish whether the self-organising process is directly dependent on gravity, microtubules 
were assembled under conditions of weightlessness [39]. The experiment was carried out during the 
space flight of a sounding rocket of the European Space Agency which provided approximately 13 
minutes of weightlessness before the payload fell back to earth and was recovered. Since on the 
ground, the sample morphology is determined by the orientation with respect to gravity 6 minutes 
after instigating microtubule assembly, 13 minutes of low gravity should suffice to investigate the 
effect of weightlessness on the self-organising process. Flight samples were contained in an 
experimental module divided into two compartments, a "low gravity" compartment and a “1 g on-
board" centrifuge compartment. We found that microtubule samples formed in the "centrifuge" part 
of the module formed stripes when the centrifugal field was parallel to the long axis of the cell, and 
the circular morphology when it was perpendicular. These morphologies resemble those that arise 
in the laboratory and show that the self-organising process is unaffected by payload re-entry and 
recovery. In contrast, the samples formed in the “low gravity” compartment did not self-organise 
(Fig. 1). Ground based experiments that produce effects close to weightlessness, either by rotating 
the sample around the horizontal axis or counterbalancing gravity with a strong magnetic field 
gradient, produce a similar behaviour. It needs to be stressed in these experiments that 
weightlessness effects microtubule self-organisation but not microtubule self-assembly. 
Microtubules assemble to the same extent and show the same assembly kinetics under conditions of 
weightlessness as at 1 g and regardless as to whether weightlessness arises by ground based 
methods or by space flight. 
 

Experimental problems can occur in space experiments due to air bubbles. In this case, although 
care was taken to prevent it, small air bubbles formed in the neck of some of the sample cells. 
During re-entry, when the sample is subject to high centrifugal fields, the air bubble may be pushed 
through the sample. In one sample this process was filmed. A line of high birefringence formed 
along the trajectory of the air bubble [41] indicating that the bubble oriented the microtubules along 
its trajectory. Subsequently, striped regions limited in extent, developed perpendicular to this 
trajectory. Hence, orienting the microtubules at an early stage in the process can also trigger self-
organisation. 
 



 

 

 
 
Figure 1: Microtubule structures formed in spectrophotometer cells 4 cm by 1cm by 0.1 cm. In the 
presence of gravity, the solution spontaneously self-organises. Stripes form when the sample 
container is upright but circles arise when the microtubules are assembled with the container flat. 
The structures, which take about 5 hours to form, are stationary and independent of the orientation 
of the cell with respect to gravity. The morphology that forms, depends on the orientation of the 
container at a critical moment at an early stage in the self-organising process and before any pattern 
has developed. No self-organisation occurs when microtubules are assembled in the absence of 
gravity for the first 13 minutes. Samples were photographed through linear cross polars with a 
wavelength retardation plate. The blue interference colour arises from microtubules oriented at 
about 45°, and the yellow interference colour from those at 135°. Periodic changes in microtubule 
concentration coincide with the changes in orientation. 
 
 

 
 

Figure 2: The striped structure, as shown in Fig. 1a b, is itself comprised of stripes of smaller 
spacing (100 µm, 20 µm and 5µm and 1µm). Photographs A) and B) show images of the 
preparation at higher magnification. 
  
 
 

A different manner of orienting the microtubules is to apply a strong uniform magnetic field. 
When microtubules were assembled in flat horizontal cells, exposed to a strong horizontal magnetic 
field for the first 15 minutes of the self-organising process, then a striped 'vertical' morphology 
formed instead of the circular ' flat' morphology. This demonstrates that orienting the microtubules 
at the bifurcation time by way of a magnetic field modifies the self-organised morphology in a way 
similar to a change in the gravity direction. These experiments show that any effect that at the 



 

bifurcation time leads to a partial orientation of microtubules will trigger self-organisation. Another 
factor that strongly affects self-organisation is sample shape. This is implicit in the fact that for the 
rectangular shaped samples considered so far, different morphologies arise when the microtubules 
are assembled with the sample placed flat down or upright. 
 
 
4 Self-organisation results from chemical reactions and not static interactions 
 
An important feature to be established is whether self-organisation results from reactive processes 
or from static interactions related to the liquid crystalline properties of the microtubule solution. A 
simple way to test for this is the following. Form the self-organised structure as described above.  
Then destroy it by mixing and wait and see if the structure reforms [38]. After mixing, the solution 
contains microtubules at the same concentration and temperature as before. However, the 
consumption of chemical energy is much less than when the microtubules initially form. If the self-
organised structure arises from static interactions, such as occur in some liquid crystals, then the 
structure will reform after mixing. This is not the case. Microtubules can be disassembled by 
cooling the solution to 4°C. When the preparation is again warmed to 36°C, microtubules once 
again form and GTP is hydrolysed to GDP. In this case, the striped self-organised structure also 
reforms [37, 39]. These simple experiments show that the striped structure arises via chemical 
processes associated with microtubule formation and maintenance, and not from static interactions 
between the microtubules.  
 

A further strong argument against static interactions is the dependence of the self-organisation on 
gravity at a critical moment early in the self-organising process. Static interactions, such as may 
occur in liquid crystals, are equally present under conditions of weightlessness (0g) as at terrestrial 
gravity (1g). The absence of microtubule self-organisation under low gravity conditions at the 
bifurcation time, is a clear demonstration that self-organisation does not arise from static 
interactions. If the structure involved phase separation under the action of gravity, then although the 
structure might not form under low gravity conditions, it would form, if a brief period of low 
gravity were followed by 1g conditions. The fact that this does not occur eliminates this possibility. 
 

Static interactions in liquid crystals, although they can give rise to macroscopic variations in 
orientational order, do not lead to macroscopic variations in concentration. On the contrary, the 
central prediction of reaction-diffusion theories is the formation of macroscopic variations in the 
concentration of reacting species. Both neutron small angle scattering and fluorescence imaging 
(Fig. 3) demonstrate that substantial macroscopic microtubule concentration variations are present 
in the self-organised preparations. The microtubule concentration is approximately constant in 
neighbouring stripes, but drops by about 25% between the stripes, where the orientation flips from 
acute to obtuse. 
 

Another possibility, which has also been considered and rejected, is that the pattern might in 
some way involve a coupling of reactive processes with flow due to thermal gradients during the 
warming process. The microtubule preparations are gels of high viscosity (≈5000 poise) [52]. This 
renders thermal convection difficult. In addition, samples prepared in a hot room at 35°C, in which 
there was no thermal convection, gave patterns the same as samples prepared under conditions 
where the bottom of the sample was warmer than the top by 5°C.  It is not necessary to form 
microtubules by warming a premixed solution of tubulin and GTP from 4°C to 35°C.  They may 
also be formed by mixing together separate solutions of tubulin and GTP, pre-warmed to 35°C. In 
this case, the self-organised structure that develops is the same as that obtained by mixing tubulin 
and GTP in the cold and then warming. Hence thermal convection appears to play no part in the 
self-organising process. 
 



 

 
Figure 3: Microtubule concentration patterns as shown by fluorescent imaging. See [38] for details. 
 
 

An important parameter in reaction-diffusion systems is the rate of energy dissipation. This will 
be strongly dependent upon experimental variables, such as concentration and temperature. In 
microtubule preparations, the rate of hydrolysis of GTP to GDP has been determined using P31 
NMR spectroscopy [32, 33, 36, 39, 40]. In a reaction-diffusion system of the Turing type, the 
periodicity or wavelength of the structure corresponds to approximately the distance over which 
groups of molecules diffuse before reacting. The periodicity, L, is related to the reaction rate, R, and 
diffusion constant, D, by terms involving L2=R/D [27,35]. In agreement with this, we found in the 
self-organised microtubule preparations, that increasing the reaction rate by a factor of 2 decreased 
the stripe separation by 1.4, i.e. the square root of the increase in the reaction rate [27].  

 
The rate of diffusion is not varied as readily as the reaction rate. One simple approach is to 

examine the effect on self-organisation of the addition to the initial reaction mixture of small 
quantities of gelling agents. Increasing quantities of gelling agent increase the viscosity of the 
preparation, and inhibit diffusion. When microtubule assembly was carried out in gels of increasing 
agarose concentration, the effect was to perturb and eventually inhibit self-organisation [36, 37]. 
This, and other observations concord with a diffusive contribution to the self-organising process. 

 
During the initial stages of self-organisation, the left and right hand sides of the sample show 

either yellow or blue birefringent interference colours corresponding to either obtuse or acute 
microtubule orientations. The striped structure subsequently develops by blue zones forming in the 
yellow region, and yellow zones forming in the blue region. In the zones where there is no colour 
change, the microtubules retain their initial orientation. Whereas, in those regions where there is a 
colour change occurs, the microtubule orientation flips from acute to obtuse, or vice versa. In 
neutron small angle scattering measurements, that were limited to a horizontal band of dimensions 
of an individual stripe [35], this process is manifested as a change in the direction of the 
microtubule scattering on the detector, from an acute to an obtuse arc. Simultaneous with this 
orientational re-ordering, the intensity of the microtubule scattering, decreases, then rises before 
declining again. Orientational re-ordering, which is itself the stripe forming process, is hence 
concurrent with a chemical wave, involving different concentrations of microtubules and free 
tubulin, crossing the sample area under investigation. In other words the stationary pattern arises 
because microtubules disassemble and reassemble with different orientations and concentrations in 
alternating parts of the sample. This neutron scattering experiment clearly shows that self-
organisation is associated with the reaction dynamics of the microtubules. 

 
The conclusion agrees with what many biologists have long known. In many cellular processes 

involving microtubules, changes in microtubules organisation occur not  by the rearrangement of an 
existing structure, but by disassembly followed by reassembly to form a different arrangement 



 

within the cell. Biologists are fully aware that much of the intriguing behaviour of microtubules 
comes about from the fact that they are transient dynamic entities in which structural 
rearrangements and self-organisation are associated with their reaction dynamics. The question that 
arises is to establish the exact molecular basis by which microtubule reaction dynamics result in 
self-organisation, and investigate whether this is the same in vitro and in vivo? 

 
 

5 Molecular basis of self-organisation by reactive processes 
 
The kinetics of formation of the self-organised microtubule preparations shows an ‘over-shoot' 
about 6 minutes after instigating microtubule formation [35]. The bifurcation point in any out-of-
equilibrium system, and at which point the system is sensitive to weak external factors, coincides 
with a condition of instability in the homogenous state [18]. In the microtubule system, the 
‘overshoot’ describes a chemical instability in the relative proportions of free tubulin and 
microtubules. This occurs at the bifurcation time, at the moment that the system is gravity 
dependent. The microtubules assemble, and then partially disassemble by about 20% before 
approaching a constant level after about 60 minutes. 
 Microtubules are continually growing from one end and shrinking from the other. We postulate 
the following (Fig. 4) [40]. The shrinking end of a microtubule leaves behind it a chemical trail of 
high tubulin concentration. Likewise the growing end produces regions depleted in tubulin. A 
neighbouring microtubule will preferentially grow into a region of high tubulin concentration whilst 
avoiding the regions of low concentration. The chemical trails produced by a given microtubule, 
will modify and determine the direction of growth of its neighbours. Thus neighbouring 
microtubules "talk to each other" by depleting and accentuating the local concentration of active 
chemicals. The coupling of reaction with diffusion progressively leads to macroscopic variations in 
the orientation and concentration of the microtubules.  
 When the microtubules first form from the tubulin solution they are still in a growing phase. 
There is almost no disassembly from their ends and the microtubules are distributed uniformly 
through the solution in an isotropic manner. However, the rapid initial growth of the microtubules 
results in a reduction of the free tubulin concentration in the solution. The depletion of tubulin by 
the growing microtubules, causes unfavourable reactive conditions, and triggers their own partial 
disassembly and this manifests itself as the 'overshoot' shown in the assembly kinetics. When 
disassembly does start to occur, just prior to the bifurcation time, it leads to the formation of the 
chemical trails outlined above. The isotropic arrangement of microtubules is now unstable. At this 
point in time (the bifurcation time), orienting just a few microtubules will induce their neighbours 
to grow along the same orientation. Once started, the process mutually reinforces itself with time 
and leads to self-organisation. Hence, in agreement with experiments, any small effect that partially 
orients microtubules over the entire sample, or leads to a privileged direction of microtubule 
growth, will trigger self-organisation. 
 



 

 

 
 
 
Figure 4: A possible mechanism for the formation of the self-organised structure. Microtubules are 
chemically anisotropic, growing and shrinking along the direction of their long axis. This leads to 
the formation of chemical trails, comprised of regions of high and low local tubulin concentration 
from their shrinking and growing ends respectively. These concentration trails (density fluctuations) 
are oriented along the direction of the microtubule. Neighbouring microtubules will preferentially 
grow into regions where the local concentration of tubulin is highest. In A), microtubules have just 
formed from the tubulin solution. They are still in a growing phase and have an isotropic 
arrangement. In B), microtubule disassembly has started to occur at the bifurcation time. This 
produces trails of high tubulin concentration from the shrinking ends of the microtubules. In C), 
microtubules are growing and forming preferentially into these tubulin trails. The isotropic 
arrangement shown in B) is unstable. Once a few microtubules start to take up a preferred 
orientation then neighbouring microtubules will also grow into the same orientation. Once started, 
the process mutually reinforces itself with time and leads to self-organisation. Any small effect that 
leads to a slight directional bias, such as slightly different rates of molecular transport in the up-
down and left-right directions, will trigger self–organisation. Gravity acts by way of its directional 
interaction with the macroscopic density fluctuations present in the solution.  
 
 
 
6 Numerical simulations of self-organisation. 
 
To test this hypothesis, we carried out numerical simulations of a population of growing and 
shrinking microtubules [42, 46]. These simulations incorporated as parameters, experimentally 
realistic microtubule reaction dynamics and the experimentally determined tubulin diffusion 
constant. Simulations involving a few microtubules demonstrate both the formation of the tubulin 
trails outlined above and promotion of the growth of neighbouring microtubules along the same 
orientation. When the simulations were extended to a population of about 104 microtubules on a 
two-dimensional reaction space, 100 µm by 100 µm, then after 2-3 hours of reaction time, a self-
organised structure comprised of regular bands of about 5 µm separation developed. This structure 
is comparable with the experimental self-organised structure that arises over a similar distance scale 
(Fig. 5). 
 
 In the course of these simulations, we noticed that the direction of the stripes was always along 
the diagonal of the reaction space and this suggested that a directional bias had been unwittingly 
built into the algorithm. This turned out to be the case and arose from a small asymmetry in the way 
that the tubulin diffusion was digitised. When the asymmetry in diffusion was removed, 



 

macroscopic self-organisation did not come about. A bias was then reintroduced into the algorithm 
that broke the symmetry of the system by either of two ways. Either by orienting some of the 
microtubules at the bifurcation time (this would resemble the manner that magnetic fields act on the 
system) or by making tubulin diffusion anisotropic at the bifurcation time (this would resemble the 
manner that gravity acts on the system). Gravity triggers self-organisation in the following way. At 
the bifurcation time, gravity interacts with the strong density fluctuations produced by the partial 
disassembly of the microtubules. This interaction causes a 'drift' term that breaks the symmetry of 
the transport processes. By promoting microtubule growth along a specific direction over the entire 
sample, self-organisation is triggered. Sample shapes effect self-organisation because microtubule 
reaction dynamics are modified in the region close to the boundary in such a way that microtubule 
growth and hence orientation parallel to the boundary is favoured. When the shape of the boundary 
is strongly asymmetric this effect can suffice to trigger self-organisation without any assistance 
from gravity. This is more fully described by Glade et al [42, 46].  
 
 

 
 

 
Figure 5: Reaction-diffusion simulations for a population of microtubules. A) is a simulation on a 
reaction space, 100 µm by 100 µm, containing 4 104 microtubules.  The diagonal stripes are 
triggered by a small asymmetry in the part of the algorithm describing diffusion. B) is a simulation 
in which this asymmetry is eliminated. The reaction space is 100 µm by 100 µm and contains the 
same number of microtubules. Although concentration inhomogeneities are present there is no 
macroscopic self-organisation. In C) the simulation is identical to B) except that diffusion is now 
twice as fast along the y-axis as along the x-axis. In this case, self-organised stripes develop in 
which the microtubules are perpendicular to the direction of the stripes. D) Experimentally observed 
self-organised structure over the same distance scale. 
 
 
7 Do microtubule reaction diffusion processes occur in vivo? 
 
Rashevsky, Turing and Prigogine first developed their theories as a possible underlying physical-
chemical explanation for biological self-organisation during embryogenesis. They predicted a way 
by which macroscopic chemical patterns could spontaneously develop from an initially unstructured 
egg. The results obtained on the in vitro microtubule system demonstrate that reaction-diffusion 
processes involving biochemical reactions can result in self-organisation. The question obviously 
arises as to whether these processes also occur in vivo; in particular do they occur during 
embryogenesis and the cell cycle? To find out whether or not this is so, it is paramount to devise 
and carry out experiments on in vivo systems that distinguish between microtubule self-organisation 
by reaction-diffusion and that from other causes. One of the characteristic properties of the 
microtubule reaction-diffusion process is that self-organisation can be either triggered or modified 
by changes in external factors such as gravity, magnetic fields and sample geometry. Hence, 
experiments showing that microtubule organisation in cells or embryos is modified by upon the 



 

presence of these factors at a critical time, in a manner resembling either their in vitro behaviour or 
the predictions of numerical simulations, is strong evidence in favour of such a process. One of the 
major effects that our in vitro studies suggest, is that microtubule organisation could be strongly 
modified when either cells or embryos are placed under conditions of weightlessness or in a 
modified gravity environment. 
 

For several decades, experiments in space [53, 54] have been furnishing an increasing body of 
evidence that various cellular processes, such as growth rates, signalling pathways and gene 
expression are substantially modified when various cell types are placed under conditions of 
weightlessness [55-58]. A substantial number of experiments point to an involvement of the 
cytoskeleton [58-63]. Recently, researchers have observed substantial modifications in the 
organisation of the microtubules under conditions of weightlessness. Human lymphocyte (Jurkat) 
cells cultured in space show a disorganised microtubule network compared to ground control 
experiments [60]. Likewise, for human breast cancer cells (MCF-7) cultured under conditions of 
weightlessness [61], the author's report that many cells exhibit a strongly disorganised microtubule 
network (Fig. 6). Glial cells when placed under conditions of reduced gravity [62] show a 
disorganised microtubule network and weightlessness has been reported to modify microtubule 
organisation in rat utricular hair cells [63]. These observations, which are consistent with the in 
vitro behaviour discussed, suggest that microtubule reaction-diffusion processes might well be 
occurring in many cell types under normal 1 g conditions. 

 
Figure 6:  Microtubule organisation in human breast cancer (MCF 7) cells. A) at 1g ; B) at 0 g. 
Microtubules do not organise under low gravity conditions. Reproduced from Vassy et al [61] by 
permission of FASEB J. 
 
 

In certain types of egg, it has long been known that gravity is involved in the early 
developmental stages [64, 65]. For example, serious malformations result, when xenopus embryos 
are rotated through 90° at a critical time when the so-called 'grey crescent' forms [66]. In xenopus 
eggs, grey crescent formation and its gravity dependence are an essential factor in determining the 
body plan of the organism. The grey crescent is comprised of a macroscopic array of aligned 
microtubules [67] and it is quite plausible that both its formation and gravity dependence result 
from the type of reaction-diffusion processes outlined above.  
 

Another example where microtubule reaction-diffusion processes may arise during 
embryogenesis, is the formation of striped patterns in drosophila fruit fly eggs. In these eggs, the 
early stages of development occur by consecutive nuclear divisions in a non-compartmentalised 
space [68] and organisation of the cytoplasm by microtubules is known to play a major role in the 
morphogenetic processes that occur. Between nuclear divisions 10 to 14, cells progressively form at 
the surface of the embryo. These cells remain open towards the inside of the egg until the end of the 
14th nuclear division. Just prior to this, for around 5 minutes when the ventral and cephalic furrows 



 

appear at gastrulation, the distribution of microtubules in the egg displays a striped arrangement 
(Fig. 7) [69, 38, 45]. Although the contrast is low, twelve stripes can be counted, and there may be 2 
additional stripes of lower intensity. The stripes occur in the central part of the egg only; the end 
regions are not striped. This pattern coincides with and arises at the same time, as the pattern 
formed by the segmentation gene product engrailed and which plays a major role in determining the 
segmentation pattern of the larvae that develop [70]. 

 
Figure 7: Microtubules  patterns observed by immunofluorescence, in A) whole, and B, C, ) ligated 
drosophila eggs. The position of the ventral and cephalic furrows, indicating gastrulation, are 
shown in A). Ligation divides the egg into two unconnected fragments, and development continues 
in one, or both, of the fragments. 
 

 
Figure 8: Effect of sample length on microtubule patterns. A) Birefringent patterns formed by 
microtubules assembled in cylindrical 'egg' shaped sample containers of different length. B) 
Microtubule concentration variations as detected by fluorescence imaging. The overall morphology 
resembles the microtubule pattern in drosophila eggs. 



 

As mentioned above, microtubule self-organisation in vitro by reaction-diffusion processes is 
affected by sample shape. When self-organised structures are prepared in cylindrical containers, 
whose shape mimic that of a drosophila egg, the morphology shown in Fig. 8 arises [38, 45]. As for 
the microtubule pattern in the drosophila egg, there are two stripe-free regions at each end of the 
sample, separated by a striped central zone. The exact morphology of the in vitro pattern depends 
on the length of the sample. Below a certain critical length, the striped central region does not form. 
For longer samples, the end stripe-free zones remain of the same length and the number of stripes in 
the central region increase with sample length. For samples of appropriate length, morphologies 
containing 7 blue and yellow birefringent stripes arise. When observed by fluorescence there are 
fourteen stripes in the microtubule concentration (Fig. 8). This pattern closely resembles the 
microtubule pattern in drosophila eggs. 
 

Drosophila eggs can be shortened, shortly after they are laid, by ligation. Within ten minutes a 
membrane forms that separates the egg into two unconnected fragments. Development can occur in 
either one, or sometimes both, parts of the egg. The dependence of the microtubule pattern on 
sample length is a feature of the in vitro pattern. We examined microtubule patterns in ligated 
drosophila eggs as a function of egg fragment length [38, 45] (Fig. 7). Although it is not easy to 
count the exact number of stripes, nevertheless, as for the in vitro microtubule preparations, the 
microtubule pattern is clearly comprised of two stripe-free regions separated by a striped central 
region. Also, as for the in vitro microtubule patterns, the length of the end zones is independent of 
fragment length and approximately the same as in unligated eggs. For the case of the ligated egg 
shown in Figure 7c, both fragments have continued to develop. However, the shorter fragment does 
not show any stripes. This is consistent with the fact that in this case the fragment length is below 
the critical length necessary for stripe formation. 
 

The behaviour of the microtubule pattern in the drosophila eggs resembles that observed for in 
vitro microtubule self-organisation in samples of different length, and this suggests that similar 
reaction-diffusion processes might be occurring in both cases.  
 

In addition to the cases outlined above, there is also evidence that microtubule organisation by 
reaction and diffusion occurs in peripheral nerve cells and during plant cell development [36]. The 
sum of these observations, and which are consistent with the in vitro behaviour, provides an 
increasing body of evidence that microtubule reaction-diffusion processes occur in vivo both during 
embryogenesis and the cell cycle.  
 
 
8 Conclusions 
 
The results summarised in this article demonstrate that microtubule preparations self-organise by 
way of reaction and diffusion. Their behaviour is that of a chemically dissipative system in the 
general framework advanced by Kolmogorov [8], Rashevsky [9], Turing [10], and Prigogine, 
Glansdorff and Nicolis [11-15]. They demonstrate how a very simple biological system comprised 
initially of just a protein and a nucleotide as a source of energy, and without DNA, can a show a 
complex behaviour reminiscent of certain aspects of living systems. These complex phenomena 
which are of considerable biological importance, appear as a consequence of chemically non-linear 
dynamics.  

 
The molecular basis of self-organisation is the elongation and contraction of individual 

microtubules by the addition and loss of tubulin. Under appropriate reactive conditions, microtubule 
contraction leads to the formation of chemical trails of free tubulin that can then be incorporated, 
into the growing end of neighbouring microtubules. Microtubule elongation produces furrows 
depleted in tubulin. These in their turn activate and inhibit the formation of neighbouring 
microtubules. Thus neighbouring microtubules "talk to each other" by depleting and accentuating 



 

the local concentration of active chemicals. The coupling of reaction with diffusion progressively 
leads to macroscopic variations in the concentration and orientation of the microtubules. There are 
many analogies between microtubule self-organisation and that of ants. 

 
In this system, there are at least two significant differences from the type of reaction-diffusion 

scheme originally proposed by Turing. In the Turing system, the molecules communicate with one 
another across the sample by way of diffusion (fast diffusion of the inhibitor and slow diffusion of 
the activator). In the microtubule system, the molecules communicate by way of the reactivity of 
the microtubules. The fact that the microtubules are growing from one end at the rate of the order of 
a few µm per minute whilst shrinking by approximately the same, results in a displacement of the 
microtubule at the same speed. At the same time they leave behind a trail having a high 
concentration in inactive tubulin and create in front of them a furrow depleted in active tubulin. 
These chemical trails determine the pathways taken by surrounding microtubules. It is a reaction-
diffusion system for without tubulin diffusion at the appropriate rate, self-organisation would not 
occur.  
 

The second major difference with a normal Turing system is the reactive anisotropy of the 
microtubule system. In a normal reaction-diffusion scheme, the reaction has no inherent anisotropy. 
This is not the case with microtubules, which can obviously only react at their ends. A microtubule 
can move in only one direction and this will equally lead to anisotropic reactive tubulin trails along 
the same direction. The system has an in-built propensity for symmetry breaking under the effect of 
a weak external factor. 
   

At this stage, it is not clear whether these processes are widespread in biology, or if they are 
limited to microtubules. It is quite possible that in living organisms other reaction-diffusion 
processes involving different molecular systems occur. Under appropriate conditions, actin will 
probably show a similar behaviour. It may be that the specific type of reaction-diffusion mechanism 
encountered here, based on reactive growth and shortening of tubes or rods, is a mechanism 
particularly suited to biological self-organisation. 

  
The overall phenomenological behaviour of the microtubule preparations shows a qualitative 

resemblance to some aspects of living organisms in that a number of global properties emerge that 
frequently arise in living systems; namely self-organisation at different distance levels, a 
dependence on weak effects, and a primitive form of memory. Firstly, macroscopic ordering 
appears spontaneously from an initially homogenous state. Secondly, the morphology that forms 
depends on small differences in conditions at a critical moment early in the process. In the present 
case, external factors such as gravity trigger self-organisation. The direction of the external factor, 
by effecting the actions of the individual components, breaks the symmetry of the homogenous state 
and leads to the emergence of form and pattern. Such processes might hence act as a mechanism for 
biological signal transduction, and subsequently lock the system into a developmental pathway. 
Processes of this type could form a general class mechanism by which weak environmental factors 
are transduced into biological systems and could have played a role in the development of life on 
earth. 
 

The attraction of reaction-diffusion dissipative processes as a possible explanation for biological 
self-organisation and development arises not only from their self-organising properties. It is also 
due to the fact that their bifurcation behaviour could account for some of the global aspects of 
biological development whereby cells of identical genetic content take different developmental 
pathways so as to become differentiated from one another. Just after bifurcating, a non-linear 
system could be described in biological vocabulary as being ‘determined but not yet differentiated’.  
 



 

The application of theoretical concepts of 'complex' systems to biology has to some extent been 
retarded by the absence of simple biochemical examples. The in-vitro microtubule system described 
above will be of value as an experimental model and will permit comparison with theory. 
Understanding these processes in-vitro is a preliminary to detecting and investigating their role and 
function in living organisms. The most important question now to be answered, is whether 
processes of this type also arise in-vivo, and in particular do they play an active role during 
embryogenesis and cell division? At this stage, although preliminary results suggest that this might 
well be the case, it is too early to give a definite answer. What we can say is that the approach of 
out-of equilibrium chemical dynamics can in principle account for biological self-organisation, and 
that an important cellular component, microtubules, behaves this way in a test tube 
 

The general approach of non-linear dynamics may have considerable long-term effects on 
biology. Because the properties that arise in 'complex' systems are not those of the isolated 
molecule, studying such molecular properties may be of only limited value. Reducing a biological 
system down to the behaviour of individual molecules may serve little purpose to further our 
understanding in the case where the phenomena of interest arise from the collective behaviour of a 
population of individuals. When 'emergent' phenomena are present in a biological system, a 
complete molecular description is unlikely to be of much use on its own. One might know 
everything about the molecules and the phenomena will still not make much sense. Unfortunately, it 
is likely to take many years before a scientific community forms which does not view biology 
uniquely through the glasses of molecular reductionism. 

 
Self-organised chemical systems constitute one type of 'complex' system. Many other types are 

known. Examples in biology are the gene products network, the immune system and the neural 
network. Some workers have proposed that the development of the metabolism as a whole is an 
'emergent' phenomenon in a 'complex' system of reacting chemicals, and that appearance of life 
itself may be considered as the development of an 'emergent' phenomenon in a complex system 
[10]. From this standpoint, the self-organising stage in the development of life might be considered 
as part of a sequence of events, going from the formation of galaxies to the development of complex 
living organisms and societies, all based on the laws of non-linear dynamics in 'complex' systems. 
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Abstract

The21st century promises to be the century of bio- and nanotechnology. New materials and tech-
nologies such as self-assembling systems, organic and molecular electronics, hybrid electronic-
biological machines, and the ever-increasing complexity and miniaturization of actual systems
will require to fundamentally rethink the way we build computers, the way we organize, train, and
program computers, and the way we interact with computers.

The main goal of this short contribution is to give an overview on some opponents of cellular-
based biologically-inspired machines and aproaches.

1 Biologically-Inspired Computing

1.1 “Traditional” Artificial Intelligence

If we believe artificial intelligence (AI) guru Marvin Minsky, who co-founded the MIT Artificial
Intelligence Laboratory in 1959 with John McCarthy, “AI has been brain-dead since the 1970s”1. In
the same talk, Minsky also accused researchers of giving up on the immense challenge of building a
fully autonomous, thinking machine. So-called “expert systems”, which emulated human expertise
within tightly defined subject areas like law and medicine, could match users’ queries to relevant
diagnoses, papers and abstracts, yet they could not learn concepts that most children know by the
time they are three years old.

Marvin Minsky in not alone with his point of view: many a researcher is convinced that the
quest for artificial intelligence has turned out to be a failure. Well-known philosophers such as
John Searle [22] or Roger Penrose [21] argue that the intrinsic properties of the brain may not
be modeled by any computer and that the human brain involves other mechanisms. On the other
hand, other eminent scientists claim that human-like machine intelligence is only two steps away
and that machines will soon become dominant on earth.

In traditional AI, it has been tried to specify a problem, i.e., its domain and the conditions, in the
most generic and declarative way and to solve it by using aGeneral Problem Solver (GPS)[5,18].
The problem domain is usually modeled as a certain state space with operations leading from one
state to another. Today, it seems obvious that the goal of a GPS — i.e., to create a single technique
or engine for all problems — cannot be reached. The well-known problems of classical AI are the
Framing Problem[7] and theSymbol Grounding Problem[11] (the domain knowledge has proven
to be extremely important in designing efficient problem solving techniques).

However, the goal of modern AI is rather to build special purpose problem solvers that are able
to incorporate as early as possible domain-specific knowledge and problem solving methods from
other research communities.

It seems likely that neither the purely pessimistic nor the purely optimistic view of AI will be-
come true. Although current AI does not offer human-like intelligence at all, machines outperform

1Mentioned during a recent speech at Boston University, see also:
http://www.wired.com/news/technology/0,1282,58714,00.html .



humans in many domains [13]. Machines are usually more powerful in domains where humans
have difficulties (e.g., computation, etc.), but they cannot cope with many tasks that humans are
able to perform almost unconsciously (e.g., pattern recognition, voice and image recognition, etc.).

It therefore seems evident to take a closer look at Nature and to find out how it solves such
tasks.

1.2 Inspiration from Nature

Biologically-inspired computing can be seen as the visionary part of the general intellectual ad-
venture of seeking for further progress in computer science. This can lead to the creation of new
machines, endowed with properties usually associated with the living world: adaptation, evolution,
growth and development, fault-tolerance, self-replication or cloning, reproduction, etc. The quest
for novel machines and concepts is essentially motivated by the observation — as we have seen
in the previous section — that fundamental progress in machine intelligence fairly often seems to
stagnate. One of the keys to machine intelligence, for example, is computers that can learn, and
we’re still just scratching the surface of this problem.

It is evident that biological organisms operate on completely different principles from those
with which most engineers are familiar. That is why most approaches do not try to faithfully model,
duplicate, or copy biological systems but rather try to mimic them and to draw some inspiration
from. But many biologically-inspired approaches have been labeled as failures for not having
lived up to grandiose promises. “At the heart of this disappointment lies the fact that neither AI nor
artificial life (Alife) has produced artefacts that could be confused with a living organism for more
than an instant” [4], says Rodney Brooks. Something must be wrong! But what? He proposes
different possibilities: (1) we might just be getting a few parameters wrong; (2) we might building
models that are below some complexity threshold; (3) perhaps we still lack computing power;
or (4) we might be missing something fundamental and currently unimagined in our models of
biology.

Another possibility for new and unimaginable discoveries might be some kind of new math-
ematics. “We may simply not be seeing some fundamental mathematical description of what is
going on in living systems and so be leaving it out of our AI and Alife models” [4]. However, none
of the mathematical candidate models such as dynamical systems, chaos theories, etc., have so far
revealed undiscovered fundamental descriptions.

Natural computation2 is the study of computational systems that use ideas and get inspiration
from natural systems, including biological, ecological and physical systems. It is an emerging
interdisciplinary area in which a range of techniques and methods are studied for dealing with
large, complex, and dynamical problems.

For example, the development of tomorrow’s billion-transistor circuits and of electronic com-
ponents of atomic dimensions [8, 12, 17, 37] is very likely to confront computer scientists and
engineers with a challenge that John von Neumann already tried to face in the fifties:building per-
fect systems out of imperfect components. This challenge will have to be taken up by “alternative”
approaches, such as by looking at Nature and by imitating some of its most interesting traits to
provide architectural and organizational principles that will allow to build perfect systems from
billions of partially imperfect components.

2 Biologically-Inspired Hardware

Once a machine has been imagined and “built” on paper, an algorithm has been figured out in
mind, the question whether and how to test the functioning of the idea naturally arises. This might

2The termsbiologically-inspired computation(see for example [16,23]) orsoft-computing[32] are also frequently
used.



be done by a simulation or by building the machine. Of course, the usual way is to first simulate
the system before a possible implementation is envisaged.

The question of whether to simulate computers in software or to implement them in (special-
ized) hardware is not at all a new one (see for example [9]). With the advent ofField Programmable
Gate Arrays (FPGAs)[36], however, this question took somehow a back seat since it suddenly be-
came easy and inexpensive to rapidly build (or ratherconfigure) specialized hardware.

In the following, three projects shall be presented as examples of biologically inspired hard-
ware where small and simple basic elements, i.e., the cells or molecule, are the basic building
blocks. This decomposition offeres several advantages and drawbacks. It is most often non-trivial
to program a large set of parallel-working elements, on the other hand, its is usually much easier
to implement redundant functionnality.

2.1 Example: The Embryonics Project

TheEmbryonicsproject (embryonic electronics) [14–16, 19, 28, 34], is a project developed in our
lab by Prof. Daniel Mange and his colleagues since 1993. It is inspired by the development of
multicellular organisms and by the cellular division and differentiation of living organisms and
their stem cells. The final goal of this approach was to develop extremely robust integrated circuits
able to self-repair and to self-replicate. The new hardware paradigm, calledautonomous reconfig-
urable tissue, is based on a homogeneous, infinitely expandable tissue structured in three layers:
an input, an output, and a logic layer. A molecule — the tissue’s basic element — consists of a
reconfigurable digital circuit. A finite set of molecules makes up a cell, a small processor with
an associated memory. The cell is capable ofautonomous self-replicationand can thus create the
finite set of cells making up an organism, an application-specific multiprocessor system. The final
organism can itself replicate, giving rise to a population of identical organisms, i.e., clones.

The final architecture of the Embryonics project is based on four hierarchical levels of organi-
zation which, described from the bottom up, are the following (Figure 1):

• The basic primitive of our system is themolecule, the element of our new FPGA consisting
essentially of a multiplexer associated with a programmable connection network. The mul-
tiplexer is duplicated to allow the detection of faults. The logic function of each molecule is
defined by its molecular code orMOLCODE.

• A finite set of molecules makes up a cell, essentially a processor with an associated memory.
In a first programming step of the FPGA, thepolymerase genome PGdefines the topology
of the cell, that is, its width, height, and the presence and positions of columns of spare
molecules. In a second step, theribosomic genome RGdefines the logic function of each
molecule by assigning its molecular code or MOLCODE.

• A finite set of cells makes up anorganism, an application-specific multiprocessor system. In
a third and last programming step, theoperative genome OGis copied into the memory of
each cell to define the particular application, e.g., the BioWatch, executed by the organism.

• The organism can itself self-replicate, given rise to apopulationof identical organisms, the
highest level of our hierarchy.

To the best of my knowledge, the Embryonics project is the only approach that implements
quasi-biological growth processes in real hardware. A weak point of the Embryonics project is that
there exists no methodology and no tools allowing to construct automatically artificial organisms.
Thus, all organisms are coded by hand so far. Furthermore, the model is not flexible enough to
allow for a direct implementation of learning and evolutionary mechanisms.
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Figure 1: The Embryonics landscape of the BioWatch example: a four-level hierarchy.

2.2 Example: The BioWall

The main idea behind the construction of the BioWall3 [26, 27, 29, 31] is the realization of Em-
bryonic machines (see previous Section and [26, 27, 29]), however, many other applications have
been implemented so far. The structure of such machines is hierarchical: organisms (application-
specific systems) are realized by the parallel operation of a number of cells (small processors), and
each cell is implemented as an array of molecules (programmable logic elements).

The BioWall is structured as a two-dimensional tissue composed of units (each unit corre-
sponds to a molecule), where each unit (Figure 2) consists of an input element (a touch- sensitive
membrane), an output element (an array of8×8 = 64 two-color LEDs), and a programmable com-
puting element (a Spartan XCS10XL Xilinx FPGA). The circuits are mounted on double boards
where the logic board contains5 × 5 = 25 Xilinx FPGAs, while the display board is made up of
the displays and the membranes. The two boards are rigidly bound together and connected by a
bus to allow two-way communication between the logic and the display (a dedicated circuit on the
logic board automatically distributes the signals to and from the displays).

For a description of the major applications running on the BioWall see for example [31].

2.3 Example: The POEtic Project

The goal of thePOEticproject4 [30, 35] is the development of a novel digital electronic circuit, a
flexible computational substrate or artificial tissue, capable of integrating the three biological mod-
els of self-organization (see [24] for a detailed description): phylogenesis (P), ontogenesis (O), and
epigenesis (E). This tissue will be the essential substrate for the creation of POE-based machines,
capable of evolution, growth, self-repair, self-replication, and learning. The POEtic tissue is a
cellular surface composed of a variable number of elements, or cells. Each cell will contain the
entire description (genome) for the whole tissue and will have the ability to communicate with the
environment (through sensors and actuators) and with neighboring cells and accordingly executing

3For up-to-date information see alsohttp://lslwww.epfl.ch/biowall .
4For further information see:http://www.poetictissue.org
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Figure 2: An illustration of the BioWall’s basic building block (9). (6) touch-sensitive membrane,
(7) bi-color8×8-dot LED display, (8) Spartan XCS10XL Xilinx FPGA, (13) and (14) connections.

a function. During the project, the tissue will be validated on different kinds of applications that
can benefit from its life-like properties, interacting with and adapting to their own environment.

2.4 Example: Amorphous Membrane Blending

The von Neumann architecture was first expressed in1945 and has largely dominated in many
variants and refinements computer science for more than half a century. Alternative architectures
always occupied a marginal place only, despite a growing need for new concepts and paradigms in
computer science. Most “classical” biologically-inspired approaches are based on on well estab-
lished theories such as artificial neural networks, evolutionary algorithms, and cellular automata.

Amorphous Membrane Blending(as first proposed in [33]) takes an alternative path and is
mainly motivated by the insight that tomorrow’s computational substrates and environments might
be very different from what we know today. Some of tomorrow’s computers might be embedded
in the paint that covers your desk or printed on a sheet of paper by means of a special ink. Most of
such pervasive computing concepts have some common elements:

1. the computer’s basic elements are very simple, identical, and available in a huge number,

2. the interactions between the elements are purely local,

3. the elements as well as the interconnections are unreliable, and

4. there is no global control mechanism available.

As its name suggest, Amorphous Membrane Blending is principally based on the unification
of the following three domains of research:

1. amorphous computing [1],

2. membrane systems [20], and

3. blending [6].

An Amorphous Computeris a massively parallel machine made up of myriads of simple, un-
reliable, and identical elements, distributed randomly on a surface and interconnected locally by



Figure 3: The BioWatch implemented on the real BioWall. Photo: André Badertscher.

unreliable connections. In a 1996 white paper, Abelsonet al. first described the philosophy of
Amorphous Computing5 [1].

Membrane computing[20] is a paradigm that tries to imitate the way Nature “computes” at
the cellular level. It makes use of a hierarchical membrane structure of cells that is similar to
the structure used in the chemical abstract machine as proposed by Berry and Boudol [3]. The
evolution rules within each cell that transform the multisets are basically inspired by theΓ systems
proposed by Ban̂atre [2].

Finally Blending[6] is a framework of cognitive science which tries to explain how we deal
with mental concepts and how creative thinking emerges.

From a bird’s eye view the Amorphous Membrane Blending landscape can be decomposed into
four principal hierarchical levels as depicted in Figure 4: (1) reactor level, (2) amorphon level, (3)
cellular level, and (4) supercellular levels.

The combination of the above mentioned three domains of reasearch is mainly motivated by
the following considerations:

• Membrane systems allow to build hierarchical structures and to divide complexity. They are
also a mean to divide a task into several sub-problems and to provide a mode of parallelism.

• Artificial chemistries as implemented in membrane systems (by means of molecules an re-
action rules) are an ideal mean to compute in uncertain environments. In addition, they have
been identified as potentially very promising for the perpetual creation of novelty (see for
example [10]).

• An amorphous computer is a promising paradigm for future computational substrates and
technologies such as molecular electronics or printable digital circuits.

• Irregular and imperfect cellular machines such as amorphous computers might play a crucial
role for new computational substrates and environments. It is also often hypothesized that
nanotechnology will need approaches which are able to compute on the basis of an irregular
and imperfect medium.

5AC website:http://www.swiss.ai.mit.edu/projects/amorphous
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Figure 4: The Amorphous Membrane Blending landscape can be composed into four principal
hierarchical levels, although cells can form hierarchies of almost any complexity.

• Blending (inspired from conceptual integration) appeared to be a potentially interesting way
to create new cells from two existing cells.

Unifying membrane systems and amorphous computers would offer several interesting charac-
teristics. One of the main reasons is that such an implementation might fully make use of the mas-
sive parallel and fine-grained architecture of the amorphous computer and the membrane system. P
systems were usually simulated on a single-processor machine and their inherent parallelism could
therefore not be fully exploited. Paun writes, “[. . . ] As long as we do not have genuinely parallel
hardware on which the parallelism [. . . ] of membrane systems could be realized, what we obtain
cannot be more than simulations, thus losing the main, good features of membrane systems” [20, p.
379].

Finally, putting together membrane systems on an amorphous computer together with a blending-
inspired approach basically allows the system to adapt to a new environment.
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1 Introduction  
 
Scientists tend to subscribe to a world view known as materialism or physicalism, according to which 
nothing exists but the physical. Since biological systems are solely composed of atoms and molecules, 
biologists when they are committed to the Unity of Science idea, tend to believe that it should be 
possible to reduce biology to chemistry and physics. Many neuroscientists, for instance, accept that 
consciousness and mental phenomena are reducible to chemical reactions occurring in the brain [4]. 

In recent years, an increasing number of biologists have become critical of the view that complex 
biological systems can be fully explained, in a reductionist manner, by the physico-chemical properties 
of their constituent parts. One of the reasons for this new attitude is that it is now generally accepted 
that biological systems can only be understood in terms of their evolutionary history on Earth. Biology 
is regarded as an autonomous discipline requiring its own explanatory concepts, not found in chemistry 
and physics and its unique character as an historical science has given rise to what philosophers call the 
Disunity of Science [8, 23]. According to this viewpoint, reductionism is seriously inadequate for 
explaining the complexity of biological systems. One of the reasons is that the vocabulary of chemistry 
and physics is not adapted to the type of functional language that is required for describing the role 
played by cellular constituents in meeting the needs of an organism and keeping it alive [12, 31]. 
 
 
2 The limits of reductionism  
 
The limits of reductionism for providing adequate biological explanations have been discussed at 
several recent international meetings [6, 33] and special issues of scientific journals have been devoted 
to this question [7, 35]. 

It is important to stress that the value of reductionism as a research strategy for dissecting and 
analyzing the constituents of complex systems has never been questioned. The achievements of 
molecular biology during the past fifty years in unraveling the structural and chemical basis of living 
processes is indeed a clear testimony of the value of the reductionist approach. 

The debate between reductionists and antireductionists actually centers on the nature of explanation 
and causality. The protagonists disagree about the validity of reductive explanations for providing an 
understanding of what is causally relevant in bringing about certain biological phenomena [5]. 
Antireductionists deny that descriptions of biomolecules and their interactions can yield an 
understanding of life processes and they point to the failure of genetic reductionism in explaining 
phenotypic and behavioural traits [18, 16, 17]. 

Reductionists, on the other hand, believe that the behaviour of a complex biological system can, in 
principle, be explained by the properties of its constituent parts and by an analysis of the multiple 
connections and interactions that exist between these parts. 



They assume that the activity of the whole can be inferred, deduced, calculated and predicted from 
the properties of the parts. Antireductionists disagree and maintain that the properties of the whole 
cannot be deduced from the properties of the parts because interactions between parts as well as certain 
inputs from the environment will give rise to unpredictable novel features that are absent in the parts 
taken in isolation [11].  

They stress that biological systems possess emergent (also called relational) properties that do not 
exist in the isolated components and that it is these properties that allow autonomous organisms to be 
directively organized in a self-regulated and integrated manner. 
 
 
3 Emergence appears when reduction fails 
 
Emergence is a concept that is complementary to reduction since emergence can be said to occur when 
reduction fails. Emergent properties are properties that cannot be reduced, even in principle, to 
properties of the constituent parts of the system and they resist any attempt at being predicted or 
deduced by explicit calculation or other means. For instance, the saltiness of sodium chloride is not 
reducible to the properties of sodium and chlorine gas and the appeal of a melody is not present in the 
individual notes but arises from the melody as a whole. In a similar way, life is said to emerge from 
non-living constituents and the mind is said to have emerged in living organisms as a matter of 
contingence during the evolution of the biosphere. Emergence acquired an explanatory force when it 
was accepted that higher level properties could possess a causal efficacy of their own and causality was 
no longer restricted to lower level phenomena. Mental states, for instance, are believed to be able to 
cause psychosomatic disease. It is also accepted that the experience of pain may alter human behaviour 
and that it is not necessary, in order to explain this, to invoke the causal efficacy of lower level 
chemical reactions occurring in neurons.  
 
 
4 Levels of analysis 
 
A biological phenomenon can be studied at different levels dependent on the analytical methods, 
instruments and approaches that are used. The quantum physical level is deemed to be irrelevant, while 
the biochemical, physiological, psychological or ecological level may be considered appropriate, 
depending on the question being asked. It is important to realize that descriptions at these different 
levels may in fact pertain to the same phenomenon. An example may make this clear. As pointed out 
by Rose (1998), a biochemical reaction such as the interaction between actin and myosin is not the 
cause of a physiological event such as muscle contraction. The biochemical process does not precede 
muscle contraction and it cannot, therefore, cause it: it simply describes the physiological event at the 
lower, chemical level. Biochemical and physiological processes occur simultaneously and the claim 
that the one causes the other overlooks the fact that both are descriptions of the same event (Rose 
1997). According to Achinstein’s classification of scientific explanations, the biochemical event is not 
a causal explanation of the physiological event but it represents a so-called identity explanation [1]. 
Instead of reducing a phenomenon described at a higher level to one at a lower level, this type of 
explanation simply replaces one reaction by another. Schaffner (1993) has called this type of pseudo-
reduction the general reduction replacement model. Instead of reducing biology to chemistry, such 
explanations actually amount to a shift in subject matter whereby the attempt at describing a biological 
phenomenon has been abandoned. It could be argued that a considerable part of what is today described 



as research in molecular biology does not really belong to biology at all since it is aimed at providing 
answers to chemical rather than to biological questions. When the cellular or organismic context is left 
out of the picture, the biological enquiry tends to become a purely chemical investigation whose 
relevance to biology may be questioned. The nature of an enquiry is in fact defined by the type of 
question that is being asked.  
 
 
5 Causal explanations versus functional explanations 
 
A causal explanation is reductive in the sense that one factor is singled out for attention and is given 
undue explanatory weight on its own. In biological systems, any observed effect always results from a 
complex network of interactions and an explanation in terms of a single cause is never satisfactory. 
Instead of invoking causes, it is more appropriate to refer to the many factors that simultaneously 
influence the behaviour of a biological system [33, p50]. There is also no unique causal relation 
between the structure and the activity of a biomolecule. A single chemical structure or protein fold can 
have a multiplicity of activities and a single activity can be generated by a variety of structures. It is 
also impossible to deduce binding activities from the structure of an interacting molecule unless a 
particular relationship with a specific partner has first been identified. This is because a binding site in 
a protein is a relational entity defined by the interacting partner and not by intrinsic structural features 
of the protein identifiable independently of the relational nexus with a particular ligand [31]. 

The appeal to causes as an explanation of events and behaviour is reinforced by the human 
predisposition to look for the reasons (often called causes) of human actions. However, reasons are not 
the causes of events and initial states of a thing are not causes of its subsequent states. Since things are 
not causes, DNA sequences and genes cannot be causes of phenotypic traits and of behaviour patterns 
[14, p39].  

It is not possible to describe biological systems without referring constantly to the roles that 
molecules, organelles, cells and organs play in keeping an organism alive. To a human observer, 
organisms appear to have goals and purposes and it is tempting to try to explain their behaviour in 
terms of such end-directed features. However, when biologists attribute a purpose to a cellular process 
and explain it by referring to its goal or function, they do not imply the type of human intentionality 
that is used to explain purposive human action. 

The occurrence of biochemical and cellular processes is explained by the fact that they contribute to 
the reproductive fitness of the organism in which they are found. The performance of a function must 
confer some good to the biological system as a whole for instance by contributing to its health, 
performance, survival or reproduction. Biologists tend to favour functional explanations for a currently 
observed structure or cellular process and they emphasize the selective advantage that these features 
conferred to the organism during its evolutionary history. Functions have to pass through the sieve of 
natural selection. Evolution is seen to operate on the DNA sequence through feedback from its gene 
product effects, similar to a pattern of backward causation [23].  

All biological functions in a cell or organism are interdependent and internally regulated. Since 
their occurrence is context-dependent they cannot be understood in isolation. Functional explanations 
are thus more useful for understanding complex biological systems that exhibit many coupled 
interactions than are causal explanations that focus on a single factor. 
 
 



6 Molecular, cellular and organismic functions 
 
The term biological function is highly ambiguous. Biochemists tend to regard the function of a protein 
simply as what the molecule does, i.e. its functioning or activity at the molecular level. The primary 
activity that is considered is mostly binding activity and function is then taken to be synonymous with 
binding. Additional functions, however, have also been studied at the molecular level, for instance 
catalysis or signaling. 

Functions become meaningful only when the biological context is taken into account and this 
implies that they must be analyzed at the level of the cell and of the organism as a whole. The simplest 
autonomous system that can be said to be alive is a cell and it should be remembered that during the 
first two billion years of terrestrial evolution, life existed only in the form of unicellular organisms.  
When integrated in a living cell, molecular constituents such as DNA, plasmids, proteins and 
macromolecular assemblies take part in the emergent self-organizing phenomenon known as life, but 
none of these constituents on their own can be said to be alive. 

Analyzing functions at the lower molecular level without considering the cellular context amounts 
in fact to a purely physico-chemical analysis of little biological relevance. The catalytic activity of an 
enzyme, for instance, acquires a biological significance only when it is integrated in a cellular process, 
such as a biosynthetic pathway. The activity of an enzyme such as trypsin can be described purely at 
the chemical level, i.e. outside of the biological context, for instance in terms of which peptide bonds 
are catalysed. However, the biological function of trypsin appears only at the cellular level in the form 
of protein degradation or at the physiological level through its participation in the digestion process. 

At the organismic level, protein functions have been classified in three broad classes corresponding 
to energy-, information- and communication- associated proteins [27]. However, the link between these 
biological roles and the structure of the many participating proteins is rather indirect and is even more 
difficult to ascertain than the relationship between the structure and binding activity of a single protein. 
Difficulties in analyzing correlations between protein structure and function have been discussed 
elsewhere [29, 32] and they are compounded by the fact that a single protein usually possesses several 
binding domains. 

Functions possess a biological connotation only when they are integrated at the cellular level and 
are playing a role in ensuring the self-maintenance of a living organism. When biological functions are 
analysed at the chemical level, the ensuing reduction turns them into molecular functions and any 
biological role is then left out of the picture. Although the term function then has a different meaning, 
this is not taken into account in the existing classification schemes of protein functions which lump 
them all together in what has been called a mixed bag of “apples and oranges” [19, 20]. 
 
 
7 Emergence and complexity 
 
Complex systems have been defined as systems that possess emergent properties and which, therefore, 
cannot be fully explained by the properties of their component parts. Since the constituents of a 
complex system interact in a non-linear manner, the behaviour of the system cannot be predicted by 
classical, analytical and mathematical methods that do not incorporate non-additivity and cooperative 
effects.  Another important feature of complex biological systems is that they are open systems which 
exchange matter and energy with the environment and which, therefore, are not in thermodynamic 
equilibrium. 



The recent advent of bioinformatics and powerful computers, however, has given the science of 
complexity the tools it needs to simulate and predict the behaviour of complex biological systems [35]. 

 
 
8 Modeling complexity 
 
Computer modeling makes it possible to analyse the effect of changing one factor in a complex 
network of interactions and it will calculate the probable end state of the system using non-linear 
mathematical relations. If the behaviour predicted by modeling agrees with the observed behaviour of 
the system, it may seem as if some “understanding” has been achieved, even if the complexity of the 
system does not allow the identification of all the causal, mechanistic relations that are involved [3]. 

One of the Herculean tasks that lie ahead for biologists in the post-genomic era is to elucidate the 
functions of all the gene products in sequenced genomes. This functional analysis of proteins is usually 
called functional genomics although it does not really analyse the functions of genes and would be 
better described as functional proteomics [30]. 

Information on complex biological systems needs to be organized in such a way that software tools 
can be used to retrieve and analyse the wealth of structural and functional data that are being 
accumulated at an ever increasing rate in the post-genomic era. An important step in this direction was 
the development of so-called gene ontologies which, by using a standardized vocabulary and catalogue 
of terms, ensure uniform annotation and facilitate the sharing of information [2, 13]. 

In order to be useful for modeling the intricate networks of functional interactions that occur in 
different cellular compartments, databases must provide information on the localization and 
constitution of the various molecular assemblies such as ribosomes, proteasomes, nuclear membranes, 
the Golgi apparatus etc. The interactions between various cellular constituents are catalogued in terms 
of their role in cellular processes and pathways, for instance metabolic and biosynthetic pathways, gene 
regulation, transcriptional regulation, assembly and disassembly of multimolecular complexes, signal 
transduction, transport etc. In the aMAZE database (http://www.ebi.ac.uk/research/pfbp) the cellular 
constituents as well as the processes and pathways are considered to be objects in their own right [28]. 
Each process has its boundaries defined by the compounds that are its inputs and outputs, or 
alternatively by the feedback control of the end product of an earlier step in the process. Such databases 
that incorporate information on biological functions are a prerequisite for the computational 
manipulations that will be needed for modeling complex biological systems. 
 
 
9 New insights 
 
9.1 The failure of genetic reductionism 
 
The earlier belief that Mendelian genes were responsible for unique phenotypic traits was abandoned 
when it was discovered that genes were made of DNA. The simple relation that had been assumed to 
exist between gene and trait was replaced by two relations. The first one which linked a gene to a 
protein became the focus of intensive study by molecular biologists and was found to be exceedingly 
complex [15]. The second relation which linked a gene product to a phenotypic character remained, 
however, clouded in mystery. 

When the tools of genetic engineering became available, attempts were made to characterise all the 
genes involved in particular biological functions. This led to the discovery that in many cases the 



molecular components involved in a complex function were molecules that had been described 
previously to participate in various biochemical pathways and networks. For instance, genes affecting 
memory formation in the fruit fly were shown to code for proteins and enzymes known to participate in 
the cAMP signaling pathway and to be involved in mechanisms of hormone action. Many hormones 
bind to membrane receptors which then induce an intracellular second messenger such as cAMP which 
in turn activates an intracellular target such as a protein kinase. The specificity of hormone action is 
thus not residing in the specificity of the molecular components that mediate its action since the same 
messengers are used in many different functional processes. 

Although a particular gene product can be involved in various biological functions at the integrated 
level of the organism, at the molecular level the protein always has the same elementary activity 
namely binding to a specific ligand. It is the particular cellular compartment and environment in which 
the second messenger is released which allows the protein to have a unique effect. 

Two other features explain why genetic determinism is inadequate for explaining biological 
functions, i.e. gene pleiotropy and gene redundancy. It is known that one genotype can lead to many 
different phenotypes and that one phenotype can arise from different genotypes. Gene redundancy, on 
the other hand, is responsible for the common finding that gene knockout experiments very often do 
not throw light on the role played by the gene that has been removed. The knockout frequently has no 
effect whatsoever despite the fact that the gene codes for a protein thought to be essential. In other 
cases, the knockout has an effect completely different from the one that is expected. Such results are 
due to the fact that the absence of one gene product is often compensated by the presence and activity 
of another protein [16]. 

Another reason why genetic reductionism is not a useful framework for explaining phenotypic traits 
is that genes never act in isolation. Traits always result from the activity of many different gene 
products. Genetic explanations of human behaviour, for instance, have led to many bogus claims, 
eagerly picked up by the popular press, that new genes are being discovered for alcoholism, violence, 
depression, rape, criminal behaviour, etc. [18, 22, 33]. 

Genes are studied today not only because of the role they play in the inheritance of traits from 
parents to offspring but also because they are involved in the genetic programme that unfolds during 
development and embryogenesis and because they are useful phylogenetic markers for reconstructing 
the process of evolution. The rise of epigenetics in recent years is a further indication that simplistic 
genetic reductionism has been abandoned as an acceptable explanatory strategy in biology. 
 
 
9.2 The shortcomings of the somatic mutation theory of carcinogenesis 
 
The somatic mutation theory (SMT) has been for many years the prevailing paradigm in the field of 
carcinogenesis. According to this theory, cancer arises when a single somatic cell becomes a neoplastic 
cell through the accumulation of multiple mutations in genes that control cell proliferation and the cell 
cycle. The SMT encouraged biologists to search for oncogenes, i.e. genes believed to produce cancer 
by causing excessive cell proliferation. The assumption that oncogenes constitute a particular kind of 
genes presumably selected for during evolution has been abandoned since cancer in fact results from 
the deregulation of normal, cellular processes. Although more than one hundred oncogenes have been 
identified, they are no longer considered to belong to a distinct gene category whose function would be 
to cause carcinogenesis. The effect of an oncogene depends on the type of cell in which it is expressed 
and overexpression of a given oncogene may enhance growth in one cell type but inhibit growth or 



induce apoptosis in another [34]. In reality, the presumed association between a pattern of mutated 
oncogenes and cancer type has never been found. 

In cancer research, established cell lines tend to be studied in vitro on the assumption that it is 
legitimate to reduce phenomena occurring at the level of tissues or whole organisms to purely cellular 
phenomena. Cancers were in fact reduced to transformed cells and carcinogenesis was reduced to 
enhanced proliferation of cells in a culture dish. This unwarranted reduction has been criticized by 
Sonnenschein & Soto (2000) who suggested that cancer is neither a genetic nor a cellular problem. 
These authors proposed a tissue organization field theory of neoplasia which postulates that 
carcinogens act by disrupting the normal interactions that take place between the cells of certains 
tissues and organs, in particular epithelium and stroma tissues. They suggested therefore that 
carcinogenesis should be studied at the level where it is identified, i.e. at the tissue level of biological 
organization rather than at the cellular or molecular levels [17]. 

It is now recognized that differentiation is brought about by morphogen gradients resulting from the 
diffusion of certain gene products away from a given source. Such gradients have been shown for 
instance to lead to the development of the anteroposterior and ventral-dorsal axes in Drosophila and in 
higher organisms. It can be said, metaphorically, that the morphogens produce positional information 
that allows cells to know where they are [10]. 

Evidence for the theory of Sonnenschein and Soto (1999, 2000) is found in the observations that 
liver carcinoma cells can revert to normal cells when they are injected into normal livers, whereas 
normal cells can be made to behave like carcinoma cells when they are repositioned. Furthermore, the 
neoplastic phenotype can be normalized at a frequency much higher than that found when a mutant 
reverts to wild type. Instead of explaining cancer by the action of mutated genes operating at the level 
of single cells, the cancer phenotype may thus be analysed as an emergent phenomenon of altered gene 
expression arising at the tissue level of biological organization. 
 
 
9.3 Proteomics and drug discovery  
 
Proteomics consists in the analysis of all the proteins expressed in a cell and involves not only their 
identification and quantification but also a study of their structure, localization, modifications, 
interactions, activities and functions [9]. 

It is expected that by using high throughput chips based on DNA and protein microarrays, it will be 
possible to identify protein targets useful in the drug discovery process. A commonly used strategy is to 
compare cell extracts derived from healthy and diseased organisms in order to identify which proteins 
are up or down regulated and therefore potentially useful as markers of the diseased state. The limited 
value of this approach becomes obvious when it is realized that any difference in the level of gene 
expression may actually be a side effect of the diseased phenotype that is not causally linked to the 
pathogenesis. Differences in the concentration of a protein in healthy and diseased cells may thus be of 
little value for identifying potential targets for drug discovery. It seems unlikely; therefore, that 
proteomics will make it possible to discover new drugs by a shortcut approach that would bypass the 
need to elucidate the complex functional networks of protein interactions that are currently under 
investigation. 
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Modelling self-organizing systems from the bottom up 
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Abstract 
Agent-based modeling (ABM), also known as bottom-up modeling or micro-simulation, is a 
generic approach to modeling systems from the bottom up, starting from the system’s constituent 
units and their interactions and working all the way up to the system’s aggregate level behavior [3]. 
This approach is particularly suitable to modeling self-organizing systems, that is, systems that 
exhibit emergent, aggregate-level properties [1,4].  
 
The characteristics of ABM include:   

• Natural description: behavior of individuals rather than transition rates; describing complex 
individual behavior with equations is often intractable; ABM describes activities rather than 
processes. 

• ABM captures emergent phenomena from interactions among constituent units. 
• Scalability: adding more agents, tuning the complexity of agents (rules of interaction, degree 

of rationality, ability to learn, adapt and evolve). 
• Aggregation and de-aggregation: tunable level of description: family of agents, sub-family, 

single agents; the right level of description depends on the model’s purpose: sometimes 
microscopic level is necessary, sometimes an aggregate level of description is fine, 
sometimes a “mesoscopic” level of description must be used; different levels of description 
can coexist in a given model, with some parts of the model being detailed and others being 
higher level. 

• When averages won’t do the job: differential equations tend to smooth out fluctuations, not 
agent-based modeling, which is important as under certain conditions, fluctuations can be 
amplified –the system may be linearly stable but is unstable to larger perturbations. 

• Heterogeneous interactions, network effects: flow equations usually assume global, 
homogeneous mixing. In a marketing campaign, advertising is a global source of 
information, but viral marketing on social networks can also be important.  

• Nonlinear behavior at the individual level and in interactions: if-then rules, while describing 
nonlinearity and even discontinuity in individual behavior is difficult with differential 
equations. 

• Memory and history, non-markovian behavior, temporal correlations. 
• Time can be continuous or discrete.  
• ABM is compatible with other types of modeling approaches. In most cases, classical 

approaches do just fine. Parts of a simulation model can be agent-based while other parts are 
classical flow equations. 

• Validation and calibration can paradoxically be easier. 
• Increased ownership by domain experts. 
• Stochasticity can be easily included into ABM: sources of randomness can be easily applied 

to the right places (as opposed to a noise term added to an equation). 
 



 

A useful illustration of ABM is pattern formation in social insects [4], particularly nest 
construction [5,6] and cemetery formation in ants [2,7].  
 

For example, Theraulaz and Bonabeau [5] have introduced an agent-based model, inspired by the 
building behavior of wasps [4,6] which illuminates how coordination may emerge in the collective 
construction of wasp nests. Wasp nests range from very simple to highly organized. Nests are made 
of plant fibers that are chewed and cemented together with oral secretion. The resulting carton is 
then shaped by the wasps to build the various parts of the nest (pedicel, walls of cells, or external 
envelope). Sixty different types of wasp nests have been categorized, with many intermediates 
between extreme forms. A mature nest can have from a few cells up to a million cells packed in 
stacked combs, the latter being generally built by highly social species. Modularity is another 
widespread feature of nest architectures: a basic structure is repeated. 
 

Previous studies showed that individual building algorithms consist of a series of if-then decision 
loops. The first act usually consists, with only a few exceptions, of attaching the future nest to a 
substrate with a stalk-like pedicel of wood pulp. Then, wasps initiate the nest by building two cells 
on either side of a flat extension of the pedicel. Subsequent cells are added to the outer 
circumference of the combs between two previously constructed cells. As more cells are added to 
the evolving structure, they eventually form closely packed parallel rows of cells and the nest 
generally has radial or bilateral symmetry around these initial cells. A wasp tends to finish a row of 
cells before initiating a new row, and rows are initiated by the construction of a centrally located 
cell first. 
 

The number of potential sites where a new cell can be added increases significantly as 
construction proceeds: Several building actions can in principle be made in parallel—and this is 
certainly an important step in the emergence of complex architectures in the course of evolution. 
Parallelism, however, could deorganize the building process by introducing the possibility of 
conflicting actions being performed simultaneously. But the architecture seems to provide enough 
constraints to canalize the building activity. It can be seen, with a careful study of the dynamics of 
local configurations of cells during nest development in the primitively eusocial wasp Polistes 
dominulus, that there are not equal numbers of sites with one, two, or three adjacent walls. The 
great majority of them are composed of sites with two adjacent walls. Cells are not added randomly 
to the existing structure: Wasps have a greater probability to add new cells to a corner area where 
three adjacent walls are present than to initiate a new row by adding a cell on the side of an existing 
row. Therefore, obviously, wasps are influenced by previous construction, and building decisions 
seem to be made locally on the basis of perceived configurations in a way that possibly constrains 
the building dynamics. 
 

Theraulaz and Bonabeau [5] introduced a class of agent-based algorithms that could hardly be 
made simpler: asynchronous automata that move in a three-dimensional discrete space and take 
actions on a pure stimulus-response basis, relying on information that is local in space and time. 
The deposit of an elementary building block (hereafter called a brick) by an agent depends on the 
local configuration of bricks in the cells surrounding the cell occupied by the agent. Two types of 
bricks can be deposited. No brick can be removed once it has been deposited. All simulations start 
with a single initial brick. A micro-rule is defined as the association of a stimulating configuration 
with a brick to be deposited, and we call algorithm any collection of compatible micro-rules. Two 
micro-rules are not compatible if they correspond to the same stimulating configuration but lead to 
the deposition of different bricks. An algorithm can be characterized by its micro-rule table, 
basically a lookup table, comprised of all its micro-rules, that is, all stimulating configurations and 
associated actions. A single agent in this model is able to complete an architecture. In that respect, 



 

building is a matter of purely individual behavior. But the individual building behavior, determined 
by the local configurations that trigger building actions, has to be organized in such a way that a 
group of agents can produce the same architecture as well. Some natural wasp species face the same 
problem since nest construction is generally first achieved by one female, the founder, and is then 
taken over by a group of newly born workers. The group of agents has to be able to build the 
architecture without the combined actions of the different agents interfering and possibly destroying 
the whole activity of the swarm. The most significant result of the agent-based model is that it is 
possible to produce complex shapes (Figure 1), some of them strikingly similar to those observed in 
nature, with extremely simple stimulus-response algorithms. 
 

 
 
Figure 1 : Simulations of collective building on a three-dimensional hexagonal lattice. Simulations 
were made on a 20x20x20 lattice with 10 agents. (a) Nest-like architecture (Vespa) obtained after 
20,000 steps. (b) Nest-like architecture (Parachartergus) obtained after 20,000 steps. (c,d) Nest-like 
architecture (Chatergus) obtained after 100,000 steps. A portion of the front envelope has been cut 
away in d. (e) Lattice architecture including an external envelope and a long-range internal helix. A 
portion of the front envelope has been cut away. 
 
 
 

It was also found that structured shapes can be built only with special algorithms, coordinated 
algorithms, characterized by emergent coordination: Stimulating configurations corresponding to 
different building stages must not overlap, so as to avoid the deorganization of the building activity. 
This feature creates implicit handshakes and interlocks at every stage, that is, constraints upon 
which structures can develop consistently and robustly. This coordination is essential, since 
parallelism, which has a clear adaptive advantage by allowing a real colony to build at several 
locations at the same time, introduces the possibility of conflicts. This approach therefore shows 
how the nest itself can provide the constraints that canalize a stigmergic building behavior into 
producing specific shapes.  
 

In another example, the formation of spatial clusters of corpses in ants [2,7], agent-based 
modeling also proved useful in showing how simple rules followed by workers to pick up and drop 



 

corpses can lead to a clustering spatio-temporal dynamics that closely resembles that of laboratory 
experiments. An interesting extension of the agent-based model is an aggregate, density-based 
partial differential equation model [7] that is inspired by the agent-based model and lends itself to 
rigorous mathematical analysis. In other words, the agent-based model approach enabled 
researchers to discover the potential underlying mechanisms of cluster formation, while the top-
down approach enabled a deeper mathematical understanding of the phenomenon. The two 
approaches are therefore not exclusive but rather complementary. 
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Abstract

In molecular biology, functions are produced by a set of macromolecules that interact at differ-
ent levels. Genes and their products, proteins, participate to regulatory networks that control the
response of the cell to external or internal input signals. One of the most important challenge to
biologists is undoubtedly to understand the mechanisms that govern this regulation, and to identify
among a set of genes which play a regulator role and which are regulated. While the problem used
to be approached by a gene to gene approach, this is changed significantly by the development of
microarray technology. Expression of thousands of genes of a given organism or a given tissue can
now be measured simultaneously on the same chip.

This revolution opens a large avenue for research on reconstruction of gene regulatory networks
from experimental data. Several recent works have shown that this problem can be handled by a
machine learning approach. However it is already difficult to make a difference among the various
models and methods that have been proposed.

In order to clarify the debate, we first present fundamentals of machine learning and show how
it provides both a formal setting for different important questions and a methodology to tackle the
reverse modeling problems. We then discuss of existing works with respect to the proposed metho-
dology. It appears that there is less difference between the existing approaches that one could
predict. Conversely some crucial points such as sample complexity, modularity and heterogeneity
of regulation are yet unsolved. This analysis tends to show that maybe there is a need for re-
inventing the problem, enriching it with new perspectives and re-formulate it. Inspiration for
drawing a roadmap can then be taken from biology and machine learning itself. We propose
several working directions that range from building a set of benchmark problems to the conception
of a complete modeling loop where learned models can be validated and sorted using the model-
checking methods to suggest biologists new experimental settings.





The Combinatorics of Membrane Interactions

Vincent Danos

P.P.S., CNRS UMR 7126, Université Paris 7, 2 place Jussieu, 75251 Paris Cedex 05

Abstract

We introduce a "projective brane calculus" refining Cardelli’s brane-calulus and meant to represent
membrane interactions and the investigation of abstract scenarios for various viral invasion modes.

The refinement consists in introducing directed actions and brings the calculus closer to actual bio-
logical membranes, and also, and perhaps more importantly, obtains a pleasing invariance property
of membrane interactions.

Elementary membrane interactions become stable under symmetries generated by shifting
one’s point of view. An associated structural congruence, termed the projective equivalence, is
defined and shown to be preserved by sequences of interactions.





Technological developments for genetic network inference
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Abstract

To comprehend biology as a system, we must examine the structure and dynamics of cell con-
stituents as modules rather than isolated part. Many progress in technological devices, analytical
methods and biological models are required to decipher molecular networks and eventually ana-
lyze the cell as a system. In the mid nineties the development of DNA microarrays to measure
the expression of thousands of genes simultaneously, was the first technological step toward sys-
tems biology. Clustering analysis of gene expression profiles generated by such a device provides
insight into the "correlation" between genes and biological conditions. However it is yet restric-
tive as it does not reveal the causality of regulatory relationships. Besides it is very difficult to
infer molecular networks from expression profiling only, as the only accessible information is the
steady-state concentration of mRNA. This information is necessary to characterize the structure of
genetic network and analyze its dynamic and functional properties, but it is not sufficient.

Modeling of molecular networks should take into account RNA and protein concentrations,
phosphorylation state,cis-acting sequences, chromosome localization and so forth, since each
molecular variable carries unique biological information. However due to limitation in accurate
and highly parallel measuring technologies, these data are not routinely accessible. To gain as
much predictive power as possible from modeling, one need to generate more data on molecular
components of the cell.

We have developed innovative bioarrays to measure with sufficient accuracy, parallelism and
throughput relevant data to infer genetic networks. We are manufacturing DNA array containing
either intergenic region (yeast) or promoter region (human) to perform ChIP on chip analysis and
localize for a given transcription factor, all putative binding sites onto the genome. Indeed genes
located in theses regions are potential targets for the transcription factor under scrutiny. One can
then return to DNA arrays to confirm hypothesis generated from ChIP on chip data. We are also
developing cell microarrays to characterize, genome wide, upstream regulators for a given gene.
Using this device we are able to transfect simultaneously thousands of genes cloned in expression
vectors (allowing synthesis of gene products) into a cell line carrying the promotor region of the
gene of interest cloned upstream of a reporter gene. All the genes products promoting synthesis of
the reporter gene are potential regulators of the gene under investigation.

Technological breakthroughs in micro and nanotechnologies to generate comprehensive and
relevant data are as critical as innovation in analytical methods for deciphering genetic networks
and developing system biology.





Pour une biologie moléculaire darwinienne 
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Résumé 
 
Pour la biologie moderne, l'origine et le fonctionnement du vivant sont attribués à l'ADN. Le 
programme génétique a tout prévu pour notre plus grand bénéfice et en détient les clefs : 
embryogenèse, fonctions, organes, régulations... Pour les premiers naturalistes, les grands équilibres 
naturels relevaient d'une conception analogue : le programme, celui de la Création cette fois, 
expliquait l'origine et le fonctionnement de la Nature, conçue de la même manière pour le plus 
grand bénéfice de l’Homme. La biologie moderne ne commet-elle pas, à l’intérieur de l’organisme, 
l’erreur que les Anciens commettaient à l’extérieur [1]? 
 
 Qu’est ce qu’un gène 1 ? Selon la définition initiale, le gène est une abstraction représentant le 
caractère héréditaire. Associé aux lois de Mendel, le gène permet de faire des « calculs » sur la 
transmission. Ensuite, les travaux de T. Morgan montrèrent que des locus chromosomiques peuvent 
être associés aux caractères [2]. L’association n’implique pas la causalité, mais permet aux 
marqueurs génétiques, version moderne des locus, d’être exploitables pour le diagnostic ou l’étude 
des populations. La voie était ouverte pour conférer une réalité matérielle et une valeur causale au 
gène abstrait des mendéliens. On aboutit au déterminant génétique de la biologie moléculaire : un 
segment d’ADN, plus ou moins facile à délimiter, qui code pour la synthèse d'une protéine. 
Malheureusement, sauf à assimiler le caractère héréditaire à une protéine, il est impossible de 
confondre le gène-ADN avec le gène-caractère. Le chemin est bien long et tortueux des protéines 
aux caractères héréditaires et ne dépend pas seulement des facteurs génétiques (le prion en est 
l’illustration extrême). Les diverses définitions du gène, tout à fait opérationnelles en leur champ 
propre (généalogie, diagnostic, synthèse des protéines …), ne sont pas cohérentes entre elles. 
 
 Cette incohérence accroît la difficulté d’unir les concepts de la génétique à ceux de la théorie 
darwinienne de l’évolution, ce qu’a tenté la théorie synthétique (ou néodarwinisme). Selon cette 
théorie, la sélection naturelle agit sur les phénotypes issus des variations aléatoires du génotype. Le 
génotype est donc sélectionné indirectement par l’intermédiaire du phénotype associé [3]. La 
théorie synthétique peut être décrite par le « gène égoïste » de R. Dawkins : c’est le gène qui est 
l’objet de la sélection naturelle, associé à ses « extensions » phénotypiques [4]. Le problème 
principal de la théorie synthétique, c’est que le chemin qui mène du génotype au phénotype est 
parcouru avant que la sélection ne puisse opérer. Or c’est précisément ce chemin qui préoccupe la 
biologie « post-génomique ». Avant d’arriver au phénotype, la vie échapperait-elle à la sélection 
naturelle ? 
 
 Il est possible de résoudre cette difficulté en s’appuyant sur la théorie de l‘évolution à tous les 
niveaux. La sélection -correspondant par exemple à des avantages de stabilité, de croissance ou de 
reproduction- opérant à un niveau arbitrairement choisi produit une organisation qui peut être 
sélectionnée aux autres niveaux arbitrairement choisis. Schématiquement, la compétition entre les 
réactions chimiques2 produit une organisation -la cellule- qui entre en compétition avec les autres 
                                                 
1 Sur les difficultés de la définition du gène, voir le dossier « Qu’est ce qu’un gène ? » paru dans La Recherche, n°348, 
p. 50-60, Décembre 2001. 
 
2 Plus techniquement, cela correspond aux modèles d’auto-organisation de la chimie. Voir par exemple [5].  



cellules, ce qui définit l’organisme, qui entre en compétition avec les autres organismes etc. Pour 
illustrer une telle fractale darwinienne, la métaphore de l’écosystème peut être utile : l’organisme 
est une forêt, habitée par des animaux libres et autonomes. Dans un écosystème, il n’y a pas de 
programme représentant l’objectif collectif des animaux et des plantes, et garantissant la sauvegarde 
de l’ensemble. La structure globale émerge des interactions individuelles. On peut aussi se référer à 
la ruche, construite par des abeilles qui n’ont aucun plan ni vision d’ensemble et obéissent à des 
règles purement locales. De manière analogue, nos cellules s’auto organiseraient autour de 
« chaînes alimentaires » fondées sur des avantages métaboliques locaux. Le globule blanc ne serait 
pas dévoué à la survie de sa collectivité. Il dévorerait les microbes parce qu’ils constituent la 
« nourriture » la plus accessible là où il se trouve. La cellule du foie est voisine de l’intestin. Elle se 
spécialiserait pour exploiter les ressources qui lui arrivent du tube digestif, non pour assurer que 
nous aurons bien un foie. La vie est une conjonction d’intérêts : l’organisme bénéficie certes de ces 
spécialisations cellulaires et les re-sélectionne à son niveau. Mais, le finalisme insidieux du 
programme génétique est évacué : la logique de l’organisme n’explique pas la mise en place des 
organes. Conséquence troublante dans ce cadre : l’ADN n’est plus le vecteur privilégié de 
l’hérédité. Il n’intervient pas plus que les autres composants qu’ils soient « internes » (nucléaires, 
cytoplasmiques, …) ou « externes » (locaux, environnementaux, …). Les facteurs externes portent 
donc l’hérédité tout autant que l’ADN. 
 
 Envisageons quelques perspectives ou ouvertures expérimentales. 
La thérapie génique ne serait plus conçue comme une « reprogrammation », mais comme une 
introduction d’espèce dans un écosystème : en fonction des avantages sélectifs, la nouvelle espèce 
peut s’installer de manière stable et permettre un nouvel état de l’ensemble [6]. L’espèce introduite 
peut aussi s’éteindre, c’est le cas le plus fréquent en thérapie génique, ou au contraire proliférer 
et/ou provoquer un déséquilibre mortel. En écologie, la problématique de l’introduction ou de la 
préservation d’espèce dans un écosystème ne se résume pas à l’efficacité des vecteurs de transfert. 
Le cancer ne serait plus conçu comme une violation du traité anti-prolifération imposé par la toute-
puissance génétique. Il serait un état de moindre spécialisation tissulaire répondant à une nouvelle 
distribution des ressources dans l’organisme. Les relations entre le niveau de spécialisation des 
individus et le partage des ressources disponibles sont une problématique de l’écologie 
évolutionniste (voir par exemple [7]). Il serait passionnant d’importer ces outils et concepts et 
d’étudier sous cet angle les micro-environnements des cellules normales ou cancéreuses. 
Le soi immunologique ne serait plus une catégorie particulière de structures, issues d’un 
apprentissage. Il correspondrait à un état stationnaire de la production et de la consommation des 
constituants tissulaires. La logique de l’auto-immunité serait recherchée au niveau des dynamiques 
de consommation des cellules entre elles, plutôt que dans les anomalies de la régulation postulée 
des défenses de l’organisme. 
 La plasticité des cellules souches traduirait leur adaptabilité à des ressources environnementales 
diverses. Selon la théorie de l’évolution, le potentiel adaptatif résulte du taux de variation et de la 
taille de la population considérée. Inutile de chercher une propriété intrinsèque ou un marqueur fixe 
de cellule souche si c’est la vitesse de variation et la taille de la population qu’il faut mesurer. 
Les grandes fonctions indispensables à notre existence (respiration, digestion, reproduction, etc.) 
résultent des interactions moléculaires et cellulaires, sans en être la cause. Les molécules et les 
cellules sont libres. L’individu n’est pas au centre de son monde intérieur. Pour comprendre notre 
existence, il faut commencer par l’oublier. 
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Abstract

In the last few years, new experimental techniques have allowed the study of Protein Interaction
Networks (PIN) on a scale comparable with that of the entire proteome of the simplest eukaryotic
organisms, as Yeast. The analysis of these data has led to a better understanding of the archi-
tecture of these networks that show several complex topological features. These properties and
their mathematical characterization will be reviewed along with their relevance in the formulation
of evolutionary models of PINs. Finally, I will hint at the possibility to predict the functionality
of uncharacterized proteins by taking advantage of the topological properties of the underlying
interaction patterns.
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The Regulatory Gene Game
Application of Game Theory to Gene Networks Analysis

Franck Delaplace & Matthieu Manceny

Laboratoire de Ḿethodes Informatiques, UMR CNRS 8042, Université d’Evry-Val d’Essonne, 523 Place
des Terrasses de l’agora, 91025 Evry Cedex, France.

Abstract

We model genetic networks by using game theory.
The functional analysis of these networks shows that the adaptation of a biological agent cor-

responds to find a maximum of a payoff function while considering that the other agents also
maximise their payoff functions. To find the steady states of these agents is equivalent, in game
theory, to compute Nash equilibria. Pure Nash equilibria correspond to regular states whereas
Mixed Nash Equilibria are representative of singular states.

Elementary regulatory circuits have been modelised and Nash Equilibria have been used to
compute their steady states.

Résum é

La théorie des jeux nous a permis de modéliser des ŕeseaux ǵeńetiques.
L’analyse fonctionnelle de ces réseaux montre que l’adaptation d’un agent biologique revient

à d́eterminer le maximum d’une fonction de gain attribuéeà cet agent tout en considérant que les
autres agents maximisentégalement leur propre fonction de gain. Rechercher lesétats stables d’un
agent est́equivalent, en th́eorie de jeux, au calcul d’équilibres de Nash. Leśequilibres pures de
Nash correspondentà desétats ŕeguliers, alors que leśequilibres mixtes de Nash représentent les
états singuliers.

Les circuitsélémentaires de régulation ont́et́e mod́elisés et leurśetats stables calculésà l’aide
deséquilibres de Nash.



 



Design of genetic networks with specified functions
by evolution in silico

Paul François & Vincent Hakim

Laboratoire de Physique Statistique, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris, France.

Abstract

Recent studies have provided insights into the modular structure of genetic regulatory networks and
emphasized the interest of quantitative functional descriptions. Here, to providea priori knowl-
edge of the structure of functional modules, we describe an evolutionary procedurein silico that
creates small gene networks performing basic tasks. We used it to create networks functioning
as bistable switches or oscillators. The obtained circuits provide a variety of functional designs,
demonstrate the crucial role of post-transcriptional interactions, and highlight design principles
also found in known biological networks. The procedure should prove helpful as a way to un-
derstand and create small functional modules with diverse functions as well as to analyze large
networks.

Reference

[1] P. François, V. Hakim, PNAS, 101:580-585, 2004.



 



Nucleocytoplasmic Oscillations of the Transcriptional Activator Msn2 
 

Cecilia Garmendia-Torres, Fabio De Gobbi, Georges Renault & Michel Jacquet 
 

 
Laboratoire Information Génétique et Développement, Institut de Génétique et Microbiologie, Université 
Paris-Sud, 91405 Orsay Cedex, France. 
 
 

Abstract 
 
Msn2 is a transcriptional activator that mediates a general response to stress in yeast Saccharomyces 
cerevisiae by eliciting the expression of specific sets of genes.  In response to stress or nutritional 
limitation, Msn2 migrates from the cytoplasm to the nucleus and shuttles repetitively into and out of 
the nucleus with a periodicity of a few minutes. This periodic behaviour, which can be induced by 
various types of stress, including light emitted by the microscope, is not dependent upon protein 
synthesis.  

Two kinds of models could account for the oscillatory shuttling associated with the stress 
response: either an external biochemical oscillator drives Msn2 nucleocytoplasmic transitions or 
oscillatory shuttling results from an autoregulatory loop involving Msn2. To produce oscillations, 
nuclear Msn2 should elicit, after a delay, the process that eventually leads to its exit from the 
nucleus. This mechanism likely involves phosphorylation-dephosphorylation. Indeed, PKA-
dependent phosphorylation prevents nuclear localization by inactivating an NLS domain and 
activating nuclear export, but also hyperphosphorylation by (an) other kinase(s) has been shown to 
correlate with activation and nuclear localization. A computational model capable of producing 
oscillations, based on a simple implementation of the delayed activation mechanism was presented 
in Jacquet et al 2003.   

Here, we present the study of different domains of Msn2 and their involvement in the oscillatory 
behaviour of the protein. Using GFP-tagged constructs and high-resolution time-lapse video 
microscopy on single cells, we have determined the smallest part of Msn2 that is able to oscillate, 
which contains a NLS and a NES. And, at the same time, we show that the NLS domain which has 
4 consensus sites supposedly recognized by the PKA is enough to make oscillate a GFP fused to a 
stress-independent NES 

 
 
 



 



Bio Ψ: a new scheme for biological process description

Pierre Mazìere, Claude Granier & Franck Molina

Centre de Pharmacologie et Biotechnologie pour la Santé, CNRS UMR 5160, Faculté de Pharmacie, 15
Avenue Charles Flahault, 34093 Montpellier Cedex 5, France.

Abstract

In current databases, knowledge of biological function is mainly in a state of textual annotation.
Even though some methods obey strict standards, they have limited use for bioinformatic tools
apart from clustering and crosslinking. Knowledge about biological processes is much more im-
portant than the image reflected by these databases. The main reason for this difference seems to
be the lack of an integration method allowing the exhaustive description of this knowledge whose
nature is much more complex than other types of biological data.

In this work, we present an original scheme that revisits the fuzzy concept of biological func-
tion through the use of elementary actions. BioΨ is based on four levels of biological process
description, correponding to four well-known biological observation scales: functional motifs,
functional domains, molecular entities and functional modules. The first level is built on the defi-
nition of about one hundredBasic Elements of Action(BEA). Associated with relevant parameters,
the combination of these BEA should allow us to rebuilt the complexity of biological processes on
the basis of our four levels of description.

Current biological knowledge, scattered among databases and scientific litterature, could be
retranscribed through a language derived from BioΨ. This language would have the double advan-
tage of using a standardized description and providing a direct information source for biological
process simulation and modelization systems.



 



Elementary flux mode analysis:
application to mitochondria metabolism

Sabine Ṕer̀es, Marie Aimar & Jean-Pierre Mazat

Universit́e Bordeaux 2, Laboratoire de Physiologie Mitochondriale, 146 rue Léo Saignat, 33076 Bordeaux
cedex, France.

Abstract

Elementary flux modes of a metabolic network are defined as minimal sets of enzymes that can
operate at steady states with all irreversible reactions proceeding in the appropriate direction. They
define a unique set of pathways, which represents a set of generating vectors of the solution space
of steady states. It can be determined from the stoichiometric matrix of the network only. The
determination of elementary flux modes allows to test the robustness of a network confronted to
gene deletion or addition. This approach does not involve the kinetic parameters of the individual
reactions but only the architecture of the network.

Mitochondria are intra cellular organelles with their own metabolic network, involving about
forty main reactions. Applied to the mitochondria metabolism, the elementary flux mode analysis
can express specific pathways which could be paramountly represented in particular tissues and
give them their specificity.



 



DS² models and Drosophila patterns 
 

Jacques-Deric Rouault1 & Daniel Lachaise2 
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Drosophila patterns 

Among the about 4000 described species of Drosophila, most of them exhibit very characteristic 
patterns : spots and stripes on thorax and head, colored wings, sex-combs, bristles. The patterns are 
specific and present a high level of stability within a species or/and a population, showing a 
manifest genetic origin. 

At a first step, we focus on the patterns of the abdominal tergites of the Leucophenga genus 
because they present a high level of variability and are well documented [1]. 

DS² models 

DS² models design Dynamical Systems evolving in a Dynamical Structure [2]. For instance, Gierer-
Meinhardt models [3,5] can be implemented in a two-dimensional cell structure which develop 
along the time. We present here some simple DS² models representing cells in development in a 
two-dimensional space. 

First results 

This first approach presented here shows that a model integrating a simple Gierer-Meinhardt 
process implemented in a few cells rectangle completed by a cell multiplication is able to produce 
patterns reconstructing observations performed in Drosophila: a black transverse stripe on the 
posterior edge, and some sparse spots. The inversion mechanism (light vs. dark) produced by this 
model is known in insect patterns.  
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Positive circuits and differentiation

Christophe Soulé

IHÉS, Le Bois-Marie, 35 route de Chartres, 91440 Bures-sur-Yvette, France.

Abstract

Reńe Thomas has conjectured that for a gene network to lead to multistationarity, hence differen-
tiation, it must contain a positive circuit. We prove this assertion for differentiable and piece-wise
linear models. We show furthermore that a variant of it is valid when stochatic variations are taken
into account.



 



Towards Modelling and Simulation 
of Natural DNA Compaction with a Synthetic System 

Alain R. Thierry 

Laboratoire des Défenses Antivirales et Antitumorales, UMR 5124, Université Montpellier 2,  
Place E. Bataillon, 34095 Montpellier Cedex 5, France. 
e-mail : thierrya@univ-montp2.fr 

Abstract 

We examined biophysical properties of the ultrastructure of complexes made from DNA and 
suitable lipids (lipoplex, Lx) designed for gene transfer. We observed by cryo-electron microscopy 
(cryoEM) a distinct concentric ring-like pattern with striated shells when using plasmid DNA. 
These spherical multilamellar particles have a mean diameter of 254 nm with repetitive spacing of 
7.5 nm with striation of 5.3 nm width. Small angle x-ray scattering revealed repetitive ordering of 
6.9 nm, suggesting a lamellar structure containing at least 12 layers. This concentric and lamellar 

structure with different packing regimes also was observed by cryoEM when using linear double-
stranded DNA, single-stranded DNA, RNA and oligodeoxynucleotides. Such specific 
supramolecular organization is the result of thermodynamic forces, which cause compaction to 
occur through concentric winding of DNA in a liquid crystalline phase. CryoEM examination of T4 
phage DNA packed either in T4 capsides or in lipidic particles showed strikingly similar patterns. 
Small angle x-ray scattering suggested an hexagonal phase in Lx-T4 DNA. Our results indicate that 
both lamellar and hexagonal phases may coexist in Lx preparation as well as for viral particle and 
that transition between both phases may depend on equilibrium influenced by type and length of the 
DNA used.  

Ultrastructure of Lx appears as a complex matter and is not yet elucidated, nevertheless they 
could constitute a valuable model system for studying DNA organization in biological structures. 
Organization of such nucleotidic supramolecular assemblies is relevant for prebiotic chemistry. 
Cellular life might have begun with a membrane vesicle containing just the right mixture of 
polymers. In light of the numerous observations made on DNA packaging in nature or by various 
organic or inorganic condensing agents, our data corroborate the notion that a parallel between 
natural and synthetic DNA compaction can be drawn.  

References 
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Integrated Modelling of Renal Function 
 

S. Randall Thomas 
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Abstract 
 
Mathematical modeling has long played a key role in research on the physiology of renal transport 
systems. The necessity for such a role is dictated by the complex interactions among coupled flows 
at all levels of kidney organization and also by the very inaccessibility of the inner kidney structures 
to in vivo intervention. Thus, in vivo behavior of nephron segments and blood vessels "hidden" 
within the kidney interior must be inferred from micropuncture samples taken at accessible surface 
sites, from permeability measurements performed in vitro by such techniques as microperfusion, 
vesicle studies, patch clamp, immunoflourescence imaging, and others, and, finally, from the known 
anatomical/architectural features of the kidney. Theoretical analyses have thus been crucial to 
quantitative formulation of working hypotheses, have been necessary for the interpretation of 
experimental results, and have occasionally led directly to the development of new experimental 
techniques (e.g., in vitro microperfusion) in order to measure crucial parameter values whose 
importance was only appreciated thanks to modeling studies. Such modeling studies have helped to 
understand, for example: the process of glomerular filtration, the mechanism of (quasi)isotonic 
reabsorption in the proximal tubule, the roles of several nephron segments in acid-base regulation, 
the mechanisms involved in tubuloglomerular feedback and autoregulation, the importance of 
countercurrent flows in proximal tubule fluid reabsorption and in the many "cycles and separations" 
relationships among medullary nephron segments, collecting ducts and medullary blood vessels 
(Thomas 1998,2000,2001,2003), and details of medullary microcirculation in relation to solute and 
water recycling. 
 

More recently, it has also become clear that this legacy of models of renal function (mostly 
related to transport of solutes and water at all levels of organisation) can be exploited for functional 
interpretation of genome-level experiments, such as 1) knock-outs or directed mutation studies of 
(often disease-related) membrane transporters, channels, and receptors, 2) modifications of cell 
metabolism impinging on transport functions or cell signaling, 3) flourescent tagging and imaging 
of significant transport proteins such as aquaporins and urea transporters, which have lately brought 
new details concerning not only the intimate anatomy of the inner medulla but also unsuspected and 
surprising changes of permeability along the length of inner medullary nephron segments. 

 
We will describe efforts begun recently, with other renal modeling groups, to develop tools for 

1) the translation of new and legacy models into a common context, via a markup language based 
on CellML and SBML, and 2) development of a knowledge base for quantitative data from the 
experimental literature on kidney and related epithelia. This work is aimed at expanding the range 
of problems to which modeling can be applied, by rendering more accessible previous work via a 
dynamic web interface. As far as possible, these tools are being developed using a generic 
approach, with a view toward easy adaptation to fields other than kidney physiology. 
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On “Network Motifs in Natural and Artificial  
 

Transcriptional Regulatory Networks” [1] 
 

Franck Molina 
 
 
[1] W. Banzhaf and P. Dwight Kuo,  Network Motifs in Natural and Artificial Transcriptional 
Regulatory Networks, this volume, p. 25.   
 
 

Networks are everywhere in our environment. To understand them we should investigate their 
similarities and differences, the mechanism for their generation and the interactions of their 
structure and dynamics. Few steps have been made thanks to global characterization (scale free / 
small world topology) or local characterization (network motifs). For the speaker emergence (the 
appearance of qualitative new phenomena) could be addressed through a networks approach: 
Nature’s and Man‘s way to stabilize emergent phenomena is to anchor them in networks 
(Regulatory networks of development, Traffic Networks, Communication Networks). Thus, 
emergence which requires the interaction of entities (node=entities and edges=interactions in the 
network) could be considered as new entities at higher level. 

One can consider networks as constructive systems given that new components may appear in a 
network and new interactions may be formed. However, networks are difficult to understand 
because the causes are dissolved meanwhile effect are accumulated. For the author, although 
networks are non-linear devices they remain our best bet to catch emergent phenomena. 

Actually, networks offer a smooth way to grow complexity not only because new nodes or new 
interaction between existing nodes could be added, but as well it is possible to increase density of 
connections between nodes or to decrease density of connections between clusters of nodes. 
However, add or remove nodes or interactions is dangerous for a network behavior ! There is an 
asymmetry in the increase/decrease connection strength : if you want to change the behavior of a 
running system, don’t remove connections or node (adding seems safer). 

Relatively of networks studies so far, the main focus was on static appearance. Nowadays, the 
dynamics on networks and their relationships with their structure are of main interest. From the 
observation, dynamics of the system changes if structure has change. 

In a second part the speaker presents a method to compare natural regulatory networks (E. Coli, 
S. Cervisiae) and artificial regulatory network. The artificial regulatory networks (32 genes) is 
generated by a duplication/mutation approach. The author extracts structural elements of the 
networks (86 elementary 3-nodes sub-graphs) which represent basic elements of complex networks. 
Very few motifs occur with significantly higher probability than in random networks. In addition, 
network motifs have been shown to be conserved over evolutionary time.  

Assistance pointed out the fact that the way the network motifs were identified could be 
questionable for some aspects especially in comparison to existing results from former analyses of 
E. Coli and S. Cervisiae. The author hopes to use this approach to address the problem of 
reconstruction of bionetworks based on these few elementary network motifs. 

The author was questioned on overall behavior observed on dynamics of networks; it seems that 
oscillations are a very frequent observed phenomena. 

 



 



On “The Biochemical Abstract Machine BIOCHAM” [1] 
 

Jean-Louis Giavitto 
  
  
 

[1] N. Chabrier-Rivier, F. Fages, S. Soliman, The Biochemical Abstract Machine BIOCHAM, this 
volume, p.35.  
 
 

This presentation is about the BioCham project, presented by François Fages. BioCham is a 
specification language using rules to give a precise semantics to the biological network. BioCham 
(Biochemical abstract machine) appears concretely as an environment integrating a rule based language 
dedicated to the specification of the molecules and their interactions, a interrogation language based on 
CTL (a temporal logic making it possible to simply express a large variety of biological questions 
about the behavior of the system described) and an interface to NuSMV, a tool for model-checking 
making it possible to answer CTL requests. 

The syntax of BioCham makes it possible to define very simply molecules, proteins, their 
complexation and to annotate them with their functional field (or their site of connection). This syntax 
also corresponds to algebraic operators. For example, the operator "-" represent a connection between 
two species: e.g., Cdk1-CycB represents the connection of a kinase with a cyclin.  

 
The definition of various reactions, transformations, associations/dissociations, complexations, etc, 

are represented by rules inspired by transition systems (an approach largely used to formalize the 
activity of a set of parallel processes in concurrent and distributed systems). In this approach, a rule 
indicates the transformation of its left part into its right part. For example, A + B = > A-b defines the 
complexation/liaison/... of A and B in the A-b complex. 

The proposed syntax was validated by the development of large examples (a library of models is 
available on the web site of the project): the signaling MAPK pathway and the modeling of the cellular 
cycle are amongst the largest example. This last example, corresponds to 147 rules (parametric rules, 
which makes it possible to factorize many processes: the equivalent non-parametric description has 
2733 rules) which relate to 165 genes and proteins and 500 variables. The system described has 2500 
states. 

 
Once the system described, one can raise questions about the behavior of the system in the form of 

a CTL formula. CTL enables the formulation of atteignability questions: "being given an initial state, 
the system can produce eventually (will produce necessarily) the protein P?" or many questions of 
stability: "is this state of the system a state of balance?" (but there is no CTL formula characterizing the 
whole set of stable states). To answer the CTL request, it BioChamrelies upon a dedicated tool: 
NuSMV. 

 
The perspectives are numerous. To take into account the kinetics of the chemical reactions require 

an hybrid approach mixing numerical and logical constraints. Existing work are in hand, in particular in 
the CLP community (constraint logic programming). Another research direction is the use of automatic 
learning by logical induction to infer the evolution rules from examples of the behavior of the system. 

 
 



Questions:  
 

1) The size of the some examples is very large, especially if one compares it with what is accessible 
to other methods. Why? 

 
The model-checking on several hundreds of Boolean variables is an accessible problem. On the 
other hand, if numerical constraints are added or the rule are weighted (a limited form to handle 
the kinetic of the reactions), then practical tools are still missing. 

 
2) Several formalism attack the same problems: the formalization of biological networks. Is there a 

better formalism and will eventually the tools converge to a common standard? 
 

The existing tools can be divided into three classes; the first corresponds to description 
formalisms enabling for example to exchange data and models. An example in this call is the 
SBML proposal. The second class gathers the languages dedicated to computer simulation: V-
cell, multi-agent systems, etc. The third class, to which belongs BioCham, goes beyond 
simulation and allows the study of the properties exhibited by a system (i.e. a property exhibited 
by all the possible behaviors of a system). These tools cannot reduced to simulation environment. 
They have some strong points and also some weaknesses that depend on the used formalism. It is 
rather improbable that one converges towards a single and universal tool. 

 
3) What is the readability of this type of approach for a biologist?  

 
The dedicated syntax is already well accepted. The results can be visualized by some diagrams 
and the graphical notations used by the community is a possible target for the tools input and 
output. 

 



On “Modeling the Circadian Clock in Drosophila and Mammals” [1] 
 

Gilles Bernot and Janine Guespin 
 
 
[1] J.-C. Leloup, A. Goldbeter, Modelling the Circadian Clock in Drosophila and Mammals, this volume, p.79.  

 
 

Jean-Christophe Leloup, in work conducted with Albert Goldbeter (Université libre de Bruxelles), 
showed how the oscillatory circadian rhythm in flies and mammals emerge from a somewhat abstract 
description of genetic interactions. In Drosophila, two genes (PER and TIM) are involved in a negative 
feedback circuit : the encoded proteins form a complex that represses their transcription. This circuit 
underlies the circadian clock oscillator and is also found in mammals, where a second pair of genes 
with a similar behavior was shown to constitute a second oscillator, intertwined with the first one. 
These autonomous oscillations are nevertheless coupled to the light cycle of 24 hours. Modeling makes 
use of a differential approach, where variables correspond to genes and their products, phosphorylated 
or not. There are many more equations that describe the mammalian clock than the fly one, but the 
problems are similar. Most of the parameters have not been determined, and must be chosen so that the 
model  meets  biological data such as the 24h circadian rhythm, or diverse behavioural patterns 
encountered in wild type (the role of light), mutant flies or human pathologies of sleep. In the case of 
the more complicated mammalian circadian clock, where two negative feedback loops are intertwined, 
the theoretical model allowed to predict the role of each oscillator, and thus to address the dynamical 
bases of the emergence of oscillation as well as of the physiological disorders related to a perturbation 
of the clock.  
 



 



On “Microtubule Self-organization as an Example of the  

Development of Order in Living Systems” [1] 
 

Georgia Barlovatz  
 

  
 

[1] J. Tabony, N. Glade, C. Papaseit, J. Demongeot, Microtubule Self-organization as an Example of 
the Development of Order in Living Systems, this volume, p.93.  

 
 

 
James Tabony addressed the physical chemical processes underlying microtubules self-organisation 

in vitro. His experimental work is interpreted in the framework of dissipative systems, for which 
theoreticians such as I. Prigogine (Nobel prize) have predicted that macroscopic self-organisation can 
arise from a non-linear coupling of reactive processes with molecular diffusion.  

J. Tabony has found that the formation in vitro of microtubules from tubulin, shows this type of 
behaviour. These preparations spontaneously self-organise by way of reaction and diffusion, and the 
morphology that develops depends upon the presence of a weak external factor, such as gravity or a 
magnetic field, at a critical bifurcation time early in the process. Thus, the presence of an external 
symmetry-breaking factor, such as gravity, can determine the morphology that subsequently develops. 
Once assembled from tubulin, microtubules grow and shrink from opposite ends by reactive processes 
involving the addition and loss of free tubulin. The shrinking end of a microtubule leaves behind itself 
a chemical trail of high tubulin concentration. Neighbouring microtubules preferentially grow into 
these regions, thus progressively leading to self-organisation in a manner that shows analogies with the 
way that ants self-organise. Numerical simulations of the reaction-diffusion process based on the 
chemical dynamics of a population of microtubules successfully predict the main features of the 
experimental behaviour. Evidence is presented that processes of this type occur in vivo during 
embryogenesis of Drosophyla egg.  Experiments have been shown shedding light on the influence of 
the egg length sample on microtubule patterns : birefringent patterns formed by microtubules 
assembled in cylindrical 'egg' shaped sample containers of different length, in agreement with the 
theoretical predictions derived from nonlinear bifurcation analysis of reaction-diffusion systems.  
 



 



On “Biologically-inspired Cellular Computing Machines” [1] 
 

Jean-Louis Giavitto 
  
 
 

[1] C. Teuscher, Biologically-inspired Cellular Computing Machines, this volume, p.113.  
 
 

Christoph Teusher presented examples of computer architectures inspired by biological principles. 
These new hardware architectures are justified: 1) by the needs of new applications (network of 
sensors, autonomous robotics, cognitive science, robust system w.r.t. the failure of its components...), 
2) by technological progress (nano-technology, molecular electronics, intelligent dust), 3) by new 
approach of computations, approaches largely inspired by biological mechanisms and their properties 
(network of neuron, self-assembly, chemical, aqueous and other bio-computing model, evolutionary 
process...). 

 
The first architecture presented is more specifically inspired by the biological development and by 

tissular processes. These processes exhibit properties of self-repair (cicatrization) and robustness (the 
function is assured even in the event of failure a component of the system). This computer is organized 
according to three levels: the molecule (an autonomous module of computation), the cell (a cell gathers 
a set of interacting molecules) and the organ (a set of cells). The program corresponds to an artificial 
genome stored identically into each cell. The position of the cell in the machine, determines the part of 
the program (genes) which will be carried out. The robustness achieved thanks to a redundancy of the 
material entities and replication. When a molecule (resp. a cell) is faulty, then the genome of the faulty 
entity propagates to free redundant resources and the machine reconfigures itself to take into account 
the new topology. 

 
A prototype was built: BioWall, a machine of 2400 molecules organized into a grid-like cellular 

automata. The principal application, validating the self-repair and robustness mechanisms, is the 
biowatch, a program which implements a wall clock on top of the cells, only by local interaction of the 
molecules.  

 
The other types of architecture presented are POEtic machines, i.e. inspired by Phylogenesis, 

Ontogenesis and Epigenesis mechanisms. The objective is to develop an hardware architecture being 
able to evolve, grow, self-repair, adapt and replicate them-self. The AMB project (Amorphous 
Blending Membrane) proposes to use a P systeon implemented on top of an amorphous computer to 
support a notion of blending. The blending is a fundamental operation suggested per G. Fauconnier for 
knowledge representation. This notion, originated in linguistics, generalizes the concept of semantic 
networks. A P system increases the concept of chemical computing (i.e. multiset rewriting) by the 
concept of membrane enabling the localization of computations. Lastly, an amorphous machine is 
made up of a great quantity of autonome, unreliable and asynchronous computing element, connected 
in unknown, irregular, and time-varying ways.  



 



On “Epistemology of modeling: interdiscipline or indiscipline ?” [1,2] 
 
 

Vic Norris 
  
 

 
[1] M. H.V. Van Regenmortel, Emergence in Biology, this volume, p.123  
[2] P. Sonigo, For a Darwinian Molecular Biology, this volume, p.145  
 
 

Pierre Sonigo took on the central tenet of neo-Darwinism that the DNA in the form of a genetic 
program fully commands cells and organisms and that natural selection acts directly on this program.  
He used the analogy of the Robot, where there is a master program, and the Forest, where there is not, 
to highlight two different interpretations of biological systems.  He pointed out serious problems with 
the Robot view.  For example, the assumption that selection could act just at the level of the gene is 
hard to reconcile with the gulf of complexity between the gene and selectable phenotypes.  In a forest, 
selection operates at every level and he argued in favour of the Forest view where molecules are in 
competition with other molecules, cells with other cells, organisms with other organisms etc.  In this 
fractal Darwinism, the key factors leading to organisation are stability – how long an individual 
survives – and growth – how often an individual reproduces.  The white blood cell devours bacteria 
because they constitute its foodset and not because it follows a master plan.  Cytokines like glucose 
molecules can be seen as nutrients or as signals depending on the context.  The nature of the individual 
cannot be divorced from the context.  In the context of a level in an ecosystem, the mutual interests of 
interacting individuals dominate selection at each level.  The global structure of the forest emerges 
from the interactions between individuals obeying local rules.  And in the Forest view of the cell 
emerging from interactions between individual constituents, DNA loses its quasi-divine status.  The 
Forest view has powerful implications for medicine and he illustrated these with reference to 
autoimmunity, cancer and differentiation and gave the example of gene therapy, where the introduction 
of a gene into a cell can be likened to the introduction of a new species into a particular ecosystem. 

 
 
A reductionist separates his world into system and environment and in his talk Marc van 

Regenmortel returned to the theme of the nature of an individual object.  Like Sonigo, van Regenmortel 
insisted on the importance of the context.  Genes only provide a function in a context.  We cannot 
predict function de novo from sequence.  We are accustomed to a causality of the form A causes B but 
the behaviour of a biological system must be explained not in a single cause but in hundreds of causes.  
Hence the paradigm of cause leads to effect is not very useful for understanding cells.  Instead, the 
function of a constituent with respect to its context becomes important where function is about 
contributing to the survival or reproduction of a biological system.  The same protein structure can be 
associated with many different functions so hoping to predict 4-D dynamic structure from 1-D 
sequence is illusory.  A new paradigm is needed to take into account the myriad interactions – and 
myriad types of interaction – at the different levels that exist within complex biological systems.  The 
paradigm therefore involves non-linear interactions, functions and the emergence of new properties of 
such systems.  Emergent properties are not displayed by constituent parts – emergence might be said to 
occur when reduction fails.  It is possessed only by the whole and is a relational or systemic property.  
Van Regenmortel gave the example of a “specific” binding site on an immunoglobulin in which up to 



15 residues out of 50 hypervariable ones interact directly with an individual epitope; however, he 
pointed out that the same antibody can interact “specifically” with many different epitopes.  One of 
these interactions, the binding site, has a function in a relational nexus.  Indeed, a binding site is a 
relational entity and can be considered as an emergent feature.   

 
These two talks were followed by a debate on the above topics, between both speakers and the 

participants. 
   
 
 



On “Modelling Self-organizing Systems from the bottom up” [1] 
 

Gilles Bernot and Janine Guespin 
 

  

 
[1] E. Bonabeau, Modelling Self-organizing Systems from the bottom up, this volume, p.135.  

 
 

Eric Bonabeau (Icosystem Corp., Cambridge, Mass) discussed the modeling of self-organized 
systems from the bottom up. The emergent process under scrutiny was organization in social insects, 
where space must be introduced. Self-organizing processes are complex with many individuals 
involved, and with a global behavior  that is generally non predictable, and may even be anti-intuitive. 
Thus, the only way to model it is to use an agent based modeling, starting from the "bottom" 
interactions between agents, to obtain, and therefore understand, the global, emergent, "up" behaviour. 
2-D simulations of ant behavior can be achieved with the very simple rule according to which each ant 
is attracted by the pheromone released by other ants. Some elementary physical rules, such as the 
drawback of protruding legs of dead bodies may be necessary for proper cemetery formations. In every 
instance, the presence of positive and negative feedback circuits is crucial. Simple 3-D agent-based 
modeling illuminated how coordination may emerge in the collective construction of wasp nests. In 
sum, the reverse approach, that consists of finding the elementary rules that correspond to a given 
structure, is quite appealing, but most difficult. This amounts to searching a very large space of rules, 
with choice criteria that are difficult to formalize. Genetic algorithms may be used, but the choice is 
most often intuitive and subjective.  
 



 



On “Machine Learning for gene networks modelling ” [1] 
 

Christine Froidevaux 
 

  

 
[1] F. D’Alché-Buc, Machine Learning for Gene Networks Modelling, this volume, p.139.  

 
 

 
The talk of Florence d’Alché-Buc aimed at showing the benefits of a Machine Learning approach 

for modelling gene regulatory networks. The development of microarray technology makes it possible 
to compare simultaneously expression of thousand of genes of a given organism (or tissue) in two 
conditions and offers new valuable pieces of information to construct gene regulatory networks. F. 
d’Alché-Buc introduced the task of constructing this network as a search of parameters for a model of 
gene interactions to be learned from experimental data. Then, she addressed the fundaments of 
Machine Learning and started with a survey of the problems and concepts of statistical learning. The 
central point was the formulation of the objective of the learning task as an optimization problem. 
Indeed, once the hypotheses space has been built, learning amounts to choosing the best hypothesis in 
it. Assuming that each hypothesis can be evaluated by a cost function, we have to select a hypothesis 
that minimizes the cost. The main issue under discussion on this part was whether it is justified to seek 
an optimal solution. Not only is the task most of the time unfeasible, but it is sometimes undesirable 
too. The validity of the parsimony principle with respect to biological data was also debated. 

In the second part of her talk, F. d’Alché-Buc introduced the graphical models for reverse 
modelling. She claimed that they are closely analogous to interaction networks, what is especially true 
for Bayesian networks. First, she presented the work by Segal et al. who introduce module networks, a 
probabilistic method for identifying regulatory modules and their condition-specific regulators from 
gene expression data. Then she showed how dynamic Bayesian networks used by Perrin et al. for gene 
networks inference were especially well suited to tackle the stochastic nature of gene regulation and 
gene expression measurement. F. d’Alché-Buc concluded her talk by a listing of a number of 
perspectives, the most promising being likely the elaboration of a set of benchmark problems. 
 
 



 



On “The Combinatorics of Membrane Interactions” [1] 
 

Vincent Schächter and François Képès 
 

  
 

[1] V. Danos, The Combinatorics of Membrane Interactions, this volume, p.141.  
 

 
Vincent Danos (PPS, CNRS / Université Paris 7) gave a talk on biological combinatorics. After 

reminding us that a living being requires sugar to process information, and information to process 
sugar, Danos went on to ask three "big" questions. Can we understand this organization ? Which 
problems is this cellular organization solving ? What are the underlying computational principles ? 
Reverse and forward engineering of biological systems need a syntax. Danos discussed syntaxes 
addressing specific features of cellular computing: "Binding", a calculus for protein-protein and 
protein-DNA interactions, and "Enfolding", a calculus for membrane fusion, exocytosis and 
endocytosis. He illustrated "Binding" with the formalization of the lactose operon, and "Enfolding" 
with membrane traffic. The syntax was validated on the relatively large case of viral invasion.  



 



On “Technological Developments for Genetic Network Inference” [1] 
 

Vincent Schächter and François Képès 
 

  
 

[1] X. Gidrol, Technological Developments for Genetic Network Inference, this volume, p.143.  
  
 

Xavier Gidrol (SGF/CEA/Évry) studies genetic networks, with the goal of understanding their 
dynamics in order to predict stable phenotypes (attractors) and predict in which phenotype the cell will 
end up. In particular, Gidrol discussed the case of protein Id2, whose overexpression induces cell 
proliferation. The goal here is to reconstruct the Id2 network in order to acquire knowledge about the 
gene regulatory network in the neighbourhood of Id2. After reminding us of P. Sorger's aphorism 
"Good experimentation is essential to realize the systems biology vision", he proposed several paths to 
get closer to an exhaustive, high-resolution view of the system. Some of these paths aimed at enlarging 
the Id2 transcriptional network, both upstream and downstream (using cells-on-chips for instance). 
Some others addressed the validation issue. This talk was followed by a particularly long and exciting 
general discussion. 

 



 



On “Complex Networks” [1] 
 

Franck Molina 
 
 

[1] A. Vespignani, The Topology of Protein Interaction Networks, this volume, p. 149.   
 

 
In his introduction the author describes networks as a system that allows its 

abstract/mathematical representation as a graph. He argues on the fact that we find networks of 
various types (physic, cybernetic, social, biology, etc.) in various situations. These networks are 
interconnected to form complex networks. They could form layer or have interdependencies.  

Compared to a regular lattice (with N=104) where the average distance is proportional to 102, 
small word properties (for a same N=104) related to d~Ln N. In opposite, scale free properties (i.e. 
random graph)are related with diverging fluctuations. When random networks follow a power-law 
distribution for the probability that a node has k links (P(k)), exponential networks follow a Poisson 
distribution. 

By opposition to a complex system, a complicated system was described as many elements 
assembled following a pre-definite blueprint imposed from outside. Consequently, the system 
shows expected properties and performs pre-defined tasks. On the other hand, complex systems 
which are composed of many interacting units have dynamical evolution and the capacity of self-
organization. It results a non-trivial architecture, unexpected emergent properties and cooperative 
phenomena. 

The author describe the preferential attachment mechanism: networks expand by the addition of 
new nodes and nodes are wired with higher probability to highly connected nodes (i.e. WWW : 
links to well known web-pages). 

The author defends the idea that in dynamical processes studies modeling starts from the 
understanding of the basic mechanisms underlying the networks’ growth. A complex topology is 
spontaneously generated in the models (opposite to ad-hoc constructions). For this purpose we need 
a shift of focus from static construction to dynamical evolution. The problem could be described in 
two ways: the direct problem from evolution rules to emerging topology, and the inverse problem 
from a given topology to evolution rules. 

The speaker took as an example protein-protein interaction networks (PIN) obtained from the 
two-hybrid technique. He observed that in such networks by looking at the connectivity distribution 
both small world and scale free distributions were present. Then there is the need for a more 
sophisticated characterization with the connectivity correlation (Pastor Satorras, Vazquez 
&Vespignani, PRL 87, 258701 (2001)). By following the average nearest neighbor degree it was 
observed that low degree proteins connect to high degree proteins and highly degree proteins 
connect to low degree proteins (S. Maslov and K. Sneppen,  Science  296, 210, (2002)). This 
suggests a start-like shape.  

Using the clustering coefficient (which follows the connected peers will likely know each other) 
one can detect the presence of sub-networks (Ravasz eta al. PRE 2002). Analyses of PIN suggest 
the presence of sub-networks: small groups of networks organized in larger groups which act as the 
modules at the next level and so on “ad libitum”. 

The speaker addressed as well the problem of lethality and centrality in protein networks (H. 
Jeong, S. P. Mason, A-L Barabasi and Z. Oltvai Nature,  411,  41, (2001)). For a PIN lethality upon 
removal of a protein strongly correlates with its connectivity.  

Again, the speaker wanted to verify if the duplication and divergent model (Duplication and 
Divergence …the basic mechanism beyond Evolution S. Ohno, Evolution by Gene Duplication, 



Springer, NY, (1970)) was consistent with what we observed on PIN. His conclusion was that 
correlations and sub-networks arise from duplication.  

Finally, the speaker proposed to use of the information provided by the PIN to acquire 
knowledge about the functionality of the proteins. This approach based on a scoring function taking 
into account maximization of unclassified interacting proteins with shared functionality and 
minimization of interacting classified proteins with different functionality. The global minimization 
of such a score function is not very easy and leads to a functional classification prediction made by 
considering the functions that occurred more frequently in the optimal solutions. For the speaker, 
this approach may serve as a global method to obtain statistical prediction of protein function from 
their interaction network with reliability around 80% in highly interacting proteins. 



On “Epistemology of Modelling” 
Round Table discussion   

 
Vic Norris 

 
 

The reductionist paradigm is that the behaviour of the whole system can be explained entirely in 
terms of the properties of its parts.  In the extreme DNA-centric case of reductionism, a genetic 
program exists that fully commands cells and organisms.  What are the limits and weaknesses of 
this kind of reductionism?  And how might they be complemented?  Can a new complexity 
approach to biological systems be developed with its own set of explanatory concepts and its own 
paradigm?  The concepts may include those of propagating organisations and autonomous agents 
that are subject to selection for growth and survival; in such selection the function of a constituent 
with respect to its context becomes important.  This paradigm may involve the myriad interactions – 
and myriad types of interaction – at the different levels that exist within complex biological 
systems.  The paradigm therefore involves non-linear interactions, epigenetics and the emergence 
of new properties of such systems.  Emergent properties cannot be predicted just from study of 
isolated constituents of the system.  However, some understanding of emergence can be achieved 
via, for example, computer modelling of the effects of changing one factor in the complex 
intracellular network of functional interactions occurring in a cell in a particular microenvironment.  
To this end, databases must provide information on the nature, location and interaction of cellular 
constituents at different levels.  It could be argued that the new field of complexity cannot mature 
into a proper discipline until it has its own paradigm.  In the case of complex biological systems, 
this paradigm can only be achieved by interdisciplinary collaborations.  Until then, we shall stumble 
undisciplined through a no man’s land.  We hope that the discussion will help identify some of the 
landmarks and landmines. 
 
 



 



On “Structures depending of their functioning” 
Round Table discussion   

 
Patrick Amar 

 
 

One of the afternoon sessions of Thursday has been animated by Michel Thellier and Patrick 
Amar. 

 
Michel Thellier has introduced the notion of functioning-dependent structures (FDS): dynamical 

structures created and conserved because of their functioning. To illustrate this concept he used the 
example of the self assembly of proteins in a metabolic pathway. He showed a model of a chain of 
three enzymes, the product of one enzyme beeing the substrate of next one. He used a partial 
differential equations system to model the behaviour of the pathway. He showed that the standard 
behaviour is obtained when the affinity constants between the enzymes are near zero. Then he 
demonstrate that when the affinity constants between the enzymes are big enough, assemblies 
appear and in specific conditions, the system can exhibit some regulatory behaviours such as 
sigmoidicity. He showed another kind of FDS which inhibits the process when the last product is 
not released: the FDS sequests the enzymes which then are not available to catalyse reactions 
elsewhere. 

Patrick Amar presented a simulation programme, Hsim, built to study the dynamics, and in 
particular the assembly and disassembly of large numbers of molecules in a virtual cell. He 
described the programme as a stochastic automaton coupled to a modelling language. The language 
allows the definition of molecular types, the description of interaction rules between pairs of 
neighboring molecules of given types, and the description of an initial state of the system. The 
interaction rules include rules to specify the assembly and the dissociation of molecules. Then he 
demonstrate the simulator with the same kind of example previously used by Michel Thellier: a 
chain of five enzymes in a metabolic pathway. He showed how, starting with a set of separate 
enzymes and initial substrate diffusing in the virtual cell, self assemblies of enzymes appears, 
transform the initial substrate to the final product, and then dissociate when no longer needed (i.e. 
when all the initial substrate has been transformed). He showed then another kind of simulation, the 
growth of actin filaments in the virtual cell. Finally he showed that the simulation exhibits an 
emergent behaviour of the system: the filaments tends to align along the axe of the cell. 



 



On “Self-organization and language evolution” [1] 
 

Gilles Bernot and Janine Guespin 
 
 

[1] L. Steels, Self-organization and Language Evolution.   
 

 
Luc Steels (Sony Computer Science Laboratory, Paris & Université libre de Bruxelles) 

addressed the question of self-organization and language evolution. The main hypothesis is that 
emergent processes are at the root of language evolution. This is in contrast with Chomski’s theory 
of the “ innate structures “. Linguistic arguments in favour of the emergent nature of language 
evolution are rooted in the study of this evolution itself, through language comparison and 
assessment of actual speech situations, where communication relies on a common (implicit) 
knowledge of part of the situation. The relationship between words and meaning is therefore very 
indirect, including several layers of categorization. The implicit plays a major role, each language 
differing from the others as to what is implicit (hence explicit). Starting from linguistic processes 
that give a hint of emergence, Steels uses multi-agent systems and learning robots endowed with a 
formal communication protocol to study the emergence of linguistic behaviors similar to real ones. 
In a community of 2 to 400 agents, what instruction must be given  to each agent to obtain an 
evolution of the communication and a consistency of the language between all the agents? This has 
been tested for the emergence of sounds (one sound can spread into the community) or for a real 
communication where a common ground of knowledge appears during the experiment. One of the 
open questions is : what is general enough in these models that might also apply to genetics? 



 



On “Synchronization and Oscillations in neuronal networks” [1] 
 

Georgia Barlovatz  
 
 

[1] V. Hakim, Synchronization and oscillations in neuronal networks.  
 
 

In his talk, Vincent Hakim examined the synchronisation properties of neurons networks.  This 
work investigates how the instantaneous firing rate of a neuron can be modulated by a noisy input. 
The results show that the firing-rate modulation is shaped by the subthreshold resonance. For weak 
noise, the firing-rate modulation has a minimum near the preferred subthreshold frequency. For 
higher noise, such as that prevailing in vivo, the firing-rate modulation peaks near the preferred 
subthreshold frequency. 

Using numerical simulations of conductance-based neurons and analytical calculations of one-
variable nonlinear integrate-and-fire neurons, the dependence of this synchronisation on the 
modulated noise has been analysed. 

 These results were discussed in connection with intrinsic neuron property, according which the 
characteristics of fast sodium channel could determine the speed with which neurons respond to 
noisy inputs. 

 
 

 



 



On “Modelling of Biochemical networks of interactions” [1] 
 

Jean-Louis Giavitto 
 

 
[1] G. Plotkin, Modelling of Biochemical networks of interactions. 
 
 

The Wednesday's presentations begin with a talk from Gordon Plotkin on "biochemical CCS", a 
formalism derived from process algebras for the modelling of biochemical networks of interactions 
(metabolic pathway, genetic regulatory network, signaling, etc). 

The fundamental idea is to see the biological processes like calculations and thus, as that appeared 
fertile in data processing, to study their naming, their composition, their modularity... under an 
algebraic point of view. 

In this approach, the elementary processes correspond to transformations (chemical or enzymatic 
reactions...), various binding processes (formation and dissociation of complexes) and translocations 
(diffusion, transport...). These elementary processes can be formalized in several manners, for example 
by a transition in a Petri net or by a differential equation. This last approach is traditional, but Gordon 
Plotkin shows on several examples how one can model these elementary processes by a Petri net (in 
this case, one cannot express the kinetics of the chemical reactions). 

The approach of process algebras focus especially on the construction of the networks. Several 
operations make possible to give an account of it. Let us quote for example the parallel composition 
(p|q) of two networks p and c or the abstraction c[p] (c is a process parametrized by a name p) which 
acts as a template that can be instanciated into several context using different names. This lead to the 
study the properties of these operations of construction. For example the parallel composition is 
associative and commutative, and the renaming can be distributed onto the parallel composition:  

c[p|q] = c[p]|c[q]. 
These properties make possible to reformulate any network in a normal form facilitating its study (but 
this normal form can have an exponential size in the number of operations used to build the network). 
A network being built, one can precisely associate to him a semantics in term of a Petri net or a system 
of differential equations. 

The approach outlined here can spread in several directions: first of all, several semantics can easily 
be associated to a network (for example, it would be interesting to develop a stochastic interpretation of 
the processes); it would then be necessary to take into account the state of the chemical entities (active, 
inactive, phosphoryled, etc.) and in the same spirit, to consider the various functional fields of proteins 
and to handle the complexes. A work with a great practical utility, is the development of tools to 
translate a SBML description into such a network. In the long term, it is necessary to extend the 
formalism in order to more finely take into account the space structures (localizations), to conceive 
more practical concept of abstraction and modularity, etc. 
 
Questions:  
 

1) Some ambiguities are possible in the translation of an enzymatic reaction into a Petri net?  
 

That seems due to the ambiguity of the initial chemical notation. To overcome it, it is enough to 
ask an expert what is the good interpretation and that determines without ambiguity the 
corresponding Petri net. 



 
2) How to express constraints like the laws of conservation of mass?  

 
The formalism presented here is purely syntactic: it does not force particular constraints on the 
built processes. These constraints can come from properties on the basic processes. The 
situation is the same one with for example the differential equations: the differential formalism 
does not force by itself any conservation law; it is a property particular of some family of 
equations. 

 
3) Which is the interest of a notation which one in fine will translate for example into differential 

equations?  
 

This approach which distinguishes the syntactic construction of the network from its semantics, 
appeared profitable in data processing. Initially, the networks to be described can be immense 
and a convenient notation makes it possible to describe them in a concise and precise way. That 
can also constitute an interchange format. Then, certain properties depend only on construction 
and can be studied in the notation without referring to semantics. 

 
4) When a network is built, some sub-networks are used (not necessarily disjoins). These sub-

networks can correspond to functions or modules having a biological meaning. However, it is 
the biologist who fixes them. Is it possible of the infer the sub-network starting from the 
complete network?  

 
It is a track of interesting research, but nothing exists yet in this direction. 

 
 



“Synthesis of the Short talks and posters sessions” 
 

Patrick Amar & Marie Dutreix 
 
 
The Monday afternoon, two short talks were given by P. Mazière and S. Randall Thomas about 

computer science and mathematical modelling. Pierre Mazière described a new integrative language, 
called BioΨ, developed to describe biological functions with respect to five parameters: schedule, 
specification, localisation, biochemical state (conformation), and kinetics. Four scales of observation 
were chosen, from the chemical structure of constituents to the constitution of multimolecular 
complex. The association of the relevant parameters gives « modules » that then can be used for the 
description at the next level. The language being imprecise, integrated and non-specific, it allows 
modelling biological systems. The application of the method was illustrated by the description of the 
Insulin receptor system.  
 

The following speaker, Randall Thomas, used also medical system to illustrate the application 
and the usefulness of mathematical modelling for physiologists. Actually, the complexity of the 
interactions among coupled flows at the level of kidney organisation and the very inaccessibility of 
the inner structure, prevent in vivo intervention and requires theoretical analysis to quantitatively 
formulate working hypothesis and predict new experiments. He described tools accessible on the 
web that provide a hierarchical collection of models « Big Kidney » at different scales and a 
quantitative database « QKDB ». The database is an open source built for and with the participation 
of the kidney community. These tools are being developed using generic approach, with a view 
toward easy adaptation to other fields. 

 
On Tuesday afternoon, three short talks were given by Cecilia Garmendia-Torres, Paul François 

and Jacques-Deric Rouault. 
 
Cecilia Garmendia-Torres showed how Msn2, a transcriptional activator which is involved in 

stress response in Saccharomyces cerevisiae, migrates periodically between the cytoplasm and the 
nucleus. The type of stress she studied to induce this oscillatory behaviour is the light emitted by the 
microscope itself. She presented a model in which nuclear Msn2, after a delay, triggers the process 
which leads to its exit from the nucleus. She then showed how some domains of Msn2 are involved 
in the periodic migration of the protein. She has determined that the part of Msn2 which is able to 
oscillate contains a NES and a NLS, then she showed that the NLS domain is sufficent to trigger the 
oscillations. 

Paul François is interested in modular genetic regulatory networks. He describes an evolutionary 
procedure in silico that creates small gene networks performing basic tasks such as toggle switches 
(e.g. the lactose operon) or oscillators. The procedure he described use genetic algorithms which 
select the oscillating networks. 

Jacques-Deric Rouault showed how DS2 models (dynamical systems evolving in a dynamical 
structure) can be used to predict patterns appearing on Drosophila. He demonstrated his approch 
with a model using a few rectangular cells and a cell multiplication procedure on a 2D space. This 
model shows how patterns, such that the abdominal tergites of the Leucophenga genus can be 
produced. 
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