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“But technology will ultimately and usefully be better served by following
the spirit of Eddington, by attempting to provide enough time and intellectual

space for those who want to invest themselves in exploration of levels
beyond the genome independently of any quick promises for still quicker

solutions to extremely complex problems.”

Strohman RC (1977) Nature Biotech 15:199

FOREWORD
What are the salient features of the new scientific context within which biological modelling and

simulation will evolve from now on? The global project of high-throughput biology may be summa-
rized as follows. After genome sequencing comes the annotation by ’classical’ bioinformatics means.
It then becomes important to interpret the annotations, to understand the interactions between bio-
logical functions, to predict the outcome of perturbations, while incorporating the results from post
genomics studies (of course, sequencing and annotation do not stop when simulation comes into
the picture). At that stage, a tight interplay between model, simulation and bench experimentation
is crucial. Taking on this challenge therefore requires specialists from across the sciences to learn
each other’s language so as to collaborate effectively on defined projects.

Just such a multi-disciplinary group of scientists has been meeting regularly at Genopole, a leading
centre for genomics in France. This, the Epigenomics project, is divided into five subgroups. The
membranes and intracellular structures subgroup focuses on membrane deformations involved in
the functionning of the Golgi, in cell division or in attachment to surfaces, on the dynamics of the
cytoskeleton, and on the dynamics of hyperstructures (which are extended multi-molecule assemblies
that serve a particular function). The organisation subgroup has adopted a systems biology approach
with the application and development of new programming languages to describe biological systems
which it has been applying to problems in the growth and differentiation of plants and in the structure
and functioning of mitochondria. The observability subgroup addresses the question of which models
are coherent and how can they best be tested by applying a formal system, originally used for testing
computer programs, to an epigenetic model for mucus production by Pseudomonas aeruginosa, the
bacterium involved in cystic fibrosis. The G cube (Genomic Graphonomy Group) subgroup works on
networks of molecular interactions. Questions pertaining to the topology, dynamics and partitioning
of molecular networks, and statistical inference of networks from post-genomic data, are discussed
on a regular basis. The bioputing group works on new approaches proposed to understand biological
computing using computing machine made of biomolecules or bacterial colonies.

The works of subgroups underpinned the conferences organised in Autrans in 2002, in Dieppe in
2003, in Evry in 2004 and in Montpelliers in 2005. The conferences in Bordeaux in 2006 which as
reported here, brought together over a hundred participants, biologists, physical chemists, physicists,
statisticians, mathematicians and computer scientists and gave leading specialists the opportunity
to address an audience of doctoral and post-doctoral students as well as colleagues from other
disciplines.

This book gathers overviews of the talks, discussions and roundtables, original articles contributed
by speakers, and abstracts from attendees. We thank the sponsors of this conference for making it
possible for all the participants to share their enthusiasm and ideas in such a constructive way.

Patrick Amar, Gilles Bernot, Marie Beurton-Aimar, Marie Dutreix, Jean-Louis Giavitto, Christophe Godin,
Janine Guespin, François Képès, Jean-Pierre Mazat, Franck Molina, Victor Norris, Vincent Schächter,
Philippe Tracqui.
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CÉDRIC AULIAC, V. FROUIN, F. D’A LCHÉ-BUC
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Petri nets for qualitative modelling of biological networks
C. Chaouiya1

1 IBDML, Institut de Biologie du Développement de Marseille-Luminy
UMR 6216, Case 907 - Parc Scientifique de Luminy
13288 Marseille Cedex 9 - France

Abstract

After an introduction to the basics on Petri nets (PNs), I present a brief overview of their use for the
modelling of biological networks, in particular for the qualitative modelling of metabolic networks
by means of standard PNs. At a higher level of abstraction, the genetic regulatory networks are
qualitatively modelled using the logical approach initially introduced by R. Thomas. I summarise
the proposal of our group for a standard PN based representation of logical regulatory graphs.

1 Introduction

Given the huge amount of genetic and molecular data, there is a pressing need for mathematical
tools to develop dynamical models which integrate these data and provide means to understand
the dynamical behaviour of biological systems. It is now commonly agreed that most biological
functions are directed by complex networks of genes, proteins and biochemical reactions.

One can distinguish two main classes of dynamical models: on the one hand quantitative
models, essentially based on systems of differential equations and, on the other hand, qualitative
models defined through discrete formalisms or piecewise linear differential systems (for a review
see [6]). Quantitative methods aim at representing the system in a detailed way and produce
quantified results. They require accurate kinetic data, which are generally lacking and, because of
the size and the preciseness of the models, most of the results are obtained by numerical integration
methods. These do not capture general and systematic information on the properties of the models
under study. Therefore they are helpfully complemented by qualitative approaches which are often
more suitable for the induction of dynamical properties of systems which are too complex or for
which few data are accessible. Indeed, qualitative modelling should allow the investigation of all
relevant situations (because of a restricted number of parametrical values, and/or of qualitatively
different situations). However, qualitative approaches still confront problems of a combinatorial
nature, but some formalisms provide analytical methods which can circumvent this difficulty, at
least partially (for example, the regulatory circuit analysis in the logical modelling [23]).

Petri nets (PNs) and their various extensions allow the definition of both qualitative and quan-
titative models. They have recently emerged as a promising tool among the various methods
employed for the modelling and analysis of biological networks. This document constitutes a
preliminary version of a forthcoming survey on PN modelling of biological networks. Section 2
comprises a general introduction to PN basics. Section 3 follows with a brief overview of PN mod-
elling of biological networks, including the qualitative modelling of biochemical networks. Then,
in Section 4, the proposal of our group for a standard PN based representation of logical regulatory
graphs is summarised. Finally, Section 5 provides some discussion and prospects.

2 Petri net basics

Petri nets define a graphical and mathematical formalism suitable for the modelling and the anal-
ysis of concurrent discrete events dynamical systems. A PN is a directed bipartite graph with
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Figure 1: a) An example of Petri net; b) The initial marking M0 and matrices Pre and Post; c)
The corresponding marking graph R(M0).

weighted arcs connecting places with transitions. At any time of the evolution of a PN, its places
hold zero or a positive number of tokens. The state of the system is represented by the allocation of
tokens over the places and is called a marking. The arcs connected to a transition define its input
places and output places. More formally,

Definition 1 A Petri net is a 5-tuple < P, T, Pre, Post, M0 >, where:
P is a finite set of places,
T is a finite set of transitions, with P ∩ T = ∅ and P ∪ T 6= ∅,
Pre : P × T → N defines weighted arcs between places and transitions,
Post : T × P → N defines weighted arcs between transitions and places,
M0 : P → N, is the initial marking (which associates an integer number of tokens to each

place).

An example of PN is given in Figure 1.a, together with its initial marking M0 and matrices
Pre, Post (Figure 1.b). Graphically, places are depicted by circles, while rectangles represent
transitions. If Pre(p, t) 6= 0 (respectively Post(t, p) 6= 0), it is represented by a weighted arc from
p to t (resp. from t to p) and its weight is the value of Pre(p, t) (resp. Post(t, p)). The weight
is omitted when its value is 1. The black dots (tokens) represent the marking; within the initial
marking M0 which puts one token in places p1 and p2, transition t1 is enabled. The dynamical be-
haviour from the initial marking is described by the marking graph in terms of transitions between
states (markings) and is denoted R(M0) (Figure 1.c).

Formally, the firing rules define the enabling of transitions and the evolution of the markings:

Definition 2 A transition t ∈ T is enabled by a marking M if: ∀p ∈ P, M(p) > Pre(p, t). An
enabled transition t may fire, and its firing then modifies the marking of its input and output places:
it removes Pre(p, t) tokens from each input place p of t, and adds Post(t, p′) tokens to each output
place p′.

One further defines the incidence matrix as C = PostT − Pre. Then, the state equation defines
the kth marking obtained from marking Mk−1, after the firing of ti (and thus, we suppose that
Mk−1(p) > Pre(p, ti), ∀p ∈ P ):

Mk = Mk−1 + C.uk , (1)

10 MODELLING COMPLEX BIOLOGICAL SYSTEMS



where uk is the firing unit vector with |T | components, all being zero but the ith position being
equal to one, indicating that transition ti fires at the kth firing.

For example, in the Figure 1, M0 = [1, 1, 0, 0]T enables transition t1; the firing of t1 leads to
the new marking M1 = [1, 0, 2, 0]T , which in turn enables t2.

Note that a side-condition is modelled with a loop (often depicted as a bidirectional arc) as
shown in Figure 1 where the firing of transition t1 removes the token in place p1 and restores it
afterwards. Such arcs, called test arcs, may have a particular semantic in the case of timed PNs,
where time-delays are attributed to the firings of transitions. In the case of a pure PN (with no
loop), CT is the classical incidence matrix of a directed graph.

With standard PNs as defined in what precedes, one can check main qualitative properties
which basically can be checked using algebraic methods (with the state equation), analysing the
structure of the net or investigating the whole marking graph [15]. Hereafter, the main proper-
ties are briefly described, together with their possible interpretation in the context of biological
networks:
- Boundedness insures that, whatever the initial marking and the evolution of the net, the number of
tokens in each place is bounded. For biochemical models, it means that no product can accumulate;
- P-invariants are sets of places for which the weighted sum of tokens is constant independently of
the sequence of firings (x, a |P |-vector of integers defines a P-invariant if CT .x = 0). In biological
terms, these sets may define some conservation relations;
- T-invariants are firing sequences which would reproduce a marking (y, a |T |-vector of integers de-
fines a T-invariant if C.y = 0). In biological terms, T-invariants may represent cyclical behaviours
and can also be related to the ’elementary flux modes’ defined by Schuster et al. [18].
- Reachability of a marking M defines that there exists an evolution (a sequence of firings) from
the initial marking to the marking M (i.e., M is in the marking graph R(M0)). This property may
be relevant for biological networks, as it ensures the existence of a trajectory leading the system to
a desired state.
- Liveness insures that, no matter the evolution of the net, it is always possible to ultimately fire
any transition. There are other weakened classes of liveness. In other words, liveness is related to
the guarantee that an event (a reaction for example) can eventually occur.
- Reversibility means that no matter the evolution of the net, it is always possible to ultimately
reach the initial marking again.

Standard PNs have been extended to increase their expressiveness (in particular to allow quan-
titative analyses). In summary, among the main extensions, stochastic PNs include randomness
(enabled transitions fire with exponentially distributed time delays); colored PNs distinguish dif-
ferent kinds of tokens; and hybrid PNs take into account both discrete and continuous processes.
However, note that generally, the more expressive the formalism, the more difficult the analysis. In
particular, the methods which are valid to check the above properties in standard PNs, are generally
no more valid in the context of high level PNs.

3 A brief overview of Petri net modelling of biological networks

This section intends to give a flavour of the many ways in which Petri nets can be used to model
biological networks. It is far from being an exhaustive review. In the sequel, I chose to classify the
applications upon the kind of PNs they employ. Most of the PN models are related to metabolic
networks. When gene regulatory networks are modelled, the mechanisms related to transcription
and translation are represented (as, for example in [14]), with the noteworthy exception of logical
regulatory graphs presented in Section 4.

MODELLING COMPLEX BIOLOGICAL SYSTEMS 11



Figure 2: Top: an enzyme-catalyzed reaction. Bottom: the corresponding Petri net.

Standard Petri nets: An early attempt of PN modelling of biochemical reaction systems has
been presented by V. Reddy and M. Mavrovouniotis [17]. In particular, they showed how PNs
allow the representation of the essential components in biological pathways, and how such PN
models can be used to perform a qualitative analysis. Metabolic pathways are generally seen as
interconnected networks of enzymatic reactions, where the product of one reaction is a reactant
of (or an enzyme that catalyzes) a subsequent reaction. Figure 2 illustrates the PN modelling of a
catalyzed reaction with places representing reactants and products and transition representing the
reaction.

Since then, it has been shown that several concepts arising in structural pathway analysis of
biochemical networks have their counterparts in PN theory (e.g. [19]). In particular, it has been
demonstrated that T -invariants correspond to ’elementary flux modes’. Indeed, the topology of the
PN matches the topology of the metabolic network it represents, and one can draw extensive rela-
tionships between the traditional biochemical modelling and PNs (see e.g. [26]). In particular, the
stoichiometry matrix of a metabolic network corresponds to the PN incidence matrix. In [11], the
authors demonstrate how PNs provide a mean for model validation. All these qualitative analyses
assume that the system has reached a steady state.

Stochastic Petri nets: SPNs associate random (exponentially distributed) time delays to tran-
sitions [13]. Stochastic models are useful to take into account uncertainty attached to data, but
also to describe external noise (generated by fluctuations of the environment), or intrinsic noise
(due to low molecular concentrations). So far, SPN models have mainly been used for stochastic
molecular interactions [9, 22] (these models essentially reproduce the Gillespie’s algorithm [7]).

Colored Petri nets: CPNs assign categories to the tokens defining color sets, thus allowing
reduced models of complex systems (see [12] and references therein). In [25], the authors used
colors to differentiate molecules of the same species (according to the paths along which they
are produced and consumed) and performed a qualitative analysis of the erythrocyte combined
glycolysis and pentose phosphate pathways (a refined version of the original model proposed by
Reddy et al. in [17]).

CPN models of genetic networks are developped in [5], according to the logical approach
developped by R. Thomas [23], providing means to check the model under various hypothesis,
using model-checking techniques (see Section 4 for further details).

Hybrid Petri nets: HPNs allow the markings of places to take either (positive) discrete or con-
tinuous values [1]. They provide a good mean to represent protein concentration dynamics being
coupled with discrete switches as shown in [14], where Matsuno et al. presented a HPN model

12 MODELLING COMPLEX BIOLOGICAL SYSTEMS



of the λ phage genetic switch mechanism. Since then, this group considered a further extension,
called Hybrid Functional PNs and developed the dedicated software Genomic Object Net (GON1)
[16].

In Functional PNs, primarily defined by R. Valk as self-modified PNs [24], the flow relations
between places and transitions depend on the marking. Hofestädt and Thelen applied this extension
for the quantitative modelling of biochemical networks [10].

4 Qualitative Petri net modelling of genetic networks

When a biological network has to be studied, it is crucial to consider the relevant level of abstrac-
tion, depending on the question to be addressed, but also on the knowledge and data which are
available. In the case of the regulation of gene expressions, it is often sufficient to represent the
fact that a particular regulatory product activates or inhibits a gene or set of genes to convey the
role of this product in the network. In such networks, the semantics associated with the interactions
between components varies: while in a chemical reaction the reactants are consumed, the expres-
sion levels of regulators do not change during the regulatory process. One successful approach to
qualitatively model such regulatory networks is the logical approach initially developped by René
Thomas and collaborators [23].

In a logical regulatory graph, the nodes represent genes which are associated with discrete
levels of expression, and arcs represent interactions between genes. Each interaction is associated
with a threshold from which the gene source of the interaction has an effect onto the targeted gene.
For each gene, a discrete logical function defines to which qualitative level tends a gene when
submitted to a given combination of interactions. GINsim is a software which implements this
formalism and allows the user to define a model and analyse it2. Further details on the formalism
and GINsim can be found in [8] and references therein.

Figure 3 illustrates our proposal for a standard PN representation of logical regulatory graphs,
called Multi-level Regulatory Petri Nets (MRPNs). Note that this example is far from being realistic
(in the top case, B would have no chance to reach its highest level). But the objective here is to
illustrate the rules governing the rewriting. For further details and applications, see [2] for the
Boolean case, and [3] for the multi-level case. This systematic rewriting has been implemented in
GINsim and should be available soon. In [3] we demonstrated our rewriting rules for a multi-level
logical model of the genetic switch controlling the lysis-lysogeny decision in the bacteriophage
lambda (the PN model can be downloaded at the GINsim web site, as text files in the INA3 format
or in PNML).

We took advantage of the MRPNs to develop an integrated model of a biochemical pathway
and its regulation [21]. More precisely, we defined a qualitative modelling of the biosynthesis of
tryptophan (Trp) in Escherichia coli, taking into account two regulatory feedbacks: the direct inhi-
bition of the first enzyme of the pathway by the final product of the pathway, and the transcriptional
inhibition of the Trp operon by the Trp-repressor complex.

Recently, Comet et al. developed a correspondance between the logical approach and Col-
ored PNs providing a compact CPN modelling (a unique place and a unique transition where the
marking of the place represents the state of the whole system and the guard associated to the tran-
sition implements the logical rules) [5]. The objective here is to provide the biologist with a tool
which systematically verifies the coherence of the model under various hypotheses (accounting for
observed biological behaviours such as homeostasis and multistationarity, or even more precise
temporal properties).

1http://www.genomicobject.net/
2GINsim web page: http://www.gin.univ-mrs.fr/GINsim/
3Integrated Net Analyzer, tool for the analysis of (Coloured) PNs: www.informatik.hu-berlin.de/s̃tarke/ina.html
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Figure 3: Top-left: a toy example with two regulatory products, A (2 qualitative levels) and B (4
levels) and an interaction from A to B. The effect of A alone onto B is described by the logical
parameter KB(A) = 2 (when A is present, B tends to level 2), while the base value of B denoted
KB(∅) (B submitted to no regulation) is 1. Top-right: the corresponding Multi-level Regulatory
Petri net. For each regulatory product, two complementary places are defined (A and Ã, B and
B̃). For each parameter, two transitions are defined (one for the increase order, the other for the
decrease order). For instance, the parameter KB(A) = 2 is represented by t+B,A and t−B,A. If A is
marked (product A at level 1) and B not marked (B at level 0, 3 tokens in B̃), then t+B,A is enabled
and its firing leads to an increase of the marking of B; if A is marked and B has 3 tokens (its higher
level), then t−B,A is enabled and its firing leads to a decrease of the marking of B. Bottom-left: the
same toy example, with other logical parameter values. Bottom-right: the corresponding MRPN
is simpler as there is only one transition for each parameter (because the new parameter values are
extremal, t−B,A and t+B are of no use here).

5 Discussion

This document is certainly not exhaustive and only aims at giving a general view on PN mod-
elling applied to biological networks. The increasingly use of PNs for the modelling of biological
networks can be explained by their underlying graphical representation, their suitability to model
concurrent distributed systems, their well founded mathematical theory, and the dedicated tools
already available4. A variety of models have been already developed, from purely qualitative to
sophiticated hybrid models. These different modelling approaches led to different kinds of anal-
yses, from structural analyses to pure simulation. Some efforts still have to be done to unify the
concepts, notations and terminologies [4].

In our group, we are mainly interested in the qualitative modelling of biological networks,
4see the Petri Nets Tool Database on the Petri Nets World web site:

http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html
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as they proved to be useful to get insights into the dynamical behaviour of the system. They are
also valuable to further delineate more precise quantitative models. It has been demonstrated in the
literature that PNs are well suited for the qualitative modelling of biochemical networks. By devel-
oping a PN representation of logical regulatory graphs, we have now a way to systematically and
qualitatively model regulated metabolic networks by connecting the biochemical network model to
the logical part of its regulation. This approach can now provide a good basis for more quantitative
analysis, in particular taking advantage of stochastic extensions.

It is interesting to observe that PNs allow a step by step modelling procedure if one considers
the refinements provided by the several existing extensions. Much work still has to be done to
integrate PN models accounting for different levels of abstraction. PNs could be useful to face
the problem of the composition of models. In this context, some groups are proposing to define
PN unities or modules which would be the building blocks of biological network models. Finally,
some attempts are made to map other existing formalims to PN models. More specifically it would
be valuable to define a systematic correspondance between ODEs and PN models. In this respect,
Shaw et al. propose a correspondance between SBML5 and PNML6 models [20].
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Machine Learning Biochemical Networks
from Temporal Logic Properties
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Abstract

One central issue in Systems Biology is the definition of formal languages for describing complex
biochemical systems at different levels of abstraction. In this talk, we show how temporal logic,
possibly with numerical constraints, can be used to formalize the experimental knowledge from
which biological models are built. In return, the temporal logic properties constitute a specification
which can be checked automatically with model-checking techniques, or used to curate the model
with machine learning techniques. We present two algorithms for inferring reaction rules and
kinetic parameter values from a temporal specification formalizing the biological experiments.
We illustrate how these machine learning techniques, implemented in the Biochemical Abstract
Machine BIOCHAM, can be useful to the modeler through an example on the cell cycle control.
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Abstract

In this programmatic paper, we present a possible road map to the realization of minimal cells. 
Starting from consideration of the state-of-the-art in the use of lipid vesicles as compartments 
for biochemical reactions, we describe the most significant experimental steps that are needed 
for the realization of self-reproducing cells. This approach consists in the controlled assembly 
of  informational (DNA) and functional (enzymes, ribosomes) macromolecules  in  a  vesicle 
compartment, in order to construct a semi-synthetic minimal cell. Emphasis is given to the use 
of reconstituted (i.e., from purified components) biochemical machineries for the achievement 
of cellular functions. Synthetic biology, a new emerging discipline that is recently attracting 
considerable scientific interests, represents the framework for the development of this research 
program. 

1   Premise

The question “what is life?”, and the idea of constructing simple forms of life in the laboratory, 
have been in the agenda of science for a very long time. The scientific analysis of life is made 
difficult by the many layers of believes, biases and prejudices that have accumulated over the 
centuries over this term; in order to tackle the question in a proper scientific way, we have to go 
back to the roots of simplicity, and consider the simplest level of natural life, at the level 
namely of microbes and simpler unicellular organisms.
We have therefore to recognize that there is no other form of life on earth other than the 
cellular  life.  This  means  that  life  is  based  on  compartments  that  permit  a  high  local 
concentration of  reagents,  protection  from  the  environment,  containment  and  control  of 
structural changes. These compartments are defined by semi-permeable membranes that permit 
the selection of chemicals as nutrients or other co-adjuvant of the cell functions.
A first assessments to the question “what is life”, as well as the approach to the construction of 
simple life forms in the laboratories, have to start from such basic considerations.

2   The notion of minimal cell

The choice to look at unicellular organisms as our models for understanding life certainly 
simplify the analysis. However, when we look inside the cell of even very simple microbes, we 
are bewildered by a tremendous complexity: even the smallest unicellular organisms contains 
many hundreds of genes, and contains therefore several hundreds of enzymes, and families of 
nucleic  acids,  and  a  total  of  several  thousand  of  reactions  occurring  inside  each  tiny 
compartment.
But precisely this staggering complexity elicits the question, whether all this is really necessary 
for life, or whether instead cellular life can also be realized by a much smaller  degree of 
complexity.
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The rational for this statement comes from two different kinds of considerations: on the one 
hand, the biochemical complexity of a cell is certainly in large part the result of millions of 
years  of  evolution  based  on  competition  struggles,  that  produced  plenty  of  defence 
mechanisms, enzymes and nucleic acid redundancies, security loops and the development of a 
series of reactions that would have probably not occurred in a more permissive environment; 
the other argument is based simply on the consideration that the first early cells, that started the 
origin of life, could not have been possibly so complex from the very start, they must have 
been, conceivably, much simpler.
All  this  brings to  the notion of  minimal  cell:  this  is  the cell  containing the minimal and 
sufficient  number of  components to  be  defined as  alive. What  does “alive”  means?  The 
definition of life is a complex matter, but at this stage we can accept a very general description: 
cellular life implies the concomitance of three properties: self-maintenance (metabolism), self-
reproduction,  and  evolvability.  When  these  three  properties  are  all  realized  and  work 
simultaneously,  we  will  have  full-fledged  cellular  life.  In  very early cells,  as  well  as  in 
synthetic constructs, we may have only two out of three properties working, and thus we will 
have  several  kinds  of  approximations  to  life,  various  forms  of  “limping”  life.  These 
approximations are very important for understanding the origin and development of cellular 
life-as again, one cannot assume that life started on Earth as the perfect machinery that is now. 
It is also clear that there will not be just one type of minimal cell, but instead the term minimal 
cell describe a large family of possibilities. 
All these considerations permit to conceive a research line that focuses on the construction and 
study of minimal artificial constructs that are designed and realized with the aim of achieving a 
minimal living cell.
In the following, we discuss some aspects related to the minimal cell project, as sketched in 
Figure 1. Such topics will be not discussed separately but within a general discourse on our 
experimental approach.

Figure  1. Some  important  issues  related  to  the  concepts  and 
realization of semi-synthetic minimal cells.

3   The approach to the construction of the minimal cell: literature stand

The first thing needed for implementing in the laboratory the construction of a minimal cell is a 
suitable  compartment.  Lipid  vesicles  (liposomes)  represent  a  proper  model  for  cellular 
membrane. The strategy consists in the insertion of the minimal number of extant genes and 
enzymes inside a synthetic vesicle, so as to have an operational viable cell. This is represented 
in Figure 2.
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Of  course,  from a  certain  point  of  view,  one  may  say  that  is  not  fair  to  utilize extant 
macromolecules for studying the origin of cellular life. The point of this investigation however 
is not to clarify the origin of macromolecular sequences and life in general – but to focus on the 
earliest forms of cellular life, at a time in which such functional macromolecules were already 
present – and to have under laboratory control simple forms of cellular life; and to qualify the 
lowest degree  of  complexity compatible with  cellular  life.  The fact  that  for  this  kind  of 
construct  natural  macromolecules  are  used,  brings  to  the  terminology of  “semi-synthetic 
minimal  cells”,  meaning  that  part  of  this  construct  is  synthetic  (the  membrane,  and  the 
assemblage), whereas some other parts (enzymes and nucleic acids) are natural.

Figure 2. The construction of semi-synthetic minimal cells.

With these premises, the next point is to clarify what do we mean by “a minimal number of 
extant genes and enzymes”; the question of minimal genome is strictly connected to this issue. 
In order to be considered alive, a cellular construct must satisfy some conditions, that have 
been indicated in section 2. These theoretical considerations find a realistic scenario in the 
studies of several researcher that point out what is the minimal number of genes in a living 
organism. Thanks to the available data on minimal genome it is possible to evaluate a minimal 
gene-set of 200-300 genes. The interested reader can refer to a recently published review [1]. 
Here we would like to comment one of the most recent published study, a contribution of the 
Moya’s lab (University of  Valencia),  who,  on  the  basis  of  a  comparative and  functional 
approach, indicates 206 genes as the genomic core required for minimal living forms. The 
analysis  was  carried out  by  a  comparative approach  that  considers  the  genomes of  five 
endosymbionts and other microorganisms [2]. Such small number of genes codifies for the 
proteins that perform the essential cell functions, as basic metabolism and self-reproduction.

A pictorial representation of the Moya’s minimal genome is shown in Figure 3.

Notice first of all the large number of genes that are associated to RNA metabolism, such as 
genes involved in  the  transcription,  t-RNA synthesis  and  modifications,  rRNA synthesis, 
ribosome-related  functions,  translation factors and  RNA degradation.  In  other  words,  the 
biochemical machinery of a minimal cell  is  strongly biased to the transcription-translation 
processes. Of course, also other important processes are implemented by the minimal genome: 
protein processing, cellular processes, energetic pathways and – of course – DNA replication.
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Figure3. The  functional  classification  of  a  minimal  genome 
composed of 206 genes. Data from reference [2].

When we consider the construction of artificial minimal cells, there are some additional points 
that can reduce the number of genes. First of all, the appropriate choice of “environment” 
conditions, i.e. the presence in the medium of specific compounds. In fact, the biosynthesis of 
low-molecular weight compounds and the cellular requirements for in situ energy production 
can  be  bypassed by  an  external  supply  of  such  compounds.  This  will  correspond  to  an 
extremely favourable environment, that considerably simplifies our experimental approach and 
does not affect the definition of minimal life. In fact, the very blueprint of cellular life is not 
related to the synthesis of low molecular weight compounds but to the synthesis and replication 
of high molecular weight (and information carrying), as well as to the reproduction of the entire 
cellular construct. In addition, fine regulation of cellular processes are often characterized by a 
complex feed-back mechanisms that involve also the production of small molecules. At the 
present level of experimental complexity, these kind of loop are essentially neglected, since we 
are focusing on simplified cells, as discussed above in the section 2.

A survey of literature data indicates that the large majority of the researchers in this field have 
approached  the  construction  of  minimal  semi-synthetic  cells  by  performing  simple  and 
complex compartmentalized biochemical reactions into compartments. At this aim, vesicles are 
formed in an aqueous medium that contains all the reactants for a determined reaction, or – in 
an  alternative approach  –  a  substrate is  externally  added to  a  pre-formed and pre-loaded 
vesicles. Both the strategies correspond to the exploitation of passive compartmentation ability 
of vesicles, since the solutes are statistically entrapped in the inner aqueous volume of vesicles 
during the process of vesicle formation. As a consequence, the external (in bulk) reaction must 
be somehow inhibited. In contrary, an active process of entrapment would consists in the direct 
injection of the required reagents into a vesicle, that in this case must be necessarily a giant 
vesicle [3].

Pioneering work (see Table 1) on compartmentalized reactions was done in the Nineties by 
Oberholzer, Walde and Luisi at the ETH, in Zurich. A recently published review describes this 
work in detail [1].

Let us discuss now the most recent advancements in the works on minimal cell. In the last 
years, several  papers have appeared in  the  literature,  describing  the  insertion of  complex 
biochemical systems in vesicles. Several groups all around the world, in particular those lead 
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by T. Yomo  [4,5], T. Ueda  [6-8], and T. Sugawara  [9] in Japan, P. L. Luisi in Italy  [10-19], 
D. Deamer  [20,21], S. Rasmussen  [22], as well as A. Libchaber  [23,24] in the United States, 
E. Szathmáry in Hungary  [25], G. Ourisson and Y. Nakatani in France  [26,27]. In particular it 
has  been  possible  to  express  some  proteins  by  inserting  the  whole  ribosomal  synthetic 
apparatus into vesicles. Some reviews have already made their appearance in the literature 
[1,19,21,24,25], while the most representative results have reported in Table 1.

Table 1. Compartmentalized reactions in lipid vesicles.
Nucleic Acid Metabolism Ref. Protein Expression Ref.
Enzymatic  poly(A)  synthesis 
inside vesicles

[28,29] Ribosomal  synthesis  of 
polypeptides into vesicles

[14]

RNA replication into vesicles [13] GFP production into vesicles [4]
DNA  amplification  by  the 
PCR inside the liposomes

[12] Expression  of  EGFP  into 
small vesicles

[17]

Transcription of DNA in giant 
vesicles

[26] EGFP  expression  into  giant 
vesicles

[27]

Production  of  mRNA  inside 
giant vesicles

[3] Encapsulation  of  a  genetic 
network into vesicles

[5]

Expression  of  two  proteins 
into a long-lived giant vesicle

[23]

From all  these  data –  especially  from those concerning  the  expression  of  protein within 
vesicles, (Figure 4 and right-hand column of Table 1) it is possible to depict the state of art of 
the field, also evidencing the difficulties, and possibly to design future working plans.
One first, important limit in all these studies is given by the fact that in order to express a 
protein inside the vesicles (mostly the green fluorescence protein, GFP), entire commercial kits 
have been used. Those commercial preparations are usually “black boxes”, in the sense that the 
composition of  the  mixture is  not  given, and  therefore  also the  number and  the  relative 
concentration of the enzymes involved is unknown. Since all these preparations are cellular 
extracts (from E. coli), a rigorous synthetic approach is not possible. 

Figure 4. Schematic drawing representing the expression of 
green  fluorescent  protein  (GFP)  into  lipid  vesicles.  In 
particular, a plasmid that contains the gene of interest is co-
entrapped into the aqueous core of a vesicle together with 
all  the  components  of  the  protein  expression  machinery 
(RNA polymerase, ribosomes, tRNAs, aa-tRNA synthetase, 
amino acids,  ATP,  GTP, etc.).  The production of GFP is 
generally  followed  by  batch  fluorimetry,  confocal 
microscopy or flow cytometry.

MODELLING COMPLEX BIOLOGICAL SYSTEMS 23



Another limit, clearly arising from the analysis of literature data, is that only proteins have been 
expressed, which corresponds to an active internal metabolism; however there is  no result 
pointing to self-reproduction of these semi-synthetic cells. 
Our  work stems from the effort  of overcoming these two important  limits of  present day 
literature. In particular, we wish to carry out the research by employing a minimal, and well 
known, set of enzymes, and focusing in the self-reproduction.

4   Our approach to the construction of the semi-synthetic minimal cells

Few years ago, the group of Takuya Ueda at the Tokyo University reported on the creation of a 
new  in  vitro protein expression  kit  composed by  purified  components  [6].  This  kit,  now 
commercially available with the trademark of PURESYSTEM® (Post Genome Institute Co., 
Ltd. – Japan), is composed by 36 purified enzymes and ribosomal components; each one of 
these compounds is present at a known concentration, see Table 2 [8]. Originally developed to 
synthesize proteins  in  vitro,  this  tool appears to be perfectly suitable for a  pure synthetic 
biology approach to the minimal cell projects. In fact, it allows the construction of an artificial 
cell that contains a minimal number of components in order to perform some function, i.e., the 
synthesis of a functional protein – in this case. From the point of view of minimal genome, 
taking into account the ribosomal proteins (each one having a corresponding gene) and the t-
RNAs/r-RNAs, it can be concluded that by using PURESYSTEM a genome of about 100 genes 
is actually involved a protein-expressing minimal cell.

With this premises, it is evident that the next relevant steps in minimal cell research deal with 
the insertion of PURESYSTEM inside vesicles, therefore allowing the protein synthesis with a 
controlled (and subject to modulation) expression tool. In further steps, this cellular construct 
must be oriented to the production of lipids, in order to achieve a vesicle self-reproduction. 
Finally, we intend to reach the complete reproduction (core-and-shell) of such construct. The 
road map for this approach is illustrated below in some detail.

Table 2. Composition of the PURESYSTEM (adapted from [8])
Translation factors aa-tRNA synthetases Other components 
1 IF1 17 AlaRS 37 ribosomes 
2 IF2 18 ArgRS   
3 IF3 19 AsnRS Energy sources 
4 EF-G 20 AspRS 38 ATP, GTP,CTP,UTP 
5 EF-Tu 21 CysRS 39 creatine phophate 
6 EF-Ts 22 GlnRS   
7 RF1 23 GluRS Buffers/others 
8 RF2 24 GlyRS 40 HEPES-KOH pH 7.6 
9 RF3 25 HisRS 41 K glutammate 
10 RRF 26 IleRS 42 Mg acetate 
  27 LeuRS 43 spermidine 
Other enzymes 28 LysRS 44 DTT 
11 MTF 29 MetRS 45 20 amino acids 
12 creatine kinase 30 PheRS 46 20 tRNA mix 
13 myokinase 31 ProRS 47 formyl-tetrahydrofolic acid 
14 pyrophosphatase 32 SerRS   
15 nucleosidePP kinase 33 ThrRS   
16 RNA polymerase 34 TrpRS   
  35 TyrRS   
  36 Val RS   
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4.1   Incorporation of PURESYSTEM into liposomes, and optimisation of the GFP 
expression inside them.

The main target in this phase is to put under control a PURESYSTEM-containing liposome 
system that is capable of expressing one standard protein in optimal yield and in relatively short 
time. The novelty in this approach will be: (a) the expression of a protein with a purified and 
reconstituted transcription-translation machinery; (b) the consideration of the feeding problem, 
i.e.  the  continuous  renewal  of  external  phase  (biochemically rich  phase),  by  solving the 
problem of  membrane permeability; (c)  the possible removal of  some components  of  the 
PURESYSTEM in order to further reduce the complexity of the system (in this case, a lower 
protein yield is  expected).  The point  (b)  of  the  list  deserves  a  special comment. In  fact, 
following the report of Noireaux and Libchaber [23], the introduction of  -hemolysin pores 
into vesicles allows the free entrance of externally given small substrates – as amino acids, 
ATP, etc – into the internalised water pool of liposomes. If this strategy is coupled with a 
“continuous reactor system”, developed some years ago by Luisi and co-workers [30], one can 
achieve a long-time bioreactor that can be almost continuously fed.

From the point of view of liposome physical-chemistry, there are in principle two main size 
regions that can be probed: the sub-micrometric size region (0.1-1 m) and the giant-vesicle 
size region (>1m). Working with smaller vesicles means utilizing simpler vesicle formation 
techniques, but with the drawback of involving only indirect analysis methods. Vice versa, 
working with giant vesicles can be advantageous from the detection viewpoint, since giant 
vesicles can be easily studied in real time light microscopy, but unfortunately the preparation 
methods are often difficult and not very reproducible. Intermediate sized vesicles (i.e. 0.4-0.8 
m) offer the possibility of joint analysis by flow cytometry and confocal microscopy, as well as 
classical batch techniques, as spectrofluorimetry, in addition they are readily prepared. On the 
other hand, the multiple lamellae that often characterize such structures can limit the theoretical 
understanding of these systems.

4.2  Development of a PURESYSTEM-containing liposome system capable of shell  
self-reproduction.

Self-reproduction in the  case of  semi-synthetic cells  is  a  difficult  problem that should be 
addressed in various degrees of approximation. The first level that we propose is that of a 
system that expresses in its core those enzymes which catalyse the synthesis of the membrane. 
Preliminary studies have been carried out several years ago in the group of Luisi, aimed at 
producing inside lecithin liposomes the synthesis of lecithin [10]. The synthetic route that, also 
according  to  these  early  results  and  also to  some new developments [31],  appears to  be 
promising is the so-called lipid salvage pathway, indicated in Figure 5.

Figure 5. Lecithin biosynthesis by the salvage pathway. The four enzymes needed 
to accomplish the trasformation of glycerol-3-phosphate into phospatidylcholine 
are:  sn-glycerol-3-phosphate  O-acyl-transferase  [2.3.1.15],  1-acyl-sn-glycerol-3-
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phosphate  O-acyl-transferase  [2.3.1.51];  phosphatidate  phosphatase  [3.1.3.4]; 
diacylglycerol  cholinephosphotransferase [2.7.8.2].  The reagents  needed in each 
step are omitted.

The advantage of this pathway is also related to the chemical nature of precursors. In fact, in 
addition to glycerol-3-phosphate, the long-chain acyl-CoA, needed to carry out steps 1 and 2 of 
the route, as well as CDP-choline in step 4 are all water-soluble compound.1 In other words, the 
salvage pathway transforms small water-soluble  molecules  into a  membrane-forming lipid 
molecule, i.e., lecithin.
As additional possibility, we must consider that in principle it is possible to stop the salvage 
pathway after the second acylation step, obtaining phosphatidic acid, a molecule that forms per 
se lipid bilayers and vesicles. We recently investigated the formation and the properties of 
dioleoylphosphatidic acid vesicles, and its interaction with oleoyl-CoA [32].

Figure  6. A  cell  that  makes  its  own  boundary.  The  complete  set  of 
biomacromolecules  needed to perform protein synthesis  (genes,  RNA polymerases 
and ribosomes) is indicated as a couple of spheroids. The product of this synthesis 
(indicated as E) is the complete set of enzymes for lipid (L) synthesis, that start from 
the set of precursors A. After growth and division, some of the ‘new’ vesicles might 
undergo ‘death by dilution’.

In contrary to the approach of Schmidli et al. [10], who started by a proteoliposome containing 
the four enzymes of the salvage pathway, in the modern approach, the endogenous biosynthesis 
of lipid should be obtained after the in situ expression of the enzymes indicated in Figure 5.
Therefore, the practical approach to such study involves the entrapment of the PURESYSTEM 
kit together with the four genes codifying for the four enzymes of lipid biosynthesis, e.g., the 
expression of lipid-synthesis enzyme-battery (Figure 6).
In alternative to a self reproducing lecithin shell from within vesicle compartment, based on the 
salvage pathway, we can envisage the introduction into vesicle of a Fatty Acid Synthetase 
(FAS) enzyme for fatty acid synthesis. From the point of view of compartment chemistry, 
phospholipids provide a stable and quite inert membrane which is very convenient to handle. 
However, if we focus our attention to the use of minimal cells as model prebiotic structures, a 
more simple surfactant must be used and most scientist involved in the origin of life research 
agree that fatty acid vesicles are better candidate. The use of fatty acid vesicles, however, may 

1 Long-chain fatty acid-CoA molecules are probably soluble in water in form of micelles.
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represent a challenge because of potential chemical incompatibilities, magnesium ions above 
all, but also working pH and high-pI enzymes. To accomplish this result, we are focusing on 
the self-reproduction of vesicle shell by the endogenous (within vesicle) synthesis of fatty 
acids.  Two strategies  can be in principle pursued: (i)  incorporating first the enzyme/s that 
synthesize the Fatty acids or, (ii) introducing the corresponding gene/s, and expressing those 
enzyme/s within the vesicles. Work is in progress to clone the gene for a mammalian Fatty 
Acid  Synthetase  Type-I  enzyme  into  a  protein  expression  vector.  Type  I  FAS  is  a 
multifunctional enzyme consisting of a dimmer with single long multifunctional polypeptides 
and is water soluble. The human FAS has been successfully expressed in E.coli and proven to 
catalyzes the synthesis of palmitate [39] (Figure 7).

Figure 7. Type-I FAS enzymatic system is capable to catalyze all the 
biochemical reactions that, from acetyl-CoA and malonyl-CoA, lead to 
long-chain fatty acids, principally palmitate.

Palmitate represents the principal product of the reaction and, in the case of the animal FAS, it 
is spontaneously released by the enzyme when ready, as it is without the need of any further 
modification before to be incorporated in the vesicle membrane.
If  the  production  of  lipids  is  significant  (in  terms of  chemical yield),  it  follows that  the 
membrane surface can grow, and eventually the liposomes will divide up so as to maintain a 
constant surface/volume ratio. Of course, with progressive generations, most of the liposomes 
will  become inactive, due  to  “death by  dilution”, as  the  new created  liposomes will  not 
necessarily contain,  by  statistical  laws,  all  components  which  are  necessary for  protein 
synthesis.

The prediction of this behaviour originates from the results on the vesicle self-reproduction, 
carried out mainly by Luisi and co-workers in Zurich [33-37], and extended recently by other 
groups [9,38]. In that studies, a membranogenic surfactant is added to pre-formed vesicles, with 
the result that original vesicles take up the freshly surfactant molecules, grow and divide in 
vesicle-daughters. It has been also postulated that such mechanism could have had a role in 
prebiotic vesicle proliferation [36].

The  system depicted in  Figure 6  (a  system that  makes  its  own  boundary  from  within) 
corresponds to an autopoietic system, and it would be the first time that one such system is 
realized in the laboratory. The system should be so optimised, to contain in the original cell 
many numeral copies of the ribosomes and of the synthesizing enzymes, so as to increase the 
probability that the first and second generation of newly produced liposomes also contain all 
the battery for shell-self-reproduction.
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4.3  Self-reproduction of semi-synthetic cells.

A real self-reproduction of biological cells is based on the formation of cellular copies, each 
containing the full genetic apparatus. The experimental implementation of this principle in a 
semi-synthetic construct is a very ambitious goal that requires a careful and detailed evaluation 
of the system under study. In particular, it is necessary to find conditions under which the 
ribosomal system and all polymerase enzymes self-replicate. This is in principle possible by 
enriching  the  PURESYSTEM  with  additional  components  that  carry  out  the  requested 
functions.

In particular, in addition to the replication of genetic material, the critical point is related to the 
production – from the within – of all the components of the PURESYSTEM itself, ribosomes 
included. Of course, and in contrast with the two above mentioned cases (expression of GFP 
and expression of the enzymes of a simple biosynthetic pathway), for the complete core-and-
shell self-reproduction, the minimal genome itself should be inserted into vesicles, in order to 
allow the transcription of all the genes that will originate the whole cellular machinery (RNA 
polymerases, DNA polymerases, enzymes for the protein expression, ribosomal proteins, lipid 
biosynthesis enzymes, etc…).

It is self-evident that the achievement of this complexity level requires a very high control over 
the compartmentalized reactions and over the interconnected pathways of protein biosynthesis, 
DNA  replication,  lipid  production  and  whole  enzymatic-machinery  replication.  We  are 
confident that in the following years the possibility of achieving such challenging goals will 
significantly increase.
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Abstract

Under natural growth conditions, bacteria can utilize intricate communication capabilities(e.g.
quorum-sensing, chemotactic signaling and plasmid exchange) to cooperatively form (self- or-
ganize) complex colonies with elevated adaptability the colonial pattern is collectively engineered
according to the encountered environmental conditions. Bacteria do not genetically store all the
information required for creating all possible patterns. Instead, additional information is coopera-
tively generated as required for the colonial self organization to proceed.

We describe how complex colonial forms (patterns), emerge through the communication-based
singular interplay between individual bacteria and the colony. Each bacterium is, by itself, a biotic
autonomous system with its own internal cellular informatics capabilities (storage, processing and
assessment of information). These afford the cell plasticity to select its response to biochemical
messages it receives, including self-alteration and the broadcasting of messages to initiate alter-
ations in other bacteria.

Hence, new features can collectively emerge during self-organization from the intracellular
level to the whole colony. The cells thus assume newly co-generated traits and abilities that are not
explicitly stored in the genetic information of the individuals.

Prologue: Our best friends and worst enemies

Eons before we came into existence, bacteria inhabited the then hostile planet Earth. Being the
first form of life here, they had to devise ways to counter the spontaneous course of increasing en-
tropy and convert high-entropy, inorganic substances into low-entropy, organic molecules. Acting
jointly, these tiny organisms also paved the way for other forms of life by changing its harsh con-
ditions into the life-sustaining environment we know. With their impressive engineer- ing skills,
bacteria changed the atmosphere above us to be oxygen rich, and the water and soil to be loaded
with nutrients, resulting in the Biosphere that supports all life on Earth [1-5].

Four billion years have passed, and the existence of higher organisms still depends on the
unique bacterial know-how that converts between inanimate and living matter. With all our scien-
tific knowledge and technological advances, the ways that bacteria act as Maxwell demons against
the second law of thermodynamics is still a mystery. This makes bacteria are our best friends on
Earth, indispensable friends we simply cannot do without. If we seek a future for the human race
in space, we must take bacteria along for the ride, as none other can prepare the setting for us.
They will quickly learn how to thrive in any new environment, and make use of whatever it offers
to synthesize life-sustaining organic molecules and to recycle waste products for further use.

But, as we know, the same best friends are also our worst enemies. In our rush to free the human
race from deadly bacterial diseases, we created a major health problem worldwide: bacteria are
becoming increasingly resistant to antibiotics. Unaware of bacteria’s cooperative behavior and
social intelligence, which allow them to learn from experience to solve new problems and then
share their newly acquired skills; we recklessly used, and still use, antibiotics to fight them. As
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a result, we are now witnessing the resurgence of strains of disease-causing bacteria believed to
have been vanquished long ago; only now they come armed with multiple drug resistance, and we
can’t invent new drugs fast enough.

The engineering skills of bacteria

The idea that bacteria act as unsophisticated, solitary creatures stems from years of laboratory
experiments in which they are grown in Petri dishes in benign conditions. They can be tempted
to reveal their tricks by, for example, growing them on nutrient-poor hard surfaces. The bacteria
you see in fig. 1 coped with this situation by collectively producing a lubricating layer of fluid,
which allowed them to swim on the hard surface. As they swim, the individual bacteria at the
front push the layer forward so as to pave the way for the colony to expand. By carefully adjusting
the lubricant viscosity, the bacteria stick together and keep the colony dense enough for protection
[4,6,15-17].

Under conditions somewhat more favorable to motion, such as softer substrate, the bacteria en-
gineer radically different classes of colony patterns. In this situation, the branches exhibit macro-
scopic chirality, always curling in the same direction (handedness). Accompanying the colonial
structure is a designed genome change; the bacteria are now programmed to become much longer,
which helps them to move in a coordinated motion within the branches [4,6,15-17].

To achieve even greater efficiency, bacteria invented the clever mechanism of chemotactic sig-
naling, in which the individual bacteria send chemical messages to tell their peers in which direc-
tions to move. For example, when detecting a rich source of food they call their peers to join the
meal by sending attractive chemotactic signals. On the other hand, bacteria that detect regions of
low food or harmful chemical imbalances send out a repulsive chemical to signal the others to stay
away [4,6,15-17].

Using these self-engineering strategies, the individual cells collectively manipulate the overall
colony organization for the group benefit, as is reflected by the tantalizing colonial patterns shown
in Fig.1.

Clearly, bacteria cannot contain in their genes the information for creating all the patterns
they might need to survive in unexpected situations. Well, they don’t need to; they only need to
have coded genetic information to provide them with the strategic design principles and the tools
for communication, for information processing, and for changing themselves accordingly. Using
these tools, they can design new creative shapes [4,6,15-17].

Bacterial communities

Bacterial engineering creativity is further manifested when forced to grow on very hard surfaces.
The colony is now formed from new building blocks the vortices shown in Fig.2. It becomes much
like multi-cellular organisms, with cell differentiation and distributed tasks.

In fact, bacteria can go a step higher and form a community (biofilm) of many cooperating
colonies [8,9]. Each colony in the community acts as an organism that communicates with the
other colonies for coordination and distribution of tasks, for the benefit of the community as a
whole. To have an idea of the complexity involved, let us look at our oral cavity, which hosts
a biofilm composed of hundreds colonies of different bacteria species, each consisting of tens of
billions of bacteria.
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1-c 1-d

Figure 1: Patterns of Paenibacillus dendritiformis bacteria form when grown on nutrient-poor, hard sub-
strate. Far from being shapes of mere aesthetic beauty, these colonial structures reflect the self- engineering
skills of bacteria. The spreading patterns help the colony access more of the scarce food in the most effi-
cient way under the given conditions. Ordinary branching pattern is shown on the left (a), and the chiral
one (with broken left-right symmetry) is shown on the right (b). The top pictures show the colony patterns.
Each colony is a few inches in size and has more bacteria than the number of people on Earth. The bottom
pictures (c) and (d) show the individual bacteria (the small bars) at the branch tips with x500 magnification
for (a) and (b) respectively.

Yet bacteria of all those colonies communicate for tropism in shared tasks, coordinated activi-
ties, and even exchange of relevant genetic bacterial information. For that to happen, cells should
be able to talk and make sense of chemical messages they receive within a chattering of a huge
crowd that is about thousand times larger than the number of people on Earth. In linguistic terms,
the cells have multi-lingual skills, and each cell should be able to identify messages from its peers
to the colony but at the same time also understand some of the messages from other colonies.

For that, bacteria have developed intricate chemical signaling mechanisms using a broad reper-
toire of biochemical messages - from simple molecules to ”cassettes of genetic materials” (plas-
mids). More recently, it was realized that to conduct social life, bacteria use the chemical messages
much like a language, including the semantic (the assignment of meaning or interpretation of mes-
sages) and pragmatic (conduction of a dialogue) levels of linguistics [15].
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Figure 2: Patterns of the Paenibacillus vortex are formed during growth on very hard surface. In these
colonies (a), foraging vortices of rotating bacteria shoot out to conquer the hard agar, lubricating the way
for their followers. The dynamics is fascinating: a vortex (b) grows and moves, producing a trail of bacteria
and being pushed forward by the very same bacteria left behind. At some point, the process stalls and this
is the signal for the generation of a new vortex behind the original one; the latter leaves home (the trail) as
a new entity toward the colonization of new territory.

Harnessing the art of generic modeling

With present computational power, it is only natural to use computer models to study bacterial
self-engineering in attempt to reveal their secret strategies we can learn from. In physics and
chemistry, models have long served as an indispensable research tool. But in the life sciences the
predictive power of models is still largely questioned. The usefulness and crucial role of modeling
in the study of bacterial complex organization as is illustrated in the communicating walker model
presented in Box B. We try to demonstrate that generic modeling allows in a natural way for
both the physics (represented by chemical fields such as the nutrient concentration, any chemical
signals, the lubricating fluid flow) and the biology (the response of individual cells to their sensed
environment) to be represented in a computationally tractable format. Yet models should never be
viewed as precise analogs of the actual system, but instead as tools for unraveling cause and effect
and for helping us search for as yet unknown biological phenomena at the single bacterium scale.

One can easily fall into the ‘reminiscence trap’ - the tendency to devise a set of rules that will
just mimic aspects of observed phenomena. Nevertheless, the other extreme the ‘realistic trap’
- where the model becomes swamped with too many details (and, usually, unknown parameters)
and hence loses all predictive power must also be avoided. Model building, indeed, is ”an art in
its own right” (the skills can only be acquired by practice), the challenge being how to elicit the
generic features and basic principles needed to explain behavior from experimental observations
and biological knowledge.

Harnessing the genome to shape the mathematics

One of the most important unanswered questions regarding these branching patterns involves the
branching-to-chiral transitions themselves. The change is heritable (epigenetic) in the sense that
inoculating a new agar plate with bacteria form a chiral region will create a colony which is im-
mediately chiral. Hence this new structure is not just a passive response to an altered environment,
but instead is connected to some switch that has been flipped in the bacterium’s internal circuitry.
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The nature of this switch is not known and the signal responsible for the switching is not known.
One interesting speculation is that the transition requires cell-cell communication, as is known to
be the case in the switch that results in bacteria deciding to become dormant spores in response to
poor growth conditions.

Merry go round

The patterns discussed so far depend on the ability of individual cells to push outward at the edges
of the colony, of course with the help of the lubricating fluid. If the agar is made harder, another
strategy can emerge. The bacteria can first organize themselves into coherent rotating vortices with
highly coordinated motions of the individual cells. Some recent work on the conditions necessary
for the emergence of these structures is discussed in Box D. These vortices can then move on the
surface, under the influence of nutrient and chemotactic chemical signals and organize the colony
in their wake. This type of pattern-formation is best thought of as hierarchical - instead of directly
forming the colony scale structure, the cells first create mescoscale functional units which interact
among themselves and with the cells left in the trails behind the vortices as they move outward.
Building more highly-organized structures by creating a hierarchy appears to be a common motif
in biological systems.

Shaped to survive antibiotic stress

Both model calculations and direct experiments have taught us a lesson that needs to be stressed
throughout, namely that the patterns are highly reproducible; the interplay of these coordination
mechanisms creates stable colony-scale responses to fixed environments even in the presence of
obvious large-scale fluctuations in individual cell behavior. Adaptable self-engineering can be
viewed as the solution to a challenging self-consistency mathematical problem at the forefront
of optimization and control in non-linear dynamics. Thus it is fair to conclude that collectively,
bacteria can glean information from the environment and from other organisms and interpret the
information in an existential ”meaningful” way, i.e. by building an appropriate colony structure.
It is perhaps not so far-fetched to imagine that the bacteria even develop common knowledge and
learn from past experience. As we already mentioned, the recent findings about shaped to survive
as response to antibiotic stress appear to be pushing us in this direction.

Linguistic communication and bacterial intelligence

Finally, we have recently argued that the way the bacteria coordinate their response to changing
environments and to their own dynamical history is perhaps not very different from semantic com-
munication as we usually understood it to occur between higher-level organisms (such as us). After
all, an individual cell must make sense of a set of complex chemical messages it receives regarding
the state of the colony and the features of the environment and act accordingly. This interpretation
clearly depends not only on the message but also on the internal state of the receiving cell, hence
the use of the term semantic. The cell must then transmit its decisions to other cells by sending
out its own chemical messages. Should this be called intelligent behavior? Perhaps the bacteria
deserve to be given more credit for inventing some of the basic approaches that all living organisms
use to survive in the face of an unforgiving world.
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1    Signalling times in protein kinase cascades 

 
An enormous amount of information has accumulated about the components of various signalling 
pathways, their interplay, and their final output. However, the complex nature of these pathways 
renders it extremely difficult to understand how they are regulated and which parameters 
determine their dynamics. For example, how do the magnitudes of signal output, of signal 
propagation time and of signal duration depend on the kinetic properties of pathway components, 
such as kinases or phosphatases? Questions of that kind are of high biological relevance since 
differences in the time characteristics of signalling, leading for example to a sustained or a 
transient response, can have dramatically different consequences [1]. Here we show that 
mathematical modeling [2] may give interesting answers to this and other related problems of 
signalling pathway dynamics. 
 
As a very simple example we consider a linear signalling cascade in which stimulation of a 
receptor leads to the consecutive activation of several downstream protein kinases (Fig. 1). The 
"signal output" of this pathway is the phosphorylation of the last kinase which, in turn, can elicit 
a cellular response (e.g., activation of a transcription factor). Signalling is terminated by 
phosphatases, which dephosphorylate the kinases, and by inactivation of the receptor, which can 
involve receptor dephosphorylation, internalization of the receptor-ligand complex, and/or 
degradation of the receptor or ligand. This general scheme is representative of many signalling 
pathways stimulated, for example, by growth factors such as EGF, PDGF, or NGF [3]. Typically, 
real signalling pathways are more complicated than this scheme, due to cross-talk between 
signalling pathways, binding of kinases to scaffolding proteins, multiple phosphorylation and to  
participation of G-proteins [4, 5]. We describe the dynamics of a pathway depicted in Fig.1 by 
the following set of differential equations 
 

iiiii
i XXX

dt
dX βα −= −

~~
1  , (1) 

 
where iX  and iX~  denote the concentrations of phosphorylated forms and unphosphorylated 
forms of kinases, respectively. The iα~ 's are second order rate constants for phosphorylations 
whereas iβ 's denote rate constants for dephosphorylation by phosphatases. Defining 

iii XXC += ~  as the total concentration of kinase i and using iii Cαα ~=  as a pseudo-first order rate 
constant, Eqn. (1) becomes 
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For the first kinase ( )1X , activation occurs via the stimulated receptor R, that is, 0X  should be 
replaced by ( )tR . For simplicities sake we assume an exponential decay of the receptor activity, 

( ) ( )tRtR λ−= exp  where λ1  is the “characteristic life time” of the active receptor. 
 
To treat key questions for the regulation of signalling cascades such as: (1) How fast does the 
signal arrive at its destination? and (2) How long does the signal last?, we introduced the 
following two quantities: 
 
a) Signalling propagation time iτ : It represents the average time to activate kinase i and can be 
defined as follows 

i

i
i I

T=τ  ,   where   ( )dttXI ii ∫
∞

=
0

 ,    and      ( )dttXtT ii ∫
∞

=
0

;  (3) 

 
b) Signal duration iϑ . This characterizes the average time during which a kinase remains 
activated and is defined by  
 

2
i

i

i
i I

Q τϑ −= ,  where  ( )dttXtQ ii ∫
∞

=
0

2  . (4) 

 
(for detailed justification, see [2]). The quantity iI  is called the integrated response of iX  [6]. 
For weakly activated pathways in which all kinases are phosphorylated to a low degree 
( )ii CX <<  Eqn. (2) simplifies to a linear differential equation system 
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and the key parameters can be calculated explicitly [2]. For the signal propagation time through 
the entire pathway, and for the signal duration, one derives 
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respectively, where n denotes the total number of kinases within the cascade. Interestingly, both 
τ  and ϑ  depend only on the receptor life time and on the rate constants of phosphatases. 
Accordingly, in a weakly activated pathway, the kinases do not regulate these two key quantities. 
It has been derived that for strongly activated pathways the kinases do have effects on τ  and ϑ  
which are, however, small compared to the effects of phosphatases.  
 
The leading role of phosphatases in controling the time characteristics of MAPK pathway has 
been demonstrated also experimentally [5]. Applying sodium orthovanadate as protein tyrsosine 
inhibitor to fibroblasts stimulated by EGF, inhibition resulted in a much broader peak. Kinase 
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inhibitions (inhibition of MEK) did mainly effect the amplitude of signalling (for the 
corresponding theoretical prediction see [2]). 
 
In the case that kinases are not completely specific the differential equation systems (2) has to be 
replaced by  
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where the ikα 's are rate constants describing phosphorylation of kinase i by kinase k.  
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Fig.1. Most simple scheme of a  Fig.2. Effect of network connectivity and phosphatase 
protein kinase signalling cascade activity on stability and signal amplification for   
     networks of different size 
 
It is easy to see that such an unspecificity may result in positive feedback loops and in this way to 
dynamic instability and autoactivation of a pathway. However, proper functioning of a signal 
transduction pathway will generally require that the signalling off-state is dynamically stable. 
Accordingly, it is a challenging task to analyse how pathway stability depends on the structure of 
the network as well as on the kinetic properties of the involved enzymes. Stability analysis can 
directly be performed by considering the spectrum of the eigenvalues of the Jacobian of the 
differential equation system (7). The results are represented in Fig. 2 showing for all possible 
structures for kinase/phosphatase networks different regions depending on the network 
connectivity (abscissa), on the phosphatase activity (ordinate: normalized β  values) as well as on 
the network size n. The number of possible pathways increases strongly with increasing n (e.g. 
9364 pathways for 5=n ). It is seen  that for each family of networks having the same size n 
there are three distinct regions A, B, and C leading to different dynamic properties of the 
networks. In region A all networks of a given family have an unstable signal off-state, in region B 
(shaded) stable networks exist showing amplification properties, and in region C all networks of 
the given family have a stable signal off-state and show a dampening in the signalling amplitudes. 
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The borders between regions A and B and between B and C are shifted towards higher αβ -
values when n increases, that is, networks with higher number of kinases tend to be more 
unstable. Keeping in mind that biological cells contain several hundreds different types of 
kinases, one may draw the conclusion that real kinase networks must exhibit only a low 
connectivity to avoid autoactivation. 

2    Structure and dynamics of the Wnt pathway 
 
Signalling pathways may display a completely different structure and different dynamics when 
compared with MAPK pathways. This concerns, for example, the Wnt signal transduction 
pathway regulating cell fate in embryonal development. The same pathway plays a crucial role in 
the formation of cancer by controlling the concentration of β -catenin [8, 9]. The main 
components of the Wnt signalling pathway are the frizzled receptor (Frz), the scaffold proteins 
Axin and adenomatous polyposis coli (APC), the glycogen synthase 3 kinase (GSK3), the protein 
Dishevelled (Dsh), the phosphatase PP2A, as well as the transcription factors β -catenin and 
TCF. The pathway controls the concentration of β -catenin via assembly and disassembly of a 
destruction complex consisting of Axin, GSK3, APC, and PP2A. In the absence of the Wnt signal 
β -catenin binds to this complex, and becomes, after phosphorylation, a substrate for 
ubiquitination leading to its destruction by proteasomes. In this way the concentration of newly 
synthesized β -catenin is kept low. In the presence of the Wnt signal the Dsh protein is activated, 
resulting in an inhibition of GSK3 and in turn in a reduction of β -catenin phosphorylation and 
degradation. The build-up of β -catenin in the presence of a Wnt signal leads to transcription of 
specific genes. Recently, a first mathematical model of the Wnt-signal transduction pathway has 
been developed [10, 11]. 
 
The mathematical model of the Wnt pathway is based on the reaction scheme shown in Fig. 3. 
The core of this signalling network is the destruction complex to which unphosphorylated β -
catenin binds (reaction 8). After phosphorylation (reaction 9) β -catenin is released from this 
complex (reaction 10) and degraded by proteasomes (reaction 11). GSK3 also phosphorylates the 
two scaffold proteins Axin and APC (reaction 4). The latter process is counteracted by PP2A 
(reaction 5). The destruction complex is formed by binding of Axin to APC (reaction 7) and 
subsequent binding of GSK (reaction 6). Dsh is activated upon stimulation of the frizzled 
receptor by Wnt (reaction 1). Reaction 2 denotes inactivation of Dishevelled. Inactivation of 
GSK3 is described by a release of GSK3 from the destruction complex (reaction 3). Reaction 14 
and 15 denote the synthesis and degradation of Axin, respectively. Newly synthesized β -catenin 
(reaction 12) is not only degraded after binding to the destruction complex but also via non-Axin 
dependent proteolysis (reaction 13). In addition, the model takes into account complex formation 
of β -catenin with TCF (reaction 16). 
 
The model consists of a set of differential equations governing the time dependent changes of the 
concentrations of proteins, either in their free form or as protein complexes, see [9, 10]. First, it 
has been used to define an unstimulated reference state in the absence of the Wnt signal. It is a 
stationary state where Dsh is inactive and does not affect the degradation complex. β -catenin 
concentration is kept low by continuous phosphorylation and degradation. Using the reference 
state as a starting point, other steady states can be calculated when the pathway is permanently 
stimulated. 
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Fig.3 Reaction scheme of the Wnt-pathway model. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.4 Time course of β -catenin and Axin concentrations 
resulting from a transient Wnt stimulation. The various 
curves differ in the turnover rate of Axin (see text). 

 
In addition to steady states the systems equations allow to determine time dependent states. For 
example, to test, whether the mathematical model may represent correctly the dynamical 
properties of the Wnt pathway, it was used to simulate experimental data for the time courses for 
β -catenin degradation under a variety of in vitro conditions [9]. Of particular interest for in vivo 
conditions are transient stimulations of the receptor. Fig. 4 shows the time dependent behaviour 
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of the total concentration of β -catenin and the total concentration of Axin upon transient 
stimulation by Wnt. The concentration of β -catenin increases temporarily and then returns to its 
initial value. In contrast, the concentration of Axin is temporarily downregulated. 
Curve a for β -catenin and curve a' for Axin were calculated by using the reference set of para-
meter values given in [9]. The other curves were obtained by changing turnover rates of Axin. It 
is seen that the rate of Axin turnover sharply affects the dynamics of the response of Wnt 
signalling. The curves b and b' and the curves c and c' are obtained for the case where both the 
synthesis rate and the degradation rate constant of Axin are increased by a factor 5 and decreased 
by a factor 5, respectivley. Interestingly, an increase in th turnover rate of Axin leads to higher 
amplitudes and shorter durations of the β -catenin signal. This effects can be explained by the 
fast degradation of Axin after its Dsh mediated release from the destruction complex [9,10]. 
 
Experimental analysis of this pathway revealed that the concentration of Axin is extremely low 
[9]. This very low concentration of a scaffold protein may indicate a very general and important 
design feature in the modularity of signalling pathways. Axin is a critical node point for the 
control of β -catenin levels through the regulation of β -catenin but it also interacts with 
components that are shared with many other essential systems. As the binding of these 
components such as GSK3 fluctuate due to Wnt signals, other components important in other 
pathways would also have to fluctuate. Yet, because, the concentration of Axin is so low there 
will be no appreciable changes in the overall levels of GSK3, Dsh, or APC. Hence, the very low 
Axin concentration isolates the Wnt-pathway from perturbing other systems, a simple mechanism 
to achieve modularity. One may conclude that quantitative and kinetic data may be important in 
detecting moduls. Inspection of circuit diagrams of signal transduction may, therefore, be not 
enough to identify modules in signalling networks. 
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Genome-wide prediction and analysis of transcription factor
repertoires

Sarah A. Teichmann1

1 MRC Laboratory of Molecular Biology, Cambridge, UK.

Abstract

Regulation of gene expression influences almost all biological processes in an organism; sequence-
specific DNA-binding transcription factors are critical to this control. These transcription fac-
tors are involved in complex circuits of regulation between transcription factors and target genes
(Babu et al., 2004). However, for most genomes, the repertoire of transcription factors is only
partially known. Hitherto transcription factor annotation has been largely based on genome anno-
tation pipelines that use pairwise sequence comparisons, which detect only those factors similar
to known genes, or on functional classification schemes that amalgamate many types of proteins
into the category of ’transcription factor’. To fill this void, we have developed a novel transcription
factor identification method, providing genome-wide transcription factor predictions for organisms
from across the tree of life, available at www.transcriptionfactor.org (Kummerfeld and Teichmann,
2006).

We applied this procedure to several multi-cellular eukaryotes, including the human, mouse
and insect genomes. In mouse, we used a comprehensive set of full-length cDNAs as well as
microarray expression data to study regulation of the transcription factor repertoire of this organism
through splicing and regulatory control. We find that transcription factor proteins preferentially
undergo alternative splicing and that this affects the resulting proteins by altering the number and
nature of DNA binding domains, a change that is likely to have a direct impact on the regulatory
functionality. Through analysis of distinctive expression patterns from mouse microarray data, we
identify sets of transcription factors that are ubiquitously expressed in mouse, and sets that are
present in groups of related tissues. The 99 ubiquitously expressed mouse transcription factors
include well-characterized proteins as well as hypothetical proteins. We have further investigated
the role of about a dozen of these ubiquitous transcription factors in embryonic development using
in situ hybridization to identify regional expression patterns.

The wealth of data and the experimental tractability of mouse makes it an excellent model or-
ganism, but the human genome remains of central interest. Starting from the repertoire of human
transcription factors, we have traced the phylogenetic conservation of these proteins across the
spectrum of eukaryote genomes. This allows us to identify the transcription factors that are spe-
cific to human and chimpanzee only, specific to mammals, vertebrates, metazoa, and finally, those
that are common to all multi-cellular and uni- cellular eukaryotes. We will integrate the conser-
vation patterns with microarray expression data and functional annotation of the human genes in
order to investigate the origins of the phylogenetic distributions of transcription factors.

The invertebrate model organism Drosophila melanogaster has been used to the study of de-
velopment and differentiation for decades. Transcription factor regulation plays an important role
in both processes. Therefore, we aimed to accurately identify the repertoire of sequence-specific
DNA-binding transcription factors (DBTFs) in twelve closely related fly species. Our approach
was to first review the literature on D. melanogaster TFs to extract those that bind DNA in a
sequence specific manner. Then we identified previously uncharacterized DBTFs using DNA-
binding domain predictions, as described in the DBD database. This study was complemented by
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a phylogenetic analysis of the evolutionary conservation of individual DBTFs across invertebrates,
and of transcription factor families. In order to characterize the D. melanogaster DBTF reper-
toire in terms of spatio-temporal expression during development, we computationally integrated
gene expression information from several sources using an anatomical ontology. We now aim to
link the transcription factors expressed during development of particular tissues to their cognate
DNA-binding sites, and thus build up networks of transcriptional regulatory interactions in tissue
development. We are pursuing this by computationally predicting regulatory motifs from our inte-
grated expression data set, as well as testing these by DNA-affinity chromatography followed by
mass spectroscopic identification of the bound proteins.
Through these surveys of the phylogenetic conservation and dynamic expression of transcription
factor repertoires we hope to gain insight into the role of gene expression in the evolution of or-
ganismal complexity.
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EvolOMICS: Reconstructing the evolution of biological entities using
comparative OMICS, from molecules to networks.

Erich Bornberg-Bauer1
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Abstract

While evolutionary research so far has mostly focused on the understanding of how single molecules
evolved, the availability of large amounts of diverse OMICS data allows us to get a glimpse on the
evolutionary history of biological entities.
We use a multitude of data from genomics, proteomics and trancriptomics to reconstruct the ences-
try and the evolution of networks and pathways. For example, we have investigated the domain
wise evolution of several families of eukaryotic transcription factors (bHLH, bZIP, NR and MIKC-
type MADS) and the associated emergence of theri interaction networks. This enables us to deis-
cern principles of processes whic are driven by random evolutionary events from those which are
clearly adaptive in response to ecological changes.
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Metabolic Control Analysis (MCA) has been developed to describe quantitatively the 
distribution of control of fluxes and metabolite concentrations among the enzymes of the 
system under a defined steady-state (As a review see Fell, D. Understanding the control of 
Metabolism,Portland Press, London; 1997 and Cascante et al. Metabolic Control Analysis in 
Drug Discovery and Disease, Nat. Biotechnol. 20, 243-249; 2002). Recently the theory has 
been extended to include pathways with high enzyme concentrations and moiety conservation 
and metabolic channelling. One of the most important conclusions emerged from MCA has 
been to demonstrate that in some cases a democracy exist concerning the control of the flux by 
the enzymes instead of a single rate limiting step.  

 
The most important magnitudes defined in MCA are the flux control coefficients. They 

have been defined to quantify how the flux change when the enzyme concentration (or enzyme 
activity) change. A high control coefficient indicates that the flux of the system is high 
sensitive to changes in the concentration of this enzyme.  

 
To illustrate how control coefficients are defined we will use a simple two steps 

exemplary pathway: 

 
Where So and P are respectively the initial substrate and final product and S the 

intermediary metabolite. E1 and E2 are the enzymes that catalyze the two metabolic reactions 
respectively, v1 and v2 the corresponding local reaction rates and J is the steady-state pathway 
flux. 

 
Flux Control Coefficients for enzyme 1 and 2   are defined as the fractional change in 

steady state flux produced by a fractional change in an enzyme concentration (or enzyme 
activity) and can be expressed as: 
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Graphically a flux control  can be visualized as the slope of the tangent to the curve of ln J 
against ln E. In particular for enzyme 1: 
 

 
Analogously control coefficients of intermediate metabolite concentrations with regard 

the enzymes have been defined to quantify the variation of metabolite levels with regard the 
enzymes.  

 
These coefficients can be very useful in biotechnology and biomedicine to 

quantitatively predict changes in flux and concentration of metabolites after a genetic 
manipulation of the concentration of any enzyme of the pathway. 

 
In general, for any systemic variables (Y), control coefficients can be defined with 

respect to any parameter (α) as the fractional change in the system variable (Y) over the 
fractional change in the parameter (α):  
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∂
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Several methods can be used to experimentally measure control coefficients. For 

instance, experiments can be performed in which active enzyme concentrations are changed, 
using either an inhibitor that specifically decrease the activity of a given enzyme or 
overexpressing an enzyme (i.e. transfecting cells with the appropriate adenovirus), and the 
corresponding flux at each different active enzyme concentration are measured. From this data 
control coefficients can be graphically estimated from the slope of the log-log plot of the fluxes 
versus the corresponding enzyme concentrations. 

 
The values of flux control coefficients range between 0 and 1 for the enzymes in a linear 

chain metabolic pathway.  
 
Moreover some simple relationships apply for flux and concentration control coef-

ficients named summation theorems: 
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The flux summation theorem, in the case of a linear chain where all the flux control 
coefficients are positive, permit us to conclude that if one enzyme have a control coefficient 
close to 1 all the other enzymes are practically not controlling the flux of the metabolic chain. 
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The concentration summation theorem, for this simple two step pathway, permit us to 
conclude that if one enzyme has a positive control coefficient on the intermediary substrate the 
other enzyme exert exactly the same control but in the opposite direction. 

 

0
21
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E

S

E    (Concentration summation theorem) 
 

In rat hepatocytes, for instance, flux control coefficient of glucokinase  on hepatic 
glycogen síntesis  have been measured in rat hepatocytes using adenovirus-mediated enzyme 
overexpression and a valu close to 1 has been obtained (Agius et al., 1996) indicating a true 
rate-limiting step.  A control coefficient with respect to one enzyme close to 0 indicates that the 
flux has a very low sensitive to changes in the concentration of this enzyme. An example, is the 
control coefficient of triose phosphate isomerase in erythrocytes which have been reported to 
be lower than 0.1 (Schuster and Holzhutter, 1995, Eur. J. Biochem. 229: 403-418). The fact 
that this control coefficient is so low explain that individuals deficient in more than 90% of the 
activity of this enzyme not present clinical symptoms whereas  a 50% decrease of glucokinase 
activity (control coefficient close to 1) can result in clinical symptoms. 

 
 The complete estimation of control coefficients allows us to predict the response of the 

metabolic pathway to perturbations in any of its component enzymes. 
 

The distribution of the control among the different enzymes in a metabolic pathway is a 
consequence of the structure of the pathway and the kinetic properties of each component 
enzyme. In MCA the influences of metabolite concentrations on the individual enzyme 
activities are measured in terms of the so-called elasticity coefficients, defined as the fractional 
change in rate of the isolated enzyme (vi) for a fractional change in a substrate (S), with all 
other effectors of the enzyme held constant at the value they have in the metabolic pathway: 

 
 
 
 
 
It should be noted that elasticities are positive for substrates and metabolites (activators) 

that stimulate the rate of a reaction and negative for products or inhibitors that decrease the 
reaction rate. 

 
The relationships between elasticity coefficients (enzyme kinetic properties) and control 

coefficients (overall metabolic pathway properties) have been expressed in terms of the so-
called connectivity theorems. In particular, for a simple two steps metabolic pathway where S 
is the intermediate metabolite, the connectivity theorem is written as: 
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Rearranging this equation we can see that there is a tendency of large elasticities to be 

associated with small flux control coefficients, and vice versa: 
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Control coefficient distribution among the different steps of a pathway give us useful 

initial directions for manipulation of a metabolic network genetically or with drugs to achieve 
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the desired values of a flux or any other systemic variable. In spite that application of MCA to 
biotechnology is yet a young field some promising examples have already been described with 
biotechnological interest. One of the areas of application of metabolic control analysis in 
biomedicine is the rational design of combined drug therapy, that is the identification 
particularly suitable sites for the manipulation of the metabolism with drugs (As a review see 
Cascante et al. 2002, Nature Biotechnology, 20, 243-249). Thus, even every enzyme in a 
sequence is essential for the metabolic process to work, the effects on metabolism are likely to 
be obtained with lower concentration of drug if an enzyme with high flux control coefficient is 
being inhibited, rather than one with a low coefficient. Recently, we successfully applied this 
strategy to inhibit tumor proliferation through the inhibition of ribose phosphate synthesis, an 
essential pathway in cancer cell. Thus, specific inhibitors (such as dehydroepiandrosterone-
sulfate and oxythiamine) of these key enzymes with high flux control coefficients in the 
pentose cycle can be expected to decrease nucleic acid synthesis and cell proliferation of 
tumour cells. We reported a maximum inhibitory effect of 80% in vivo in mice hosting 
Ehrlich's ascites tumour cells and a 60% maximum inhibitory effect in vitro in cultured Mia 
pancreatic adenocarcinoma cells when both inhibitors were administered together (See 
Cascante et al.2000, Nutrition and Cancer, 36, 150-154).  
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Multi-Agent Modelling of Nuclear Structures

G. Beslon1
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Abstract

Although the eukaryotic nucleus is a major actor of the cellular process, its own dynamic and
structure are still barely known. However, during the last five years, lot’s of studies have shown
that, in the nucleus, structure and dynamic are intimately coupled and that it is not possible to
understand the former without a complete understanding of the later. Yet, to understand how
a complex dynamic leads to such an organized system, we need specific modelling tools. The
”Multi-Agent Systems” (MAS) approach will be discussed as an efficient tool to model nuclear
dynamic. However, the use of MAS requires a precise methodology to choose the best modelling
level (i.e. the description level) depending on the question one wants to address (i.e. depending
on the observation level). We will present 3DSPI, a modelling software under development, based
on molecular-agents. Our aim is to use 3DSPI to study the emergence of organized multi-protein
structures.
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Biomedical Signals: Applications in Cardiology and Epileptology
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Abstract

Many models of the cardiovascular system (e.g. cardiac electrical activity, mechanical activity,
vascular system, autonomic nervous system,...) have been proposed during the last decades at
different levels of detail (cell, tissue, organ,...) and using different formalisms (continuous, dis-
crete, ...). Research is now focusing on a multiscale integration of these different models, in order
to study more complex physiopathological phenomena and to derive new knowledge that can be
useful in clinical practice.

This contribution is focused on the application of multiscale modelling methods to the inter-
pretation of clinical observations and, in particular, of biomedical signals. In the first part, dif-
ferent modelling approaches of the cardiovascular system,from the cellular to the system level,
are presented and their limitations for a direct clinical application are pointed out. The second
part presents our current efforts towards the application of these physiological models in a clinical
environment. They concern two major research subjects: i) the development of a new multiformal-
ism modelling framework, which is a necessary step towards amultiresolution representation of
physiological models, and ii) the proposition of a model-based interpretation method combining
model-based reasoning and evolutionary computing. Finally, the application of these methods to
different clinical problems, such as the interpretation ofcardiac beats, the analysis of the auto-
nomic regulation of heart rate and the characterization of electroencephalographic signals, will be
presented.

1 Introduction

A model can be defined as a convenient representation of the knowledge about the structure
and function of a given system [23]. This representation canbe formalized in several ways: “men-
tal” or “heuristic”, qualitative, graphic or mathematicalmodels. Modelling and simulation have
proven useful to analyze a set of observations obtained froma physical/physiological system; to
understand the underlying mechanisms governing certain phenomena, or to predict future states
of the system in order to prepare an appropriate action. Additionally, during the last decade, an
important effort has been devoted to take advantage of the knowledge embedded into these mod-
els, to interpret the state of an observed physical/physiological system. This approach is known
as model-based diagnosis (MBD) or model-based interpretation (MBI) [20]. MBI presents several
advantages over previously proposed methods for the automatic interpretation of observed data,
which have been classically developed as rule-based systems:

• Models are easier to maintain than a set of rules,

• The knowledge is represented in a compact manner,

• Models can generalize (i.e. interpretation of “new” cases),

• Time is represented intrinsically, avoiding a specific processing of temporal events,

• Models can provide detailed explanations,
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• The same model can be used for other purposes, such as simulation, education, . . .

However, new problems arise with the MBI approach: the development of an appropriate model
can be a difficult task and the interpretation process in model-based systems is more complex than
in their rule-based counterparts (mainly because more complex aspects are taken into account).
This contribution is focused on the application of multiformalism and multiscale modelling meth-
ods to the interpretation of clinical observations and, in particular, of biomedical signals. Two key
aspects of model-based interpretation will be presented:

• The design and development of an appropriate physiologicalmodel,

• The adaptation of the model parameters to reproduce and interpret clinical observations.

The discussion will be mainly focused on the model-based interpretation of cardiovascular
signals, but the proposed approach will also be applied to the interpretation of electroencephalo-
graphic data.

2 Design and development of an appropriate physiological model for MBI

Physiological modelling of the cardiovascular system has been a subject of important research
during last four decades. Since the pioneer works of Noble and Beeler and Reuter [18, 3], a number
of electrophysiological models have been proposed for the main types of cardiac myocytes [1, 12].
These cellular models can be coupled in the form of 1D, 2D or 3Dobjects to represent a given
part of the cardiac tissue, or to reproduce the whole cardiacanatomy[8, 12]. Other modelling
approaches have been proposed to represent the mechanical activity of the heart, the vascular
network or the autonomic modulation of the cardiovascular system. A number of projects are
currently focused on the integration of these different models, in order to study more complex
physiopathological phenomena and to derive new knowledge that can be useful in clinical practice.
However, the definition and the simulation of such models become increasingly difficult, due in
part to the complexity of the systems studied. Indeed, the underlying physiopathological processes
imply:

• a wide diversity of spatial and temporal scales: from the gene to the organ levels and from
ionic currents to the whole life;

• a high level of interdependence: for example, a given physiological function at the tissue
level depends on the nature of cells constituting the tissue, and these cells are regulated by
complex control systems such as the autonomic nervous system;

• a diversity of physical and chemical processes: i.e. regulation, growth, metabolism...

• a variety of energy domains: hydraulics, mechanics, electrical.

• an important amount of non-linear components.

Current research in “integrative modelling” seeks to cope with this complexity by means of
a multiscale modelling approach [2]. This approach takes into account, in the same model, dif-
ferent physiological phenomena occurring on various scales, by using a common representation
defined comprehensively at the most detailed level. Multiscale models of the cardiac function
have been proposed in the literature by considering the interactions between the sub-cellular level,
the electrical activity and the mechanical activity of the cells [4, 19]. These models of the global
cardiac function have shown to be useful in a number of applications. However, their comprehen-
sive definition makes them difficult to use in an MBI approach,because they require significant
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data-processing resources. Moreover, none of the existingmultiscale models allows a complete
consideration of the whole cardiovascular system and, choice and compromise have to be done,
depending on the expected application.

McCulloch and Huber [16] proposed a graph representing the integrative modelling on physi-
ology, based on three different axes (Figure 1): i) spatial integration, ii) the integration of different
sources and physiological systems (i.e. electrical activity, mechanical activity, regulation, . . . )
and iii) the integration of physical/physiological knowledge (one end corresponds to “superficial”
–observational– models, which are limited to reproducing the observations, and the other end cor-
responds to the models integrating the most detailed physical knowledge).

Population

Gene

Regulation
of cardiac
activity

Growth

Metabolism
Electrical
activity

Mechanical
activity

TF BG

CA

SDE

MM
PN

ODE

PDE

AR

Experimental
data

Physical
principles

Figure 1:3D space constituted by the three principal axes of integrative modelling proposed by McCulloch
et al. The vertical axis corresponds to spatial integration, the diagonal axis represents the integration of
knowledge and the horizontal axis represents the various physiological phenomena. We have projected on
this space various formalisms used in the modelling of the electrical and mechanical cardiac activities and
the regulation of the cardiovascular activity by the autonomic nervous system. The formalisms shown in
the figure are:AR – Autoregresive models,TF – Transfer function,BG – Bond Graph,CA – Cellular
Automata,SDE – Stochastic Differential equation,MM – Markov Models,PN – Petri nets,ODE –
Ordinary Differential Equations andPDE – Partial differential equations.
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We have completed this representation by projecting in thisspace, a number of different for-
malisms used in the literature for modelling the cardiovascular system. An analysis of this graph
shows that there is a relationship between the formalisms used and the position of the models in
this space. For example, the regulation of the cardiovascular activity by the ANS is considered
on the “systems” level and is often modeled, based on experimental data, by a set of continuous
transfer functions (TF).

As it will be shown in the presentation, the electrical activity of the heart can be modeled at
different levels of detail, going from the cell to the whole organ, and is usually represented by
means of continuous models (i.e. based on Ordinary Differential Equations) or by discrete models,
(i.e. a set of coupled automata). However, both views still suffer from difficulties that reduce their
clinical application: the former approach requires heavy computational resources while the latter
is not able to reproduce certain pathologies defined at different scales.

To get round the practical limitations of existing multiscale models, multi-formalism modelling
appears as a way to ease the integration of these different models together [21, 5]. In this context,
one can easily think that a way to take advantage from the benefits of each approach into a model-
based interpretation system would be to selectively define different regions of the modeled organ at
different scale levels, depending on its physiological or pathological state. Such a multiresolution
consideration is also legitimated by the practical clinical diagnosis performed by the physician,
which aims at refining progressively the investigated region, going from a global consideration
of healthy parts to a precise analysis of pathological sources. In this contribution, an original
methodology allowing to combine different types of description formalisms will be presented [7,
5].

3 Adapting the model parameters to reproduce and interpret clinical observations

Once the model has been developed and validated, it can be used to interpret the state of the real
system, by finding the set of the model parameters that reproduces at best the observed phenomena.
This identification problem can be stated as follows: letXO be a vector of observations from the
studied system andXS = M(P ) be the output of the developed modelM , for parameter vector
P = [p0, ..., pl−1], Parameter identification can be seen as an optimization problem, consisting of
finding the optimal parameter vectorP ∗ that minimizes an error function

ǫ(XO, XS) = ǫ(XO, M(P ))

between the synthesized and the observed activities. The first problem to solve is thus to define
an appropriate error function (or distance) between the observations and the output of the model.
Different algorithms can then be used to identify the model parameters. The choice of a particular
method depends strongly on the properties of the model, the error function and the observations.
Particularly, some questions have to be addressed:

• Is the model linear or non-linear?

• How many parameters have to be adapted?

• Is the error function differentiable with respect to its parameters?

• Is there a unique bijective relation between the model parameters and a given model output
(i.e. is this an ill-posed problem)?

• Is the set of observations (i.e. the system) stationary or non-stationary?
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If we are considering a mathematical model for which the error function is differentiable with
respect to each parameter (usually the case for observational models), information about the deriva-
tive can be exploited in order to find a solution. In the case oflinear, static models, classical linear
regression can be used [15]. For non-linear systems, the family of gradient-descent methods [14]
can be used for parameter identification.

When the error function is not differentiable with respect to the model parameters, the search of
solutions has to be based solely on the evaluation of the error function. In these cases, it becomes
difficult to obtain information on the appropriate direction to follow, in the error space, in order
to minimize the error (i.e. the information provided by the estimated gradient). Two types of
optimization methods are adapted to this problem: exhaustive search and combinatory or stochastic
search methods. The main drawback of exhaustive search is their computational cost. Stochastic
search methods, like simulated annealing [13] and evolutionary algorithms (for which Genetic
algorithms are a particular case) [11, 17], represent an interesting solution from the computational
standpoint, providing, also, some interesting convergence properties towards the global-minima.
These methods are robust and adapted to complex, non-differentiable models.

A model-based interpretation approach using evolutionaryalgorithms has been proposed in our
laboratory and applied to the interpretation of different biological signals [9, 10, 22, 6]. Examples
of the application of this method to the interpretation of cardiac beats, the analysis of the auto-
nomic regulation of heart rate and the characterization of electroencephalographic signals will be
presented.
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Abstract

Transcriptional regulation involves structural and dynamic events at many different time and space
scales, the latter ranging from local DNA sequence to entire chromosomes. Multi-scale approaches
inspired from theoretical physics have been developed in a bottom-up way to integrate parameters
and mechanisms at a given scale into effective, and hopefully reduced, descriptions at higher scales.
In chromosomes, however, the structures and dynamics at a given scale also exert a strong influ-
ence on smaller-scale ingredients, quantitatively controlling and even qualitatively modifying their
properties. Self-consistent or iterative ‘up-and-down’ approaches are to be introduced to account
for the strong interconnections between the levels and ensuing circular causal schemes, leading
to an endless and prohibitive increase of complexity of the descriptions and models. Adopting
another approach, we propose to devise models taking the biological function as a starting point
and continued guideline; decomposition is achieved by dissecting its logic and implementation
into basic processes. These elementary processes involve features at different scales and are al-
ready integrated in their formulation. More generally, such a decomposition results in ‘self-scaled’
functional modules, independent of the arbitrary description or observation scale. Self-scaling
provides the relevant complexity reduction conjunct with the functional descriptive power in mod-
elling complex living systems at multiple scales.

1 From DNA to chromosome: the central role of chromatin

It is now acknowledged that in eukaryotic cells, DNA is rarely present as a bare molecule but rather
as a part of a nucleo-protein complex: the chromatin [34]. Its basic motif is made of the wrapping
of 146 base pairs (bp) around an octamer of histone proteins, regularly spaced all along DNA.
This motif is named a nucleosome and the DNA stretch connecting two adjacent nucleosomes,
of length varying according to the species and cell type (roughly equal to a few tens of bp), is
called a linker. This first level of genomic organization is observed in all eukaryote species; it
is moreover highly conserved, hinting at a key role of nucleosomes in eukaryote mechanisms for
implementing gene expression and cell differentiation. Other proteins are involved in chromatin,
as well as ions. The assembly is further organized at different scales, up to the entire chromosome
(see Figure 1). Among these higher levels of organization a central one, that might be observed in
vivo and purified or reconstituted in vitro, is the chromatin fiber, also known as the 30 nm fiber due
to its roughly constant diameter of 30 nm. Our investigations on transcriptional regulation (e.g.
[5], [19] [13], [6] [17]) and the discussion presented here about the relevant modelling approaches
in this context, focus on this chromatin fiber. We argue that it is the central functional articulation
between on the one hand, cell metabolism and signaling pathways and on the other hand, gene
expression and nuclear regulatory networks [6] [19].
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2 Multi-scale view of the chromatin fiber

2.1 A multi-scale organization

A major breakthrough has been provided by both experimental and theoretical investigations fo-
cusing on the multi-scale organization of the chromosomes and its mechanistic consequences, in
particular for transcription and its control. As illustrated in Figure 1 or similar ones encountered
in textbooks [34], structures at different scales superimpose in chromosomes: the DNA molecule,
the nucleosomes and associated 10 nm beads-on-string fiber, the 30 nm chromatin fiber, chromatin
loops and other (still debated [35]) higher-level structures, up to the entire chromosome.

The simplest multi-scale approach is to dissect the chromosome into well-identified elementary
structures (DNA, nucleosomes, chromatin fiber) at well-separated scales (1 nm, 10 nm and 30 nm
respectively) and to thoroughly investigate the properties of these elements in isolation [31]. But
these elements at different scales are actually not isolated, and their properties reflect directly
(though in an integrated way) in the higher-level features. In the spirit of a famous paper by
P.W. Anderson entitled ‘More is different’ and describing the hierarchy of qualitatively different
models (or even theories) that might be involved to investigate one and the same physical object [1],
theoretical bottom-up approaches have been developed to derive effective coarse-grained models
from more microscopic and more detailed ones. This point is illustrated below in § 2.2 and § 2.3
with studies we have conducted to determine mechanical and topological features of the chromatin
fiber from the knowledge of DNA properties.

A first benefit of such a hierarchical bottom-up model is to provide a frame to interpret, ex-
ploit and integrate experimental or simulation data obtained at different scales. Let us quote as
an illustrative sample some experimental facts and studies that will be discussed further in the
present paper: epigenetic information about DNA methylation and histone-tail post-translational
modifications [23], chromatin immuno-precipitation, nucleosome polymorphism [28], DNA [30]
and chromatin fiber [12] [2] micro-manipulations, or numerical modelling [21].

But we shall emphasize in § 3 a biological specificity of this multi-scale organization, associ-
ated with its evolutionary history. In this regard, ‘Life is different’ and the analysis of Anderson
cannot be straightforwardly transposed from physics to biology [24]. A main difference is the
presence, in particular within chromosomes, of specific regulatory schemes, according which hy-
perstructures at the largest scales influences, controls the lowest scales.

2.2 Structural and kinematic effective models

As mentioned above, we here detail two successful implementations of a bottom-up multi-scale
approach, namely the determination of the elastic properties and topological properties of the chro-
matin fiber, knowing its local architecture and assembly rules, as well as the elastic and topological
properties of the underlying DNA stretch.

Elastic properties. Both on experimental (micro-manipulation of a single chromatin fiber [2]) and
theoretical grounds [27] [19], the elastic properties of the chromatin fiber can be described within
the formalism of classical mechanics. Namely, the fiber is seen simply as an elastic rod endowed
with bend, twist and stretch elastic degrees of freedom. The relation between the stresses (force
and torque) applied at the ends of the rod and the ensuing elastic strains in the rod is restricted to its
dominant linear contribution, that defines four elastic coefficients [9]: the bend persistence length
A, the twist persistence length C, the stretch modulus γ and the twist-stretch coupling factor g.
Thermal fluctuations of each molecular degree of freedom (average energy kT/2) are accounted
for in an effective and integrated way (the elastic coefficients will depend on the temperature T )
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but the associated stochasticity is no longer described explicitly: at the fiber scale (30 nm), a
deterministic model like those developed for macroscopic springs makes sense.

Also DNA can be described as an elastic rod and its elastic coefficients have been both mea-
sured experimentally by direct micro-manipulations of a single DNA molecule [30] and computed
theoretically [11]. The stretch modulus value larger than 1000 pN shows that the stretch degree
of freedom is in fact quenched in physiological conditions (the typical thermal energy kT corre-
sponds to the work performed by a force of roughly 4 pN over a distance of 1 nm), hence it is
enough to consider the bend and twist persistence lengths, respectively A ≈ 50 nm and C ≈ 75
nm. Note that such a description is in fact averaged over several base pairs and does not explicitly
take into account sequence effects, which amounts to consider an homogeneous DNA molecule
with no sequence variability.

Similarly, we assume an homogeneous local architecture for the fiber, characterized within a
two-angle model [36] by the linker length l and the entry-exit angle φ (angle between the two
linkers connecting a nucleosome to its neighbors along DNA). It is then possible to determine A,
C, γ and g as a function of l, φ, A and C. The resulting expression evidences a strong sensitivity of
the fiber elasticity with respect to these four constitutive parameters, that can be modified both in
vivo and in vitro by changes in the ionic concentration, involvement of H1 or non histone proteins,
nucleosome repositioning or remodelling, histone-tail post-translational modifications [8] [9]. The
chromatin fiber thus appears as a tunable spring and its elastic properties cannot be ignored in its
in vivo behavior and regulatory functions. Improvements of this minimal model can be considered,
accounting for instance for the stacking interactions between the nucleosomes, without modifying
the conclusion about the sensitivity of the fiber elastic properties.

Topological properties. The behavior of the fiber as an elastic rod is accompanied with topologi-
cal properties. These properties are mainly encapsulated in the existence of a topological invariant
when considering a fiber stretch with fixed ends (anchored on some substrate, e.g. a MAR region
or boundaries, that has the same effect as connecting the ends and forming a closed loop) [20]. This
topological invariant Lfiber

k , named the linking number, corresponds to the number of turns im-
posed on the fiber (starting from a relaxed state with free ends) before anchoring the ends or closing
the loop by gluing these ends one to the other. A remarkable mathematical result relates this quan-
tity to the twist T fiber

w of the fiber (number of turns onto itself, around its own axis) and its writhe
W fiber

r (a quantity related to its path in the three-dimensional space): Lfiber
k = T fiber

w + W fiber
r .

The balance between T fiber
w and W fiber

r varies with the three-dimensional conformation of the
fiber, passing from W fiber

r = 0 and Lfiber
k = T fiber

w in a straight fiber to a torsionally relaxed
plectonemic conformation with T fiber

w = 0 and Lfiber
k = W fiber

r .
Such an inter-conversion presumably occurs during condensation and decondensation: it seems

indeed possible to trigger decondensation at Lfiber
k = const. by modifying the twist of the fiber

through a change in the nucleosome shape [21]. Such a theoretical scenario is made quantitative
by the analysis of the topological changes experienced by the underlying DNA molecule. It is
indeed to be emphasized that topological properties and invariants can be defined both at the DNA
and fiber levels, within the parallel elastic-rod modellings of DNA and the fiber encountered in
describing their elastic properties. In particular, the same object is associated with two different
notions of linking number: Lfiber

k and LDNA
k , according to the considered scale, and one can show

that Lfiber
k = LDNA

k + const. [3].
These two examples illustrate how the same issue for the same object can be tackled within

different models according to the scale of description (also termed the averaging scale since it
puts a limit between the details explicitly described and those, of smaller scale, accounted for in an
effective average fashion). Considering one rather than the other model depends on the response
properties to be analyzed and the nature of the stimuli exerted on the objects, i.e. whether the
external stresses and boundary conditions are applied at the DNA or fiber level.
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Figure 1: Hierarchical organization from DNA
to chromosome, identifying well-defined structures
at separated scales: DNA double-helix, nucleo-
somes and beads-on-string fiber, 30 nm chromatin
fiber, chromatin loops, up to the entire chromo-
some

2.3 Chromatin dynamics and stochasticity

In the previous sub-section, we have described two examples of a non trivial multi-scale modeling, focusing on the con-
nections between structural or kinematic models at different scales (respectively DNA and chromatin fiber scales) and
working out the relation between their effective parameters. Similar bottom-up connections can be derived for chro-
matin dynamics. The cross-level couplings result in remarkable emergent properties (i.e. absent when the elements
where they occur are considered in isolation). For instance, coordinated enzymatic histone-tail post-translational mod-
ifications generate alternating conformational changes at the chromatin fiber level [4] [5]. The associated ‘chromatin
breathing’ involves several nucleosomes and exhibits a far supra-molecular period of a few tens of minutes, evidenc-
ing the increase in the spatial and temporal scales of relevance for observing this emergent phenomenon, although the
basic events occur at molecular scale.

Another bottom-up issue is to determine and describe the level of stochasticity present at the different scales and
its functional consequences. The basic stochasticity originates in thermal fluctuations. In case of independent fluctua-
tions, the resulting behavior at higher scales is dominantly deterministic, since accumulating independent fluctuations
average out according to the law of large numbers. Observing or invoking stochastic events at large scales thus re-
quires strong coupling between the molecular mechanisms, or strong correlations between the successive events, that
generate an anomalous large-scale behavior with non negligible fluctuations [15].

2.4 A complex regulatory scheme

Multi-scale chromosome organization does not lead only to bottom-up relationships: the very complexity of living
systems and biological functions, in particular the chromosomes and transcription, lies in the presence of feedbacks
from upper scales onto elements at smaller scales that have settled in the course of evolution. As an illustration,
let us cite the control exerted by the chromatin fiber superstructure onto the protein-DNA binding events in linker
DNA. Indeed, when a linker is embedded in a condensed chromatin fiber, with stacked nucleosomes acting as fixed
anchoring points, its linking number Llinker

k is conserved. This topological constraint has energetic consequences,
since any strain (e.g. twist or bend) experienced by the linker, in particular the strains generated upon protein binding
(e.g. intercalation [33]) should be compensated so as to preserve Llinker

k = const., at some elastic energy cost. The net
effect is a noticeable modification of the protein-binding energy landscape. This landscape modification is moreover
controlled by any means for tuning the nature of linker anchoring onto the nucleosomes and ensuing tolerance in the
linking number constancy; possible means are changes in the chromatin fiber conformation and compaction state,
histone-tail post-translational modifications, presence of ions or linker histones.

The strong and evolutionary adapted influence of larger scales onto elements at smaller scales within a chro-
mosome led us to propose a notion of generalized allostery [33] [19], referring with this term to conformational
transitions and associated change in activity and function, induced by an effector acting at a remote site and with no
direct physico-chemical link with the activity. We here suggest that the involvement of this specific effector does not
follow from an inescapable physico-chemical law but from a mutual adaptation settled in the course of evolution. In
support and illustration of this generalized notion, DNA and chromatin can exhibit an allosteric behavior insofar as
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2.3 Chromatin dynamics and stochasticity

In the previous sub-section, we have described two examples of a non trivial multi-scale modelling,
focusing on the connections between structural or kinematic models at different scales (respec-
tively DNA and chromatin fiber scales) and working out the relation between their effective pa-
rameters. Similar bottom-up connections can be derived for chromatin dynamics. The cross-level
couplings result in remarkable emergent properties (i.e. absent when the elements where they oc-
cur are considered in isolation). For instance, coordinated enzymatic histone-tail post-translational
modifications generate alternating conformational changes at the chromatin fiber level [4] [5]. The
associated ‘chromatin breathing’ involves several nucleosomes and exhibits a far supra-molecular
period of a few tens of minutes, evidencing the increase in the spatial and temporal scales of rel-
evance for observing this emergent phenomenon, although the basic events occur at molecular
scale.

Another bottom-up issue is to determine and describe the level of stochasticity present at the
different scales and its functional consequences. The basic stochasticity originates in thermal fluc-
tuations. In case of independent fluctuations, the resulting behavior at higher scales is dominantly
deterministic, since accumulating independent fluctuations average out according to the law of
large numbers. Observing or invoking stochastic events at large scales thus requires strong cou-
pling between the molecular mechanisms, or strong correlations between the successive events,
that generate an anomalous large-scale behavior with non negligible fluctuations [15].

2.4 A complex regulatory scheme

Multi-scale chromosome organization does not lead only to bottom-up relationships: the very
complexity of living systems and biological functions, in particular the chromosomes and tran-
scription, lies in the presence of feedbacks from upper scales onto elements at smaller scales that
have settled in the course of evolution. As an illustration, let us cite the control exerted by the
chromatin fiber superstructure onto the protein-DNA binding events in linker DNA. Indeed, when
a linker is embedded in a condensed chromatin fiber, with stacked nucleosomes acting as fixed
anchoring points, its linking number Llinker

k is conserved. This topological constraint has ener-
getic consequences, since any strain (e.g. twist or bend) experienced by the linker, in particular
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the strains generated upon protein binding (e.g. intercalation [33]) should be compensated so as to
preserve Llinker

k = const., at some elastic energy cost. The net effect is a noticeable modification of
the protein-binding energy landscape. This landscape modification is moreover controlled by any
means for tuning the nature of linker anchoring onto the nucleosomes and ensuing tolerance in the
linking number constancy; possible means are changes in the chromatin fiber conformation and
compaction state, histone-tail post-translational modifications, presence of ions or linker histones.

The strong and evolutionary adapted influence of larger scales onto elements at smaller scales
within a chromosome led us to propose a notion of generalized allostery [33] [19], referring with
this term to conformational transitions and associated change in activity and function, induced by
an effector acting at a remote site and with no direct physico-chemical link with the activity. We
here suggest that the involvement of this specific effector does not follow from an inescapable
physico-chemical law but from a mutual adaptation settled in the course of evolution. In support
and illustration of this generalized notion, DNA and chromatin can exhibit an allosteric behav-
ior insofar as the hyperstructure in which they are embedded (respectively the chromatin fiber or a
chromatin loop) and topological frustration it generates, can induce a bistable behavior in their con-
formation, controlled through modifications of the hyperstructure and the mechanical constraints
it induces at lower levels. For instance, linker DNA can pass from a straight conformation to a
buckled one with different binding affinity towards intercalating proteins [33]: the buckled con-
formation appears as the ‘active’ form of the allosteric linker; the transition to this active form is
triggered by the first DNA-binding event and controlled through the tuning of DNA anchoring onto
the nucleosomes. Our generalized notion includes as a special case the notion of nested allostery
in which a cascade of allosteric behaviors in nested sub-systems is initiated by the effector-binding
event [26]. It also embeds extensions of the original notion of allostery, e.g. the localized allostery
observed in large assemblies and involving only a sub-system delineated by mechanical constraints
[32].

This discussion in fact faces a very general property: the embedding in a superstructure can
modify the very individual potentialities of low-level elements, hence precluding a plain bottom-
up strategy. In a similar spirit, turning to more general interactions and couplings than mechanical
or structural ones, it is a whole gene network that underlies transcriptional regulation, moreover
exerting feedbacks on its own nodes (a node represents here at the same time a gene and the protein
it codes): presumably, some nodes will have different individual properties when embedded in the
whole network. For instance, interactions experienced by a protein within the gene network might
modify its chemical or physical properties, and allow it to establish different interactions than those
observed in vitro, in isolation.

3 A necessary shift of paradigm

3.1 Limits of a multi-scale description

We have seen in the previous section that in order to properly account for the autonomous reg-
ulation and behavior of a biological system, a multi-scale approach should tackle jointly all the
scales, with no way to a priori ignore some microscopic detail [19]. Obviously, any such proper
modelling would rapidly reach high level of complexity, the higher the more faithful and realistic
the model is, hence ultimately intractable [13] [14]. To circumvent this difficulty, we claim that
both integrated modelling and supervised data analysis should parallel the biological functional
logic.

The hierarchy of spatial scales should enter the scene only because these nested scales cor-
respond to our different but all subjective views on the system and to our various experimental
accesses, confined in current practice to a given scale. Data analyses and model predictions have
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to be ultimately bridged with this hierarchical categorization and the integrated model itself should
embed, as special restricted situations, models developed at well-defined scales.

More conceptual objections also arise. In particular, scale-wise description is currently associ-
ated with a step-wise, sequential conception of the processes and their time course, e.g. chromatin
fiber assembly [25] or transcription initiation. Traveling the hierarchy of scales is even logically
correlated with temporal progression along a sequence of events where each event is causally
rooted in the previous one. The above conclusions on biological complexity and associated causal
loops suggest that this view is presumably too naive for biological functions. In the case of chro-
matin fiber assembly, it properly follows our ways of reconstituting a chromatin fiber but misses
essential adaptive dynamics and self-organization occurring in vivo to achieve in one and the same
step various delicate balances between the energetic, steric and topological constraints (reflecting
e.g. in the nucleosome positioning and individual conformation), to control multi-stable pathways,
or to manage with competing chemical reactions or concerted factor recruitment. The sequential
view on chromatin dynamics have to be replaced with an interaction network viewpoint. It appears
necessary to account of the joint dynamic behavior of numerous interconnected elements, for in-
stance DNA sites and their chromatin surrounding, nucleosomes, or cofactors and coregulators [6]
[18]. Hence, not only the spatial and structural models but also the dynamic descriptions should
evolve into more integrated models.

Note finally that in biology, by contrast to physics, there is no ubiquitous relation between time
and space scales, namely the events occurring at the smallest spatial scales are not necessarily the
fastest ones (think for instance to ionic currents across membranes or molecular motor motion).
This remark further evidences that a splitting according the scales has no intrinsic relevance for
biological systems.

3.2 Need of a self-scaled, interconnected, function-dependent modelling

The above-discussed limitations and caveats about multi-scale descriptions lead us to propose a
drastic change in the paradigm underlying chromatin modelling and more generally the modelling
of biological systems, namely a shift from a scale-dependent focus to a function-dependent focus.
A function-based analysis is required to account, through the notion of function, of the embedding
of living systems or sub-systems within an evolutionary history. Speaking of the ‘functions’ of a
biological system (by contrast to the ‘properties’ of a physical system) is a short-cut underlining the
cross-level consistency of all involved mechanisms, following from their co-evolution and resulting
mutual adaptation. Here, living systems meet the artificial ones, with the striking difference that
living systems, following millions of years of trials and selective improvements, achieve in general
an extraordinary efficiency. They possibly involve a different logic than the one at work in man-
made functional and regulatory schemes.

Another motivation to change drastically the descriptive and modelling framework is related
to its required robustness. Indeed, any modelling (and in fact any description) involves subjective
restrictions, approximations, reference points . . . and the only way to justify this arbitrary part of
the modelling is to show the robustness of the predictions, namely that they do not depend on these
subjective choices. In such a prospect, a model based on a multi-scale decomposition is not ro-
bust (except in some specific scale-invariant instances rarely encountered in biology): it explicitly
involves the chosen scales, the details at each scales, the mechanisms considered at a given scale,
and finally the coarse-graining procedures and closure approximations used in relating one scale
to the other. On the contrary, a function-based viewpoint, relying on an objective biological fact,
will be robust, at least qualitatively, with respect to the modelling choices. Quantitative agreement
between predictions and observations might be then obtained with no change in the functioning
principles nor in the logical/causal scheme, only requiring a tuning of the parameter values.
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Another motivation to change drastically the descriptive and modeling framework is related to its required robust-
ness. Indeed, any modeling (and in fact any description) involves subjective restrictions, approximations, reference
points . . . and the only way to justify this arbitrary part of the modeling is to show the robustness of the predictions,
namely that they do not depend on these subjective choices. In such a prospect, a model based on a multi-scale
decomposition is not robust (except in some specific scale-invariant instances rarely encountered in biology): it ex-
plicitly involves the chosen scales, the details at each scales, the mechanisms considered at a given scale, and finally
the coarse-graining procedures and closure approximations used in relating one scale to the other. On the contrary, a
function-based viewpoint, relying on an objective biological fact, will be robust, at least qualitatively, with respect to
the modeling choices. Quantitative agreement between predictions and observations might be then obtained with no
change in the functioning principles nor in the logical/causal scheme, only requiring a tuning of the parameter values.

Figure 2: Within a function-based ap-
proach, all scales are to be considered
jointly and the focus shifts to their functional
interconnections: each level influences and
is influenced by both lower and higher lev-
els, according to causal loops settled in the
course of evolution. This hallmark of com-
plexity evidences the need of alternative
approaches, replacing multi-scale models
with a function-dependent, self-scaled de-
composition in elementary processes.

This novel modeling approach, beyond being function-based, is also termed to be self-scaled and interconnected.
By ‘self-scaled’, we mean that the physical and experimental hierarchy of scales (Å atomic scale, nm base-pair scale,
10 nm bead-on-string, 30 nm chromatin fiber, 300 nm chromonema, up to the micron scale of the chromosomes and
entire nucleus) is not an intrinsic and functional feature of the transcriptional regulation and more generally of any nu-
clear function. In consequence, it it does not provide a relevant nor operational decomposition. Rather, any biological
function, in particular the chromatin function and still more specifically transcriptional regulation, has its own way to
embed in real space and unfold its elementary processes across these scales, achieving information circulation in order
to perform the processing of genetic and chromatin code and the concrete implementation of regulatory mechanisms,
each at the most convenient scale (lowest energy cost, availability of co-regulators, adequate uptake mechanisms en-
suring the stationarity of the fluxes ...). The biological function also demands an integrated implementation, what we
summarize in the term ‘interconnected’ (levels). In short, functions and associated information processing pervade
and exploit all scales jointly in their own evolutionary adapted way, and the design of our modeling should account
for and take the largest benefit of this point (Figure 2).

3.3 Basic elementary processes in transcription

Complexity reduction in living systems studies is presumed to rely on the identification of modules. Obviously, such
a program makes sense only if independent or weakly coupled modules can be delineated. The precise requirement
is that the behavior associated with a module is robust, qualitatively independent of the surroundings and inputs; it
possibly affects quantitatively the model predictions but not the logical/causal scheme, kind of behavior and regulatory
mechanisms. We have demonstrated in § 2 that defining modules as being well-defined structures each observed at
a given scale does not fulfill this requirement. We thus propose another way of dissecting the biological system
under consideration (here the chromosome) neither according to the experimentally isolable entities (nucleotides,
nucleosomes, . . . ) nor according to the space and time scales, but according to the function [14].

The main idea is to consider basic processes articulating several physico-chemical mechanisms and unfolding
across the scales, in a function-oriented scheme involving effective inputs and outputs, so as to get elementary ‘re-
sponsive’ or ‘active’ building blocks [14]. We term these multi-level and operationally dedicated mechanisms ‘basic
elementary processes’. They intend to provide elementary links of an effective network achieving the same function
and the same regulatory control. They are ‘elementary’ in the sense of being indecomposable, i.e. meaningful and de-
scribable only as a whole. We again underline that they fundamentally differ, in their spirit, of modules introduced as
building blocks of well-defined scale. Their description, modeling or experimental observation involve several scales
and might extend in time, hence essentially crossing the standard levels of description and thinking. They describe
elementary steps of information processing, transformation, circulation. Actually, we might consider a hierarchy by
grouping the most elementary processes of our library into more complex ones, still non-autonomous (hence being
only a part of a function) up to completion into a function (that can be defined formally, if necessary, as a pattern of
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to their functional interconnections:
each level influences and is influ-
enced by both lower and higher lev-
els, according to causal loops set-
tled in the course of evolution. This
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replacing multi-scale models with
a function-dependent, self-scaled
decomposition in elementary pro-
cesses.

This novel modelling approach, beyond being function-based, is also termed to be self-scaled
and interconnected. By ‘self-scaled’, we mean that the physical and experimental hierarchy of
scales (Å atomic scale, nm base-pair scale, 10 nm bead-on-string, 30 nm chromatin fiber, 300 nm
chromonema, up to the micron scale of the chromosomes and entire nucleus) is not an intrinsic
and functional feature of the transcriptional regulation and more generally of any nuclear func-
tion. In consequence, it it does not provide a relevant nor operational decomposition. Rather,
any biological function, in particular the chromatin function and still more specifically transcrip-
tional regulation, has its own way to embed in real space and unfold its elementary processes
across these scales, achieving information circulation in order to perform the processing of ge-
netic and chromatin code and the concrete implementation of regulatory mechanisms, each at the
most convenient scale (lowest energy cost, availability of co-regulators, adequate uptake mecha-
nisms ensuring the stationarity of the fluxes ...). The biological function also demands an integrated
implementation, what we summarize in the term ‘interconnected’ (levels). In short, functions and
associated information processing pervade and exploit all scales jointly in their own evolutionary
adapted way, and the design of our modelling should account for and take the largest benefit of
this point (Figure 2).

3.3 Basic elementary processes in transcription

Complexity reduction in living systems studies is presumed to rely on the identification of mod-
ules. Obviously, such a program makes sense only if independent or weakly coupled modules
can be delineated. The precise requirement is that the behavior associated with a module is ro-
bust, qualitatively independent of the surroundings and inputs; it possibly affects quantitatively the
model predictions but not the logical/causal scheme, kind of behavior and regulatory mechanisms.
We have demonstrated in § 2 that defining modules as being well-defined structures each observed
at a given scale does not fulfill this requirement. We thus propose another way of dissecting the
biological system under consideration (here the chromosome) neither according to the experimen-
tally isolable entities (nucleotides, nucleosomes, . . . ) nor according to the space and time scales,
but according to the function [14].

The main idea is to consider basic processes articulating several physico-chemical mecha-
nisms and unfolding across the scales, in a function-oriented scheme involving effective inputs
and outputs, so as to get elementary ‘responsive’ or ‘active’ building blocks [14]. We term these
multi-level and operationally dedicated mechanisms ‘basic elementary processes’. They intend to
provide elementary links of an effective network achieving the same function and the same regu-
latory control. They are ‘elementary’ in the sense of being indecomposable, i.e. meaningful and
describable only as a whole. We again underline that they fundamentally differ, in their spirit, of
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modules introduced as building blocks of well-defined scale. Their description, modelling or ex-
perimental observation involve several scales and might extend in time, hence essentially crossing
the standard levels of description and thinking. They describe elementary steps of information
processing, transformation, circulation. Actually, we might consider a hierarchy by grouping the
most elementary processes of our library into more complex ones, still non-autonomous (hence
being only a part of a function) up to completion into a function (that can be defined formally, if
necessary, as a pattern of information processing, involving mechanisms and parameters at differ-
ent scales). A function is adaptive and robust, in the sense of being context-independent: it should
be properly achieved in various external conditions and internal states. On the contrary, elementary
processes will be context-dependent so as to maintain the function they participate in. Elementary
processes (and even more the values of their parameters) are precisely highly sensitive to any ex-
ternal stress, changes in the surroundings or in the cell internal state, in order that the function is
robust.

Let us implement more explicitly this program in the context of transcription. The base-pair,
DNA and chromatin-fiber well-separated levels are replaced by the following processes:
— DNA bending, including its consequences on DNA affinity for various proteins [22];
— chromatin tethering, including as a consequence the invariance of the linking number Lfiber

k

of the end-tethered chromatin loop, and also the invariance of the linking number LDNA
k of the

underlying DNA stretch; it follows that any imposed strain generates mechanical constraints in
DNA and modifies its protein-binding energy landscape [33];
— histone-tail post-translational modifications with both chemical repercussions (in terms of
recognition and recruitment of specific factors [29] [6]) and physical repercussions, either elec-
trostatic (change of the local charge density) or mechanical (change of the local anchoring of DNA
onto the nucleosome hosting modified histone(s) [33]);
— hypercycles involving the coordinated alternation of two reverse enzymatic reactions, e.g. acety-
lation and deacetylation; they prescribe a rhythm, i.e. a kind of internal clock inside the chromatin
fiber, and provide the very first, non specific step of transcriptional initiation, termed chromatin
breathing [4] [5].
— DNA allostery, where the chromatin fiber hyper-structure induces bistability properties at the
DNA level (or more generally a switch potentiality following from the frustration induced by
mechanical or topological constraints) controlled by the fiber compaction and triggered by DNA
binding events or transactions [19] [17].

4 Tackling complexity in epigenomics

4.1 Several explanatory schemes

For any biological structure or process, several explanations and several levels of causality ac-
tually coexist, demanding to be articulated. Indeed, biological systems can be explained at the
same time by a set of correlated mechanistic steps or by invoking an ecological (or even ‘econom-
ical’) balance of inputs and outputs, within an adaptive, evolutionary perspective. To take a simile,
switching on a car into motion involves both the specific contact key and general thermodynamic
principles of motor functioning. The relevant explanation will thus depend on the perspective,
either evolutionary, mechanistic or therapeutic; in other words according to the causal representa-
tion to be provided, either in terms of the whole evolutionary consistency of the organism, of the
outputs at a given point or response to a prescribed perturbation.

For instance, an allosteric reaction can be described at the molecular scale, as a succession
(possibly highly complex, e.g. networked) of molecular interactions and modifications, following
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physico-chemical laws. It might also be seen as a trick invented, stabilized and improved in the
course of evolution. Our approach precisely aims at reconciling mechanistic and evolutionary ex-
planatory frame. Its function-dependent focus refers to the inescapable natural selection, while the
investigations of processes brings back to physic-chemical mechanisms, dissipative structures and
self-organization. Additional schemes, for instance the information-theoretic notions of genetic
code and genetic program have also to be considered to capture a comprehensive understanding
of, say, cell differentiation in all its complexity [14]. As a way to bridge these complementary
explanatory within a novel frame, we are developing a notion of chromatin code, reminiscent of
the corpus of ciphers, codes, grammars, languages, computations and calculus developed in (theo-
retical, abstract) computer science, but with an architecture and logic of its own [6] [17].

4.2 Inverse renormalization-group

The strong interplay between the scales described in the previous section, where possibly some mi-
croscopic details directly influencing, or influenced by, the structure and dynamics at large scale,
is reminiscent of situations encountered in physics, known as critical phenomena, where all scales
are relevant and do not separate. In this context, a plain bottom-up representation of causality
is questionable since the couplings and assembly of processes are strongly nonlinear and intri-
cate: the assembly of two objects each described by a quantity X is not described by 2X but by
a(X)X . A way out such difficulty is a renormalization procedure in which all the direct and indi-
rect couplings and correlations are accounted for as a whole, through an effective, integrated and
self-consistent contribution, here a(X)X with a(X) 6= 2. More generally, renormalization-group
offers a way to qualitatively understand and quantitatively predict anomalous behaviors associated
with criticality [15]. For biological systems, criticality is even stronger and far more difficult to
tackle since macroscopic features might exert some feedback on the very properties and behavior
of the smallest scale elements, hence requiring some ‘top-down’ analysis. Plain top-down rep-
resentation is confronted to an issue of information lack, since we try there to infer a detailed
description from coarser ones with (far) less degrees of freedom.

To solve these difficulties, we are developing a novel mathematical framework, that we termed
‘inverse renormalization-group, intending in particular to provide a mathematical zoom to describe
and understand biological functions and regulatory schemes [7]. Its design is parallel to the bio-
logical logic and implementation, insofar as it relies on the main theoretical principle of biology,
namely evolution, natural selection and ensuing optimized fitness of biological systems. The in-
formation missing in top-down approaches is to be injected through a biological, evolutionary,
adaptive, consistency argument, assessing that the microscopic level is so consistently related (co-
evolved, mutually adapted and optimized) to the macroscopic level that the very existence of the
macroscopic level brings information on the underlying ones. Thus, in adaptive systems (either
living or man-made) evolution and selection allow a top-down inference that is essentially differ-
ent from the inference scheme relevant in physics. Tackling complexity is precisely achieved here,
in the reduction by ways of some optimization argument (here inter-level consistency and adaptive
robustness) and educated microscopic implementation, of the whole system.

Additional features of biological systems motivate the development of this novel mathemat-
ical formalism [7]. We have yet underlined that in the set of biological functions or in the set
of elementary processes from which they are built arise sub-categories, associated with various
levels of emergence (for instance raw vs effective parameters, single-scale vs emergent elemen-
tary processes ...). A major conclusion follows: there is no way out a continuous view with fuzzy
boundaries between the levels, the elements, and the elementary mechanisms or events. More-
over, biological systems do not exhibit a ‘natural’ underlying real space-time structure, but rather
several superimposed proper times (that of cycles and hypercycles; that of evolution) and several
superimposed intrinsic topologies (that of development –curved; that of regulatory networks –
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infinite-dimensional; that of constraints – tensegrity) with competition (hence possibly frustration
if beneficial, e.g. to generate multi-stability and switches) or cooperation (hence synergy).

5 Conclusion

Given a biological system (or even yet a physical or chemical one), the proper model is devised to
answer a well-posed question. It cannot intend (and should not) to provide a universal representa-
tion of the system, nor to fully capture all its properties whatever their nature, scale and context.
Otherwise it would resemble the scale-1 empire map described by Borges [10]. Modelling hence
requires to focus on some elements and facts while ignoring a large amount of information of no
direct relevance for the addressed issue. The merit of a good and efficient model is precisely to
extract and enlighten those, and only those features of the system that are presumably relevant
for solving the limited, well-delineated issue under consideration. Multi-scale viewpoint is at the
same time required to design experiments or to analyze and interpret data, but irrelevant due to the
essential cross-scale (‘up-and-down’) coupling following from evolution. Inspired by approaches
currently followed in theoretical physics, this sorting of relevant information is usually done in
the real time and space, according to the scales. We have proposed here to rather base this a pri-
ori sorting according to the biological functions. This leads to a drastic change in the paradigm
underlying the design of experiments and choice of model systems, supervised data analyses and
modelling, namely a shift from a scale-dependent focus to a function-dependent focus.
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Static and dynamic methods for the analysis
of biological networks

Ron Y. Pinter1

1 Dept. of Computer Science Technion - Israel Institute of Technology

Abstract

Elucidating the behavior of biological networks requires the development and the application of
computational tools and techniques. Naturally, different methods are suitable for different kinds
of analyses, e.g. extracting qualitative vs. observing quantitative properties, employing discrete
vs. continuous modeling, and utilizing static vs. dynamic analysis. Specifically, methods that are
static in nature extract structural and semantic properties from the description of a network or a
pathway; dynamic methods aim at understanding and predicting the functional characteristics of a
network’s or a pathway’s behavior.
In this talk I will present a number of methods that we have devised recently to analyze both
metabolic as well as regulatory pathways along with the biological consequences that they have
yielded. Specifically, the talk will include a detailed description of:

1. A method for the alignment of metabolic pathways [Pinter et al., Bioinformatics 2005]: Here
we present MetaPathwayHunter, a tool that - given a query pathway and a collection of pathways
- finds and reports all approximate occurrences of the query in the collection, ranked by similarity
and statistical significance. It is based on an efficient graph matching algorithm that extends the
functionality of known techniques. The program also supports a visualization interface with which
the alignment of two homologous pathways can be graphically displayed. We employed this tool to
study the similarities and differences in the metabolic networks of the bacterium Escherichia coli
and the yeast Saccharomyces cerevisiae, as represented in highly curated databases. We reaffirmed
that most known metabolic pathways common to both species are conserved. Furthermore, we
discovered a few intriguing relationships between pathways that provide insight into the evolution
of metabolic pathways. We conclude with a description of biologically meaningful meta-queries,
demonstrating the power and flexibility of our new tool in the analysis of metabolic pathways.

2. HFPN-based simulation of metabolic pathways [Assaraf et al., JTB 2006]: Here we devise
a hybrid functional Petri nets (HFPN) modeling of folate metabolism under physiological and
antifolate inhibitory conditions. In selecting the appropriate simulation method for this task we
considered both the inherent computational properties of the underlying models as well as the fea-
tures of the simulation systems that embody them. A careful comparative study showed that the
GON system, based on the HFPN model, was the most suitable for modeling metabolic pathways
as the one chosen. We performed a large number of virtual experiments on our comprehensive
model of the pathway under study, measuring its reaction to four different anti-cancer drugs. The
results were highly accurate when compared to experimentally obtained values and revealed many
interesting phenomena; the effectiveness of the system allowed large-scale experimentation lead-
ing to filtering of some of the more intriguing results for in vitro validation. Furthermore, this
HFPN-based simulation offers an inexpensive, user-friendly, rapid and reliable means of preclini-
cal evaluation of the inhibitory profiles of antifolates.

3. Analysis of transient behavior in developmental pathways [Rubinstein et al., under review]:
Here we present a computational model that allows for qualitative analysis of regulatory pathways,
enabling the examination of characteristics such as transient behavior, robustness, and sensitivity
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to initial conditions, in an effective manner. We have extended the Boolean network model, which
has limited modeling power, to a richer albeit discrete network model, while maintaining com-
putational efficiency. Moreover, we have borrowed a simple technique for the representation of
functions, namely Karnaugh maps, to elucidate and visualize the behavior of the pathways under
study. We have applied our method to analyze the transience and robustness of a representative de-
velopmental pathway, namely early meiosis in budding yeast. Some of our analytic observations,
such as the pathway’s response to premature expression of a key regulator, were validated in the
lab and were found to be in agreement with experimental data. Furthermore, our analysis predicts
new modes of regulation by which negative feedback loops accomplish their roles.

I will conclude with some suggestions concerning the potential integration of the methods into
a unified framework so as to fit the end-users’ needs.
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Rule-based modelling and reasoning for biochemical applications
O. Andrei1
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Abstract

I present the context and the motivation of my PhD work, the modelling of biochemical systems
and the analysis of their behavior by means of rewriting systems. I end with some preliminary
results obtained from modelling a chemical reactor and the possibilities of analyzing some of its
properties.

1 Introduction

Providing a formal description for the structure and function of biological systems, as well as
formal tools for reasoning about their behavior has been identified as a scientific grand challenge.
In the context of computer science applied to biology and chemistry, an important amount of
work is currently devoted to automatic model generation. The goals are to better understand what
happens in a cell or a solution of molecules, and to predict its behavior. Applications are various
in the health domain (for example, drug design) or in chemical industry (quality of fuels,...).

The descriptions of biomolecules or chemical reactants belong to specific classes of graphs. More-
over the interactions between the reactants involve rules applied on these classes of graphs and
controlled by numerical data or specific filters. In this context of biochemical systems, typical
problems are the exhaustive generation of all possible states of the system, the detection of specific
states, or the prediction of producing specific states. There is a real need of concepts, methods, and
tools to model interactions in these systems and address the previous problems.

Previous work and expertise have already been developed in the Protheo team as presented in [4,
5]. The authors of these papers explore the field of automated generation of chemical reaction
mechanisms. The choice of modelling these particular mechanisms by means of rewriting systems
is motivated by the fact that the chemical reactions are naturally expressed as conditional rewrite
rules and that the control of the chemical reactions chaining is easy to describe using a strategy
language. As a formal basis for the modelling process, the authors proposed a class of graphs,
called molecular graphs, and a graph rewriting relation where vertices are preserved and only
edges are changed.

Among many other approaches, we found interesting connections with [6], where a method for
generating a biochemical reaction network from a description of the interactions of components
of biomolecules, is specified in the form of reaction rules. Another related work is the Biochemi-
cal Abstract Machine (BIOCHAM) [8] that provides a formal modelling environment for network
biology, in particular for representing and analyzing protein-protein and protein-DNA interaction
networks, consisting in formal tools for modelling, querying, validating, and completing biomolec-
ular interactional networks.

2 Main goals

The subject of my PhD thesis is to study the concepts, methods, and tools to model interactions in
biochemical systems and address the problems of behavior prediction, exhaustive generation of all
possible states in case of termination, detection of specific states in possibly infinite search spaces.
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The goal is to develop the foundations for an adequate calculus based on graph rewriting, taking
into account numerical information and constraints induced by physical environment and knowl-
edge (for example, kinetics information for chemical reactions).

This framework should offer a language for describing the molecules and the reactions, together
with reasoning and predicting capabilities that will be studied and compared. Such modelling is
usually faced to an inherent combinatorial complexity and reasonably efficient solutions. More-
over, the developed models have to be discussed and validated by biochemists.

3 Methodology

The first step consists in the identification of concepts necessary to model the interactions in bio-
chemical systems based on a bibliographic study.

The next two steps consist of defining a language for describing the initial molecules in the system
and the reactions to be applied, and providing a formal model for reasoning and predicting the
behavior of the systems. A starting point should be to extend in an appropriate way the rewriting
calculus [3]. After a first stage that might be mostly syntactic, I will take into account numerical
constraints to achieve more realistic models, leading to a concept of hybrid rewriting. For this
context, I will adapt the former reasoning and predicting tools.

To support the ideas and discussions with biochemists, a research prototype will be designed with
the TOM environment in the Protheo team (http://tom.loria.fr/).

This work will take benefit of many interactions with other members of the Protheo team working
on graph rewriting, constraint rewriting, and probabilistic strategies.

4 Preliminary results

During my internship within the Protheo team, I studied the capabilities of TOM for modelling the
class of molecular graphs and its associated graph rewriting relation by means of term rewriting [1].

In [2] we give a new prototype for the oxidizing pyrolysis using TOM. We present the model
as a particular case of an artificial chemistry with the molecules/molecular graphs as algebraic
terms, the chemical reactions as rewriting rules on terms, the reactor dynamics as a composition
of elementary strategies (the reactions) and strategy operators. The formal background of strategic
rewriting is quite relevant for the considered problem:

1. chemical reactions are naturally expressed by chemists themselves using conditional rules;

2. matching power associated with rewriting allows retrieving patterns in chemical species,

3. defining the control on rules is essential for designing automated mechanisms generators
in a flexible way and controlling combinatorial explosion. This gives the possibility to the
chemist for activating and deactivating reactions patterns, and for tuning their application
during each stage.

The first prototype for the oxidizing pyrolisis, GasEl [4], was implemented in ELAN, a system de-
veloped in the Protheo team for specifying and prototyping deduction systems in a language based
on rewrite rules controlled by strategies ((http://elan.loria.fr/). The main technical
difficulty with GasEl, consisted in the encoding of reaction patterns on GasEl terms that correctly
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simulates the corresponding transformation on molecular graphs. The TOM implementation pro-
vides another approach to this problem, while keeping the same molecular graph rewriting relation,
and preserving the same chemical principles and hypotheses as in GasEl.

Our second concern in [2] was to explore the formal island concept and methodology on a sig-
nificant example, a chemical reactor. The objective of the formal island approach to extend the
expressivity of the host language with higher-level constructs at design time is well-illustrated in
this example. From this point of view, the TOM implementation appeared to be quite convenient
to implement chemical rules with conditions and actions expressed in the Java host language. The
control is expressed with a high-level language of strategies which makes now possible to reason
about formal properties, especially the termination property of each phase of the reactor [1]. This
illustrates the idea to perform formal proof on the formal island constructions.

It may be worth noticing that the rule-based approach on graph structures has also been studied
in the modelling of signal transduction networks [7] and metabolic pathways [9] in the domain
of biological systems and protein interactions. Our model of chemical reactor seems to be easily
adaptable to these domains.
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Abstract

Functional genomic is a topic studying the functional properties of the macromolecules encoded
by the genes. Its goal is to understand exhaustively a biological system. For this, a great number
of heterogeneous data has to be put into relations. Paradigms from mathematics and computer
science can be used to model these data.
Studying and modelling biological regulatory networks is part of functional genomic. A family of
modelling (called modelling of René Thomas[20, 18, 19, 5, 4, 7, 6, 11]) is especially attached to
the study of the temporal properties of small sized systems([16, 17, 12, 9, 8]). This family uses
qualitative data (global behaviour in big ranges of values)instead of quantitative data (numerical
values).
Our goal in this paper is to propose a generic formal framework unifying the R. Thomas modelling.

Introduction

One of the important issues of post-genomic is to understandthe criss-crossed interactions between
genes inside the cell. R. Thomas works has given birth to a setof “on demand” modelling methods
(Boolean or multi-valued values, with or without Snoussi hypothesis(cf [14, 13, 15]), synchronous
or asynchronous dynamics, taking or not the functionality into account) to study qualitatively the
dynamics evolution of biological regulatory networks.
All these methods have been inherited from a common basis andare adapted to the kind of system
they model.
In this paper we will present a generic framework unifying the existing modelling and allowing to
define new one.
We specially attract the reader attention on the definition of the family of firing semanticsal-
lowing defining on demand dynamical behaviour for the studied system and expanding the lone
synchronous and asynchronous transitions of the R. Thomas model.

1 Context
1.1 Biological regulatory networks

A biological regulatory network is a complex interactions network, dynamically regulating the
produce of genes expression. We will treat here of the modelling of networks (and not of their
inference). We have a precise goal in mind for that: the studyof their dynamical behaviour.
We will be able to treat a family of networks:

• Small sized (at most ten variables).
• All interactions between variables are known.
• The knowledge we have on the variable isqualitative and not quantitative.
• Time will not be considered as continuous. Instead we will take into account a succession of

state{t1, t2, ...}.
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1.2 R. Thomas modelling

One of the oldest way to model biological regulatory networks is quantitative and based on differ-
ential equations ([10]). It requires a fine definition of the parameter and function involved. this is
one of its main drawback: we often are limited to a kind of qualitative knowledge.
To address this issue, René Thomas developed aqualitative approach (see Thomas and d’Ari book
[21]).
The models based on this approach have, in a first time, used Boolean data (the so called “logical
approach of R. Thomas”) before being extended to treat any kind of discrete data (“generalized
approach of R. Thomas” or “multi-valued model”).

1.3 Discrete variables seen as switchs

From the beginning we have been speaking of discrete variables. But how are these variables made
discrete?
All the modelling derived from the family of R. Thomas use a strong biological hypothesis: Phys-
ically, all the interactions between variables are sigmoidshaped (meaning two level separated by a
threshold). This hypothesis is often biologically true.
It means that

• Variables do not act linearly on an other variables. They actmore like aswith activated at a
given level.

• This activation is linked to the threshold notion

see [2] for more details.

1.4 Data model in our generic framework

The goal of our generic framework is to study the temporal succession of the state of a system. For
this we have defined the data manipulated by all the modellingof the R. Thomas family.

As an output of all modelling method, we want to obtain astate graph. A state graph is an
oriented graph where

• the set of vertices is the set of all the possible state
• an arrow between two state indicate that one is the temporal successor of the other.

To follow a path in this graph is effectively to do a simulation.

3) Computation rules
Variables

interactions

state graph

0

0
0

1
1
01

1

1)Topological data

2)Environment knowledge

Figure 1: Data in and out : The three kind of knowledge needed in our generic framework and the
state graph we obtain.

To compute this graph, biologists may have different kind ofknowledge at their disposal. We,
in our generic framework, have differentiated three kind ofinput knowledge

• the topological knowledgedescribing what are the variables of the system and their inter-
action

• theparametrical knowledgedescribing the background of the system. Topological knowl-
edge is not enough to understand the behaviour of systems. Wehave to indicate that, in the
studied system, some interactions are stronger than other.Actual behaviour of the system
depend on value of some key parameters.
The value of the parameters of a real system can be deduced from the observation of the
stable and steady states of this system.
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• theset of rulesused to compute the dynamical behaviour of a system knowing its topological
and parametrical knowledge.

Interestingly enough, only the whole topological knowledge of a system is necessary

• If parametrical knowledge is absent or partial, we can always study the behaviour of the
system forall the value that may be taken by the non-defined.

• if we don’t know how to “tune” the computation of the dynamical behaviour, we can always
use standard set of rules such as the synchronous and asynchronous semantic of R. Thomas
modelling

1.5 Many approach : The need for a generic framework

Due to the characteristic of the studied biological system,the first R. Thomas approach has been
adapted into a great number of different modelling. Our study of those approach had led us to be-
lieve that one of the thing they have in common (beside dealing with discrete variable) is a generic
structure more or less following the three kind of knowledgedescribed in the preceding section
(section 1.4).
It has naturally led us to define ([1],[2]) a formal generic framework for the discrete modelling of
the biological regulatory networks.
Our generic approach is structured in three different layers, linked with the three kind of knowl-

behaviour

Parametrised
system

Parametrised
system

Parametrised
system

................. .......

....................................................

bipartite

Dynamical
behaviour

{boolean, multi−valued ...}

{monotony, Snoussi, ...}

{synchronous, asynchronous, ...}

representation

Parameterisation function

.............................

Computation 
of dynamics

Computation 
of dynamics

Dynamical Dynamical Dynamical
behaviour behaviour

Figure 2:Structure of our generic approach

edge we have already described. Of course, as our approach isgeneric, each of these part has to
encompass the many options encountered in the other modelling. We have

• a part dealing withthe description of the topology of the interactions
• a part treating the issue ofthe instantiation of the parameters
• a part effectively computingthe dynamic

In the rest of this paper, we will describe these three parts,as shown in figure 2, and explain
why our framework is generic.
We can nevertheless already mention that for one system described, we may have many parameters
value and that for each couple system-parameters we can compute as much possible dynamical
behaviour than we have semantics.
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2 Our generic formal framework
2.1 Topological layer : bipartite description

The classical modelling of biological regulatory networksuse a description based on simple ori-
ented graph where the vertices are the variables and where arrows represent interactions between
two variables. This description ignores one essential knowledge: the way than (at least) two vari-
ables may combine to produce a more complex interaction withan other one.

two different low levels  "switch like" representation for a three variable system

y −

x

z

+

−
+

+
−

y

x

z y

w

x

Separated actionsCombined actions

Only one representation by

simple graph for the two 

systems

Figure 3:Single graph representation is not enough to differentiatetwo different structure of net-
works

We can see by the example described in figure 3 that the classical oriented graph representation
do not make a difference between separated and combined action of two variable on another one.
If we pursue the low level switch analogy seen in the precedent section (1.3) the simple graph
representation only show thatx andy act onz. It does not differentiate if these two actions are in
“parallel” or in “series”

In fact, we deduce the need of a new object regrouping all the interaction acting combiningly.
This object is used as atransition between the activating and the activated variables. These acti-
vating variables can (if conditions are correct) block or not the transition acting on the production
of the activated variables.
These conditions are a kind ofward.

We can thus adopt for our generic framework a representationby bipartite graphs where we
manipulate two set variables and transitions. A formal definition is called a resources graph

Définition - Resource graph :
A resource graphis a labelled oriented bipartite graphG = (V, T,Out, In) where

• V is a set of nodes called variables
• T is the other set of nodes called transitions
• Out is the set of arc fromV to T , such as each arc(u → τ) is labelled

(seuil(u, τ), sign(u, τ))
• In is the set of arc fromT to V

(seuil(u, τ), sign(u, τ)) is a ward and describe the conditions that block the transition when false
• if sign(u, τ) is + then value ofu must be greater or equal thanseuil(u, τ)
• if sign(u, τ) is− then value ofu must be strictly inferior thanseuil(u, τ)

This description is generic. The other approach (Boolean, multi-valued, by single graph...) can
always be easily encompassed by this one. For example, it is trivial to pass from a single graph
representation to this bipartite one: you just have to associate a transition to each arc.

2.2 Parametrical layers : transition oriented parameters

We now have to define the parameters influing the behaviour of the system.
Many possibilities exist in other method of the R. Thomas family. Basically it can be described as

80 MODELLING COMPLEX BIOLOGICAL SYSTEMS



the effect on a variable of the action of its neighbouring variables.
We have seen on the previous subsection that action of a groupof variables can be grouped by
transition (with ward). We now have to define, for each variable the effect of transition (or set of
transition) acting on it.

Thus we define aparameterisation function κ(x, µ)oriented by transition (opposed to other,
less generic function oriented by variable; see [1] for a more complete review).
If a set of transitionµ have a positive action on a variablex, then the valuex tend towardκ(x, µ).
Its define theimage state(or attractor) of a variable.
For example, if we define a functionκ as:

κ(x, {})=0,κ(x, {t1})=1,κ(x, {t2})=1,κ(x, {t1, t2}) = 2
This means that ifx has no influence it tend toward0. If it is helped by one transition, it tends

toward1. If it is helped by the two transitions, it tends toward2.
If we choose a different value for the instantiation function (let sayκ(x, {})=2) we have a different
behaviour of our system

2.3 Dynamic layer: firing semantic

In this layer, our approach to compute dynamic is very different from the one used in R. Thomas
classical models. In the classical modelling there is no generic way to compute the dynamic, there
is only a finite number of algorithm. Two of this way to computedynamics are common in every
models of the family: synchronous and asynchronous.

Let us precise that the original approach does not have the concept of multiple ways to com-
pute dynamic. The two dynamics are just seen as one method of computation with more or less
precision.

Unfortunately, we know that having only one way to compute dynamic is not enough to under-
stand the complex behaviour of some systems: We are not able to use some important information
such as the kinetic of the occurring reaction, the proximityof some expression level, . . .

To apply the classical methods to a studied system, one has often to bend the computation of
dynamics to its own need.

We propose here the first generic approach allowing to define afamily of dynamics. This
approach is based on the transition notion. If, at a given time, all the conditions (the wards) on a
transition are true, we can say that the transition isenabled.
Moreover, we can define themarking of a variable at a given timet as a set of transition such as

• if the variable receive a positive influence from a transition τ thenτ must be in the marking.

• if the variable do not receive a positive influence from a transition τ thenτ must not be in
the marking.

Thus, we can define thefiring of a transitionτ . It is an update of the marking of all the variable
after the transition. If the transition is enabledτ will be present, if the transition is not enabledτ
will be absent.
If we couple thismarking notion (a set of transitions) with theparameterisation function (which
need also a set of transition) we understand that firing transition is, in fact,updating the imageof
the variable after the transition.
Knowing the values of a variablev and its image at a given timet, we can easily compute the value
of v at ne next updatet + 1 by applying the formula

val(v, t + 1) = f(val(v, t), image(v, t))

By doing this, we have defined a whole new family of dynamics ata given timet

1. We choose a setT ′ of transition to fire.
Let us callθ the choice function:T ′ = θ(T ).
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2. We fire the transition ofT ′. We update the marking.
We use this marking and the parameterisation function to computeimage(v, t) of each vari-
ablev after theT ′ transitions.
We compute and and update the value of these variables by using the rule

val(v, t + 1) = f(val(v, t), image(v, t))

In fact, there are as much dynamics in this family than there are possibility in definingθ andf

As. of Th. restricted

ad lib.

ad lib.

θ f Identity

IdentityIdentity

Synchronous incremental

Asynchronous incremental

incrementalrestricted

...

...

ad lib.

ad lib.

ad lib.ad lib.

Synchronous

Asynchronous

Asynchronous 
of Thomas

As. of Th. incremental

Asynchronous restricted

Synchronous restricted

Figure 4:A whole new family.

2.3.1 θ : choice of the fired transitions

This choice of transition introduces non-determinism in the computation of dynamics. It can be
coupled with a probabilistic approach (not treated here) ina context of simulation. We can, for
example choose

• To not fire any transitions : the system do not evolve.
• To fire all the transition together. This is a synchronous semantic. For one state you have

one and only one successor.
• To fire only one transitions. This is what is called “asynchronous” in the field of dynamics

system
• To fire all the transition located just after a given variablev. This is the way the so-called

“asynchronous” semantic works in the R. Thomas modelling. We have moved the asyn-
chronism from the transition to the variable. We still have achoice to make: the variablev

• To group together set of transitions (based on known biological fact) and apply different
rules to the different set. For example, we can separate the fast and the slow transitions
and act asynchronously on the fast (you can’t distinguish them so they apply together) and
synchronously on the slow

2.3.2 The f function

We still have to define thef function used to calculate the new value of a variable based on the old
value and the image. we can for example say that

• f ignores the imageval(v, t + 1) = val(v, t) : the system do not evolve.
• f is restricted : if the value of a variable tends toward an image then it will reach this value

at the next time step. We haveval(v, t + 1) = image(v, t) :
• f is incremental : the value of a variablev evolve in direction of the image by the value of a

given stepε : val(v, t + 1) = val(v, t) + /− ε. Particularly useful when we have a step of1

We can of course also (as in the definition ofΘ) develop our ownf function. More complex study
are available in [1]
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2.3.3 A whole new family of dynamics

As we can see in figure 4, choosing af andθ give us a new way to compute a dynamic adapted
to the studied system. As a remark we can add that the two classical dynamic of R. Thomas (the
so-called synchronous and asynchronous) still exit in our model.
“Synchronous” is nowΘ synchronous andf restricted. “Asynchronous” isθ asynchronous of R.
Thomas (variable oriented) andf incremental.
We also see that other possible way to compute dynamic appears : we can imagin to use for
exampleθ synchronous andf incremental. New, previously ignored, semantic of the dynamic
appears.

Conclusion

We have proposed a way to model biological regulatory networks using the notion of transition.
It has allowed us to divide our architecture in three separate layers

• Description of interaction. This layer has been made generic by the use of bipartite graph.
Our model may encompass all the other existing modelling: single graph of bipartite, Boolean
or multi-valued, ... as long as the interaction are not linear.

• Definition of the parameters. This layer use a transition oriented parameterisation function.
Such a modelling is efficient and can englobe all the other wayto define parameters based
on variables.

We can also use simple rules on the functionality of string and loops in a system to easily
define this parameters. Classical hypothesis (such as Snoussi hypothesis) can also be applied.

• Computation of the dynamic . This layer allows us to define a method based on the firing of
transition to compute dynamic. We are able to define a whole new family of dynamic

This architecture is robust and modular. It can be easily extended and adapted to all the existing
modelling of the R. Thomas family.
It defines a formal framework which can be use to model biological regulatory networks.

We plan to extend this framework in two directions
• to take into account some linear transitions
• to model not one system but a population of systems

We also want to use this formal framework to automatise reasonning on biological regulatory net-
works. For this, we use this framework to translate regulatory graphs into systems of universally
quantified propositional formulae. This translation can befruitfully used to modify the regula-
tory graph structure without changing its external behaviour. This lead to formal manipulation of
biological regulatory networks (see[3]).
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Abstract

In this paper, we present a games network based modelling applied to Plasminogen Activation
system (PAs). Games network theory extends game theory by including the locality of interactions.
Each game in a games network represents a set of local interactions between some biological
agents. We first introduce main features of the model, then wedescribe the modelling of the
Plasminogen Activation system which is a signal transduction pathway involved in cancer cell
migration. The PAs system is implicated in cytoskeleton modifications via actin and microtubules
regulations, which in turn favours cell migration. Finally, we briefly present an extension of this
work which consists on designing a simplified model (game) from an initial one. The method
is based on abstract interpretation and aims at reducing thecapabilities of each agent (strategies)
while preserving its behaviour.

1 Game Theory and Theory of Games Networks

The theory of games networks is an extension of game theory. Section 1.1 presents the main results
about game theory, and section 1.2 presents the extension.

1.1 Game Theory

Game theory allows us to model a set of interacting agents. Each agent chooses the strategy that
maximizes its payoff. The payoff depends on the strategies played by other agents. The reader can
refer to the books [6, 8, 9, 10] for a complete overview of gametheory and its applications.

1.1.1 Strategic games

Strategic gameis a model of interplays where each agent chooses its plan of action (or strategy)
once and for all, and these choices are made simultaneously.Moreover, each agent is rational
and perfectly informed of the payoff function of other agents. Thus, they aim at maximizing their
payoffs while knowing the expectation of other agents.

Definition 1 (Normal or Strategic Representation)
A strategic gameΓ is a3−uple〈A, C, u〉 where:

• A is a set of players or agents;

• C = {Ci}i∈A is a set of strategy sets where eachCi is a set of strategies available for the
agenti, Ci = {c1

i
, · · · , cmi

i
}

• u = (ui), i ∈ A is a vector of functions where eachui : ×i∈ACi 7→ R, i ∈ A is the payoff
function of the agenti.
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1.1.2 Nash Equilibrium

Nash Equilibriumis a central concept of Game Theory ([9]). This notion captures the steady states
of the play for a strategic game in which each agent holds the rational expectation about the other
players behavior. APure Nash Equilibrium(pne) corresponds to astrategic profilec = (ci)i∈A (or
vector) whereci is the strategy “chosen” by the playeri.

Definition 2 (Pure Nash Equilibrium of a Strategic Game)
Let 〈A, C, u〉 be a strategic game, aPure Nash Equilibriumis a strategic profilec∗ ∈ ×i∈ACi with
the property that:

∀i ∈ A, ∀ci ∈ Ci, ui(c
∗

−i, ci) ≤ ui(c
∗

−i, c
∗

i )

In other words,no agent can unilaterally deviate of apne without decreasing its payoff.

1.2 Theory of Games Networks

In game theory, every agents are interacting together. In theory of games networks, a modular
description of the dynamics is possible. It enables us to describe local interactions between agents.
Thus, games networks allow situations where an agent can be involved in several different games
at the same time and with different agents. The theory of games networks is based on strategic
games.

Games networks make the representation ofmodular interactionspossible, each one is sup-
ported by a subset of agents. The agents involved in local interactions are participating to the same
game, i.e. the same module. The payoffs of the agents define the interaction rules. An agent is
shared between several modules, but its strategies remainsthe same whatever the game. The reader
may refer to [3] to have a complete overview of theory of gamesnetwork.

1.2.1 Definition

The definition of a games network mainly consists of defining aset of agents connected to a set of
games. The normal representation of a games network is as follows :

Definition 3 (Games Network)
A games network is a3−uple〈A, C,U〉 where

• A is a set of agents or players.

• C = {Ci}i∈A is a set of sets of strategies.

• U = {〈A, u〉} is a set ofgame nodeswhere eachA ⊆ A is a set of agents andu : A ×
(×i∈ACi) 7→ R is a set of payoff functions such thatu = {ui : ×i∈ACi 7→ R}i∈A.

1.2.2 Graphical representation

A games network offers a synthetic representation to define the different interplays between several
players.

A games network is represented by a bipartite graph. Graphically, agents are represented by
circles, and game nodes by rectangles (See figure 1 for an illustration).

1.2.3 Global Equilibria

In biological systems, steady states are considered as the characteristic observable states of the sys-
tem dynamics. In game theory, these steady states are obtained by computation of Nash equilibria.
A similar notion has been developed in games networks:Pure Games Network Equilibria(PGne).
Pure Games Network Equilibrium corresponds to a compatibleassociation of local equilibria.
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2 Application to the Plasminogen Activation system (PAs)

The theory of games networks has been used to model biological systems where agents correspond
to genes or proteins for example. We model here a part of the Plasminogen Activation system
(PAs), which is involved, among others, in the migration of cancer cells. PAs is composed of3
molecules (uPAR, uPAandPAI-1). Understanding the regulation of theuPAR/uPA/PAI-1complex
formation appears to be central to analyze the migration.

2.1 Cell migration and the PA system (PAs)

Cellular migration is a complex process which can be described like a succession of stages:ad-
hesion, contraction, de-adhesion[7]. We are interested in thePAssystem which participates to
the establishment of a molecular bridge between the cell andthe extra-cellular matrix. This bridge
leads to the migration of the cell [1] .PAssystem is composed of a receptoruPAR(Receptor
of urokinase), a proteaseuPA (urokinase Plasminogen Activator), and a specific inhibitor PAI-1
(Plasminogen Activator Inhibitor-1)[11]. The sequence ofinteractions implied in the promigratory
process is as follows:PAI-1can blind toVN (the Vitronectin, a protein of the extra cellular matrix)
which stabilizesPAI-1 in its activation form. OncePAI-1 is activated, it clings to a complex formed
by uPARanduPA. The complex is internalized by a receptorα2 M-LRP(Low-density lipoprotein
receptor-related protein) in the cell. ThenuPARis recycled at the front of the cell. The signaling
moleculePAI-1 induces modifications of cell morphology including changesin cytoskeleton of
actin, necessary to the migration. These modifications imply the regulation of the activation of
GTP-ases of theRhofamily [12].

2.2 Games network modelling

Figure 1 shows the games network modelling of PAs. Circles represent the different agents in-
volved in PAs (ci agents are intermediary complexes), rectangles are games which define the rules
of interactions between agents.

c2/pai− 1 0 1 2
0 (0,0) (0, 0) (0, 0)
1 (0, 0) (0.5,1) (0.35, 0.35)

upar

pai-1 U c2 K2
upa

K1
c1 K3 lrp cdc42

vn c3 I c4 R rhoa

Figure 1: Games network modelling of PAs

Once we have modeled the structure of the PAs network, we haveto define the payoffs of
each game. Theory of games networks allows us to determine that theKi games (which represent
complexation) are not central in the determination ofPGne. The main game isU , whose payoffs
are shown in figure 1. It is to be noted that for biological reasons, not explained here, the complex
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c2 has2 strategies, andPAI-1 has3 strategies ([2]). In the table, the first number represents the
payoff ofc2, and the second number the payoff ofPAI-1.

With the payoffs defined, we are able to computePGne, i.e. is steady states of thePAs. Some
tools of theory of games networks, not described here, enable us to affirm thatPGneare exactly
composed of Nash equilibria from gameU . These equilibria are written in bold in figure 1.

According to experiments, both Nash equilibria correspondto characteristic biological states.
The first one(0, 0) corresponds to a non migratory state and the last one(1, 1) corresponds to a
promigratory state.

3 Game abstraction

In this section we present the evolution of games network modelling. More precisely, we present
a formal approach to abstract a game based model from observations.

Given observations made on a set of agents interacting together, we build an initial game
(agents, strategies and payoffs). This game has a certain number of Nash equilibrium which are
assimilated to stationary states of the dynamics of interactions and which describe the behaviour of
the system (or a part). We try to define automatically an abstraction preserving the richness of the
behavior of the initial game. This abstraction is a game which has a reduced number of strategies
and the property that its Nash equilibrium corresponds to the abstraction of Nash equilibrium of
the initial game.

It is summarized by the following equation:

Abstract(Nash(Initial − game)) = Nash(Abstract(Initial − game)) (1)

The equation can be represented by the following diagram:

Initial − game
Abstraction
−→ Abstract− game





yNash




yNash

Nash− equilibrium
Abstraction
−→ Nash− equilibrium

We establish a sufficient condition to obtain the equation 1 (These conditions are not explained
here due to the lack of space but we plan to do it in details during the talk).

This approach can be expressed, in abstract interpretation[4, 5], as the search for arelevant
abstraction compared to observed dynamics. For that we introduce the concept ofGalois connec-
tion which defines two monotonous functions〈α, γ〉. The first is related to abstraction; it allows to
abstract the initial game. The second is related to concretization; it allows to have an approxima-
tion of the initial game. We currently work on an algorithm toautomate the building of the abstract
game given an initial one.

We show within the framework of the study of thePAs system presented previously, that the
game PAI-1 is an abstraction of the initial game.

4 Conclusion and perspectives

In this paper we have presented the extension of our modelling using games network. Theory
of games networks has been used to model a part of the Plasminogen Activation system. The
modelling confirms the existence of two characteristic states which correspond to physiological
configurations (i.e. non and pro migratory states). We have also defined the notion of abstraction
of a game. This notion allows a better comprehension of biological functions. In fact, the abstract
game is a simplification of the initial one. So it is easier to extract the different interactions between
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agents and to understand their interplays. The perspectives of this work is to find the conditions
that the algorithm must satisfy in the aim to obtain avalid abstraction.
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Abstract 
 
By their nature and approach, foundations play an important role to increase the impact of 
research. This short paper aims to explain how the research community and the society at 
large can benefit from foundations. 
 
 
What is a foundation? 
 
Foundations are private initiatives, either from an individual or from legal entities, to support 
causes in line with the goals of the foundation. There are characterized by: 
 

• A public interest goal. The purpose of a foundation must be broad enough to be useful 
to the society at large. 

• A financial endowment. Through asset management, the initial donation provides 
enough revenues to finance its actions. 

• Independence of its governance bodies. A nominated board and a scientific counsel 
are ultimately responsible for ensuring adherence to the original mission statement. 

• Long term view beyond its funders. 
 
In many European countries, tax incentives have been designed to foster individual and 
companies giving money to foundations. Through a matching donation scheme, half the 
amount is coming from the donor, and half from tax exemptions. The end result for research 
is twice the amount which would have been collected by taxation only. Therefore, 
transparency and accountability of foundations are crucial given the trust they received from 
the donors and the states. 
 
 
The European foundation landscape 
 
European foundations are a very heterogeneous pool of institutions whose defining 
characteristics often depend on local factors and the regulatory environment. Some countries 
like Germany, United Kingdom and Nordic countries house several foundations with 
significant assets (more than a billion of Euros). In comparison to the US, foundations in 
Europe have played a less prominent role until now. 
 
In recent years the importance of foundations has significantly grown. According to the latest 
comparative statistics in Italy and Germany, around 50 percent of registered foundations 
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have emerged since 1990, while other countries such as Belgium, Finland, France and 
Sweden report between 19 and 29 per cent increases in the number of foundations. 
 
What foundations are doing for research? 
 
Besides grant attribution, foundations are acting for research. They are : 
 

• Asking difficult questions. Several new research field started from the impulsion of a 
foundation. In France, the IPSEN foundation initiated research on Alzheimer disease. 

• Leverage. Through partnering, foundations can increase the available budget. 
• Take a long term view. For more than 120 years, the Institut Pasteur is contributing to 

the prevention and treatment of disease. 
• Apolitical advocates. 

 
A good illustration of these principles is the involvement of the Welcome Trust. One of its 
major achievements has been the support of the Human Genome project and its role in 
ensuring free global access to sequence data. Currently, foundations are also advocating for 
open access making it a requirement for grants. 
 
Current challenges for researchers 
 
The society is more and more asking researchers to go beyond their traditional role. It is no 
longer sufficient to provide scientific facts and results and to do knowledge transfer. 
Scientists are now asked to actively participate in interactive communications with the public 
to foster its involvement in science and technology. 
 
 
Conclusion: The role of foundations in facilitating change 
 
Given the billions of Euros spent by public authorities and enterprises it is indeed not the 
overall amount of money spent, but rather the approach taken by foundations that makes the 
difference. 
 
Research foundations are helping research efforts in a variety of ways: 
 

• Stimulating private means and initiatives for the benefit of the public at large. 
• Identifying relevant topics or infrastructural demands for priority-setting. 
• Assisting in implementing topical or structural innovation framework. 
• Contributing to the creation of a research-friendly society. 

 
Private foundations have several unique advantages to promote change: 
 
They can act much more freely and quickly, putting objectives on top of rules and 
regulations, without having to wait for political consensus. 
 
They can act autonomously in supporting the first experiments in new areas and in taking 
risks. 
 
Foundations have the flexibility to quickly respond to the needs of the research community, 
to pilot projects, and to trigger spending on research by bigger funders. 
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Abstract

Context: Probabilistic graphical models offers an attractive framework for the representation and
the learning of biological complex systems. As generative approaches, they allow to model the
joint probability law of variables at hand. As graphical models, they represent observed and hid-
den variables as nodes of a graph whose structure governs the conditional dependencies between
variables. In the case of gene regulatory networks, different Bayesian networks (BN) have been
proposed from static models to linear (or non parametric) dynamical Bayesian networks. The iden-
tification or the completion of these models from transcriptomic data and prior knowledge raise
several questions: the model complexity, the minimal number of data needed to find a suitable
model and the issue of structure learning. In this work, we focus on learning structure in models
for which the structure is not encapsulated in parameters but has to be determined explicitly. As
the problem of structure learning is known to be NP-hard, the approaches such as evolutionary
algorithms that favor a large exploration of the solutions space and avoid to be stacked in local
minima seem especially adapted. We propose here to enhance an optimization method based on
an evolutionary algorithm and focus on static Bayesian networks, essentially for data availability.

Methods: BN structure manipulation (which has to be a directed acyclic graph (DAG)) is a very
difficult task due to the acyclicity constraint on this class of models [1] . Instead of evolving bi-
nary strings, we apply dedicated recombination and mutation operators that deal with the building
blocks of the DAGs : edges. They rely on an efficient method that finds and repairs cycles ap-
pearing in a child during the reproduction step. Finally, we introduced in the selection step an
adaptation of the deterministic Crowding method [2] which only involves a ”low cost” similarity
measure between DAGs, to avoid premature convergence.

Results: We test and validate our approaches on known artificial data. We sampled an artificial
networks with 12 nodes (discrete random variables) with a parsimonious topology and generated
a 500 samples data set. We performed 10 learnings per parameter configuration and study the
performances of the optimization strategy depending of the reproduction methods used and on the
Crowding method. As expected, the usage of the Crowding method improves the optimization
process : obtained BN graphs are more accurate and reproducible. Conversely, the various repro-
duction methods yield similar results. Future work will include additional studies on the ability
of our evolutionary approach to deal with samples of small size in order to cope with bio-realistic
data. A similar approach will be also implemented on dynamic Bayesian networks.
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Résumé 

Les processus de Markov à sauts permettent la modélisation des phénomènes stochastiques en 
biologie moléculaire. Néanmoins, il y a peu de résultats mathématiques sur la dynamique de 
ces processus. Aussi, leur simulation sur ordinateur rencontre des difficultés reliées au temps 
d'exécution. Nous présentons des résultats permettant de réduire la complexité de la dynamique 
stochastique. Ces méthodes utilisent des théorèmes limites probabilistes.

1    Introduction

Plusieurs  observations nous  conduisent  à  introduire  une  approche  stochastique dans  la 
dynamique des réseaux de gènes en biologie moléculaire. Parmi ces observations une des plus 
importante est le phénomène de faible dosage: certains gènes en nombre insuffisant peuvent 
être exprimés par certains cellules et ne pas l'être par d'autres cellules du même tissu. C'est le 
phénomène de haploinsuffisance (Cook at al., 1998). Dans les mesures par des méthodes de 
fluorescence des niveaux d'expression du même gène dans des cellules du même type, on 
constate des distributions  statistique  des niveaux d'expression,  dépendantes des conditions 
externes (ceci étant connu sous le nom de variabilité épigénétique). Une troisième catégorie 
importante est celle des phénomènes de bistabilité du phage lambda (liés au niveau du gène 
lytique cro).

Les trajectoires des processus de Markov à sauts convergent vers des trajectoires déterministes, 
solutions d' équations différentielles, lorsque le nombre de chaque type de réaction par unité de 
temps est important (Kurtz, 1970, Kurtz, 1971). Dans cette limite, appelée limite fluide par 
analogie avec le même concept en recherche opérationnelle, les phénomènes stochastiques 
disparaissent. Il s'agit de la loi des grands nombres pour les processus de Markov. Dans les 
mêmes conditions, il existe aussi un théorème central limite qui permet l'approximation des 
processus de Markov par des diffusions (Kurtz, 1971, Allain, 1976, Gillespie, 2000).

Des modèles déterministes par morceaux, même très simples, couvrent une large gamme des 
comportements. Nous avons classé ces comportements selon la loi invariante du processus et 
selon le temps de retour.

La présentation sera concentrée sur trois exemples:
(A) bistabilité de phage lambda (modèle de Hasty);
(B) le phénomène de haploinsuffisance (modèle de Cook)
(C) le transport du bruit dans les modules de signalisation (cas du NfkB).

96 MODELLING COMPLEX BIOLOGICAL SYSTEMS



Measles Virus infection: a mathematical approach

J Druelle1, E Grenier2  & TF Wild1

1 “Immunité et Vaccination” INSERM U404 IFR128 Biosciences Lyon Gerland 69007 Lyon, France
2  “Unité de Mathématiques Pures et Appliquées” École normale supérieure de Lyon, CNRS UMR 5669 

69007 Lyon, France

Six structural proteins (N, P, M, H, F, L), one RNA, a few lipids compose Measles 
Virus (MV). From this simple recipe, appears a complex replication mechanism far from being 
completely  understood.  Understanding  the  basis  of  viral  infection  and  predicting 
mathematically the progression of viral cycle presents a great scientific challenge. In this study 
we  want  to  analyze  in  silico MV  replication. We  have  therefore  established a  partial 
differential  equations system following  step by  step what  we  know presently about MV 
infection.

The  replication  cycle  of  a  single stranded negative  non  segmented RNA virus  is 
composed of several steps more or less well characterized.

The viral particle (pfu) fixes to one of the  10  5   receptors at the cell surface with a 
certain “probability of attachment”. The virus “entry” depends on the cell. After the fusion, 
one  genomic RNA (gRNA) is introduced. It is associated to  3000 N protein.  Polymerases 
composed of P and  L proteins are also released into the cell. Those polymerases  begin the 
“transcription” of the gRNA in different messenger RNA (mRNA) coding for each of the 8 
proteins (N, P, C, V, M, H, F, L). It is admitted that when the N protein concentration exceeds 
a  “certain  amount”,  the polymerase shifts  its  activity in  “replication”. It  produces  anti  
genomic RNA (agRNA) equally associated to the N protein. This agRNA is also “replicated” 
into gRNA. All the metabolic resources, the nucleotides and the amino acids are provided 
by the cell that becomes exhausted as the infection goes. When the concentration in M protein 
exceeds a “certain amount”, “encapsidation” (i.e. the assembly of  gRNA and the  proteins) 
occurs. The free virus (= pfu) that has been produced will be able to infect other cells if they 
still have a “sufficient” number of  receptors. Actually, the contact between the H protein and 
the receptor induces the “downregulation” of the receptor. But, if the cell expresses a “certain 
amount” of H protein at its surface and if the adjacent cells still express a “sufficient” number 
of receptors, they will fuse and form a syncytium. 

At the end, we have also to take into account that every molecular species degrade 
themselves at a “certain rate”. Moreover, even if they are ill characterized, it is admitted that in 
a viral suspension, there are non infectious defective particles that enter in competition with 
the  efficient virus (=  pfu). It  is  supposed that  its  “shorter genome” does not  allow it  to 
produce every necessary mRNA but permit it to be “replicated faster”.

In the context of this actual understanding of MV infection, our model follows the 
evolution of  every molecular species time after  time. Some parameters  are  well  known 
whereas many are still “unknown”, “supposed” or “evaluated”. Numerical simulation of our 
system of  PDE gives  encouraging results.  However,  we  lack  sure  data  about  numerous 
parameters.  This  project  will  allow us  to  improve  the  importance  of  parameters  like the 
existence of several receptors for the virus depending on the strain or the precise role of V and 
C non structural proteins.
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2 École Normale Supérieure, Centre Cavaillès, INSERM, 29 rue d’Ulm, F-75005 Paris

Abstract

The stochastic nature of gene expression and the stochastic variability in cell differentiation chal-
lenge the deterministic view of the genetic program. Other models have been proposed, such as
a Darwinian theory of cellular differentiation [1]. A description of computer simulations of this
model is given. Kinetic analysis of the simulations exhibits the advantage of restricted stochasticity
over deterministic version of this model. It also shows that cell apoptosis improve the performance
of the model. Last part deals with the simulation of gene expression.

Darwinian theory of cellular differentiation
Computer based simulations

The computer model is described in detail in [2]. The cell population consists of two cell types A
and B, each corresponding to the activity of one gene either a or b. These two genes code a or b
molecules. They diffuse, subsequently each cell is situated in a micro-environment characterized
by their concentrations. The probability P of a cell being either A or B is a decreasing function F
of the concentration in its environment of a or b molecules. The simulation of this model generates
a bi-layer cell structure of finite growth.

Kinetic analysis

The time step at which the bi-layered cell structure appears are recorded for 1000 simulation runs.
Different values of the parameter governing the stochasticity of the model are used to produce
either an extensively stochastic, a restricted stochastic or a deterministic version of the model. The
results show that the restricted stochastic version of the model improves the reproducibility of the
bi-layer formation.

Cell apoptosis

We have suppressed cell death from the model. The simulations show that the cell bilayer for-
mation is impaired. Thus cell death improves tissue organization in the context of the Darwinian
model. This provides a strong explanation for its evolutionary origin.

Gene expression and chromatin simulation

This model is closely linked to the expression of gene. Expression of gene is a stochastic process.
We are currently designing such simulation using a multi-agent system approach, with agent such
as bio-molecule or chromatin.
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Abstract

”In silico” simulations of biological processes must take into account several kinds of complex
molecular behaviors. Simulation of membranes, due to interactions between phospholipid bilayers
and enzymes embedded in them, are typically an example of such complexity. A way of modeling
theses membranes and the enzymes embedded is to use ordinary differential equations. Such
models describe the global evolution of the system with the use of averaged variables but many
biological aspects are still difficult to describe: too few molecules reacting (no average behavior),
influence of the conformation of the molecules, etc.. On the contrary, multi-agent models are
powerful tools to decompose complex interactions between agents (molecules) in simple local
behavior animating each agent. Interactions between agents (phospholipids) allow to observe the
emergence of membranes with various properties: self-assembly, self-repair, semi-permeability
and insertions of membrane proteins. Such models recently published (L. Edwards Artificial Life,
(4), 1998) have already shown emergence of self-assembly in 2D space. In this work we have
focused our work on a 3D space simulation of the mitochondrial membrane.

In a multi-agents system, the agents are considered to be autonomous entities. Their behaviors
are the consequence of their local perception, their knowledge, their goals and the interactions with
the neighbors in an environment. Some models of membrane have been already developed with
multi-agents formalism, from the more realistic one (molecular dynamics) to the more abstract one
(graph of interconnected nodes).

The model we propose can take into account several types of reactants agents (phospholipids,
enzymes, metabolites,...). The time is discretized with a constant time step and a scheduler is
defined for each type of agent. The 3D space is continuous but a discretized grid optimizes the
neighbors research. The granularity of a model is given by the precision of the abstraction done
by the agents (molecules). On the one hand an abstraction of a molecule by a single point is not
enough to take into account a dynamic 3D structure and its spatial orientation. On other hand
molecular dynamics at the atom level is not possible for a whole organelle due to the large number
of entities to compute and the huge resource consumption increase. Thus, we propose to reduce
the granularity at the atom set level, abstracting each agent (molecule) to its gravity center and
a unrestricted list of interacting points moving around it. An interacting point is a portion of
molecule, an atom set, that exhibits common properties and could be affected by external forces:
hydrophobia, electrostatic charges, etc. Interactions between agents (molecules) are reduced to a
set of forces, linear and rotation movements resulting from an physic engine. This design keeps
information about the 3D structure of the molecule and its space orientation but also its internal
dynamics. It gives a compromise between the ”unreachable” complexity of molecular modelling
and the abusive abstraction of molecule by points (spheres).

In this context we have studied the specific case of the respiratory chain, a pool of five enzy-
matic complexes embedded into the inner mitochondrial membrane. We would be able to under-
stand the emergence of inner membrane complex structures and their impacts on enzymatic chain
reactions. We think that the multi-agent paradigm, thanks to the features of our model, allows
to study the link between the cristae of the inner membrane and the raft of the enzymes of the
respiratory chain.
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Abstract

Metabolic processes involve numerous enzymatic reaction pathways and constitute complex inter-
action networks. Most often each enzymatic reaction implies at least two metabolites (molecules)
and the level of interactions depends upon each participant current state. Even if participant ex-
hibit a small number of different possible states, this can lead to a combinatorial explosion of the
number of reachable states of the whole system. Using a multi-agent design it is possible to re-
duce this complexity. In such design, agents are enzymes or metabolites and each of them stores
its own state. The complexity is then recovered during the computer simulation of the process.
We have studied a specific case of metabolic process, called the Q cycle, which involves one en-
zyme and two types of metabolites. The Q cycle is the central part of the respiratory chain in
mitochondria which mainly produces cell energy. Each metabolite can have two or three possible
oxydo-reduction states depending on their type. The enzyme has six reactive sites and each site has
two possible states : free or occupied by a metabolite. Taking into account all the possible states of
the system leads to model several hundred system states. A traditional way in biology is to code the
system by a set of differential equations. We show that a multi-agent system can model this kind
of process more easily than the traditional one. The obtained tool allows to manage and to modify
conditions of simulations for testing different hypotheses on normal or pathological situations in
an easy way.
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Abstract

Metabolic pathway analysis is essential to study metabolic network behaviour. Theorical ap-
proach as elementary flux mode enables to study the network properties. Their determination
lead to combinatorial explosion of their number when the network is complex. We have applied
this formalism to three metabolic networks : mitochondrial energetic metabolism of muscle, liver
and yeast. We have elaborate classification method of elementary modes to analyze the obtained
re- sults. This method based on an agglomeration of commun patterns allows us to interpret sets
of elementary modes, to find their biological meaning and to express links between reactions.
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Problem

The class of problems we address belong for the most to the field of optimization problems. These
problems are modeled with graphs and bound to uncertainty. This uncertainty can be related to :

• information about this problems that are imprecise or unreliable,

• dynamics in the structure of the problem that evolve qualitatively/structurally in time.

We focus here on dynamic environments.
The evaluation of a solution in this kind of problem seems difficult since the problem is con-

stantly changing and a solution generated at time t can become irrelevant at time t + 1 since the
problem has changed. This is typically the case for some classical optimization methods that con-
struct solutions iteratively. When the solution arrives it is already outdated because it refers to an
environment that do not exist anymore. That is why the definition of a relevant evaluation function
seems problematic.

Approach

Rather than focusing on the formulation of such global function, our interest goes to the nature of
a solution. In a graph, even bounded by dynamic, for some problems, solutions can be qualified as
parts of the original graph. These parts are identified as structures that can be subsets of vertices
and/or edges, subgraphs, it can be paths or sets of paths. The shape of a structure mainly depends
on the way the problem is modeled. In this way any structure/solution observed in the graph
corresponds exactly to the actual state of the graph since it is part of it.

Ant-Based Systems

In concrete terms, the system that can construct this kind of structure needs to be able to evolve in a
dynamic environment and to modify the environment so as to raise structures from it. Ant colonies
have a decentralized, multiagent system based approach that allow dynamic environments and their
stigmergic way of communication give them the ability to produce observable structures.

Moreover, this system presents more abilities. Firstly, indirect communication allow robust-
ness. Indeed, robustness is said to be the resilience of the system, the ant colony is still able to
run when some parts of the colony are out of order because no synchronization, no meet point is
reached. Secondly, interactions between entities gives the system some flexibility. This means that
changes in the environment don’t drastically change the behavior of the system. The system adapts
when the graph looses or gets some edges/nodes.

Related Bibliography

E. Bonabeau, M. Dorigo, G. Theraulaz. Swarm Intelligence: from natural to artificial systems,
Oxford University Press, 1999
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Context

The intracellular environment is the place of a large variety of enzymatic reactions, transport and
diffusion of molecules. These networks of thousands of reactions are differently activated or re-
pressed, according to the type and the state of the cell (Atlan, 2002). Modelling appears to be a
relevant approach to gather all the parts of this puzzle, not only to predict the behaviours of the
system, but also to structure and organize the knowledge. The development of such models implies
a multi-field and collective approach, associating biological knowledge, mathematical formalism,
and simulations.

In this recent context, the aim of this work is to develop a global model of apoptosis, in-
tegrating the presently distributed and heterogeneous knowledge, about this signalling pathway.
Programmed cell death or apoptosis is a highly conserved pathway, that is functional in all higher
organisms. This mechanism eliminates defect cells without damaging neighbouring tissue cells
and is therefore recommended for tissue maintenance (Reed, 2002). However, dysregulation of
apoptotic signalling can play a role in various diseases, with insufficient apoptosis leading to can-
cer (cell acumulation), whereas excessive apoptosis contributes to ischaemia (stroke).

Most of the molecular mechanisms of the apoptosis have been elucidated during the last years.
However, in spite of an always increasing number of works on the subject, there are not any
experimental approach to know all the modifications of the molecular concentrations, occurring
in the apoptotic process. Then, mathematical modelling and simulations become essential tools to
understand and study the global behaviour of this signalling pathway (Bentele et al., 2004).

1 Modelling

The first stage of work was to develop a discursive model of the apoptose, which integrates the
knowledge that is actually available. This model is a rigorous framework to synthesize information
of various origins (Fussenegger et al., 2000).

The second stage was to implement the mathematical model. The global discursive model of
the apoptosis had been divided into two sub-models. The first one describes the extrinsic pathway
(with an extracellular signal on the death receptors). The second one describes the mitochondrion
pathways (intracellular signal by DNA damage, treatment with cytotoxic drugs or irradiation). In
both cases, the cascade of the kinetic reactions involves a large number of enzymes. For this reason,
the mathematical formalism chosen is based on a system of ordinary differential equations. The
two sub-models are implemented with the software Matlab. The first runs of the simulation are
based on data found in the literature. These simulations have been used to determine the missing
parameters of the model and to test its robustness.
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2 Simulation

Currently, the simulations are used to find the most sensitive signalling molecules and to predict
the systemic behaviour of apoptotic signalling, with different molecular concentrations or with in-
teraction of chemotherapeutics. Our main objective is to use this model to generate experimentally
testable hypothesis, regarding new therapeutic approaches. At this stage, the project will rely on
the expertise of teams of biologists and clinicians, in order to integrate data provided by in vivo
and in vitro studies. The new experiments, raised from these simulations, will provide valuable
feedbacks to improve the model.

Finally, the ultimate objective of this project is to integrate the cellular model of death, in models
developed to study cancer (ModCan project, Ribba et al., 2005) and stroke (AVCisi project, Dronne
et al., 2004). The aim is to obtain a global model of these complex pathologies, in order to carry
out simulations to guide therapeutic innovations.
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Abstract

Understanding and identifying biological complex systems at work in the cell requires to develop
models able to capture the stochastic nature of biological processes as well as their dynamics.
Focusing on genetic regulatory networks, we propose a new quantitative model in the form of
a bayesian dynamical network that allows to represent both genes and proteins in the same net-
work. We started from the non-linear differential equations of Michaelis-Menten which are the
gold-standard to represent biochemical interactions and develop a discrete-time and probabilistic
model from these equations. Our work can be seen as an generalization of the model proposed
recently by Nachman et al [1] in which the regulation function of transcription factors on their
target genes takes the non-linear Michaelis-Menten form. In our approach, we introduce a higher
detailed model where the dependency between the regulatory proteins and the genes that code for
them as well as post-transcriptional events (e.g., protein-protein interactions, protein degradations)
can be taken into account. In the resulting continuous nonlinear dynamical system, the proteins
are considered as hidden variables while genes are observed variables through transcriptomic mea-
surements. In order to learn the parameters of this new dynamical system, we have developed
an approach based on the Unscented Kalman Filter which is able to estimate simultaneously the
kinetic parameters and unobserved protein activities given the structure of the network. The gen-
erality of the learning method opens the door to various adaptations of the model if required by the
biology. However this Unscented Kalman Filter like algorithm does not solve the structure learn-
ing problem whose nature remains NP-complete. While forging new strategies for this problem,
we present in this work a classical greedy-like approach for the search in the structure space.

Numerical results on parameter estimation in several small networks with synthetic data are
presented and show the relevance of the model.
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Abstract

Network analysis and modeling consist of study of individuals that are linked together into 
complex networks. Networks refer to artificial and natural systems like random networks and 
biological networks. They constitute a very active area of research in a variety of scientific 
disciplines,  including  Physics,  Biology  and  Social  sciences.  Graph  theory  and  techniques 
recently developed for the analysis of networks, provide a substantial background for studying 
complex networks structures and dynamics. One of the key features of natural networks is their 
ability to adapt to their environment. Graphs are not isolated. In this paper the environment is 
modeled by an other network that interacts with the first one. Such adaptive capacity can be 
found in  a  whole  range  of  natural  networks  like gene-protein  interaction networks  within 
individual cells involving both genetic regulation and protein-protein interactions. In order to 
understand the structure and dynamic network characteristics that underlie interactivity of the 
network, one need to understand how couples of graphs interact together and correlate. 
We studied  the  Saccharomyces  cerevisiae  data  set.  The  complete  network  contains  4487 
proteins,  9971  protein-protein  interactions  or  complexes  (PPI)  and  7455  transcriptional 
regulations interactions (TRI). 
Analysis  of  this  heterogeneous  network  showed that  protein  interactions  are  organized  in 
strong  layers  upstream of  the  genetic  regulatory.  This  topological  structure  also  strongly 
correlated with localization data. This allows to annotate proteins as Co-Regulators and Co-
coregulators and to  understand how crosstalk occurs and are hardware coded upstream of 
regulation.
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Abstract

In this paper, the dynamics of the cyclical organization of simple protein networks and its appli-
cation to the budding yeast cell cycle are studied by constructing nonlinear models. The protein
network consists of two small cyclical loops, where each loop in the absence of interaction with
the other exhibit different dynamical behavior. Bistability is exhibited by one loop in which the
proteins are positively regulated by the preceding one and in turn regulates positively the subse-
quent one in a cyclic clockwise fashion. Limit cycle oscillations are exhibited by the second loop
in which the proteins are negatively regulated by preceding one and in turn negatively regulates the
subsequent one in a cyclic anticlockwise fashion. Coupling of both the cyclical loops by positive
feedback loop displays complex behavior such as multi-stability and coexistence of limit cycle and
multiple steady states. The coupling of two cyclical loops by the positive feedback loop brings
in the notion of checkpoint in the model. The model also exhibits dominoe like behavior, where
limit cycle oscillations takes place in a stepwise fashion. As an application, the events that govern
the cell cycle of budding yeast is considered for the present study. In budding yeast, the feedback
interactions among the important transcription factors, cyclins and its inhibitors in G1, S-G2 and
M phases are considered for the construction of the biological circuit diagram.

Surprisingly, the sequential activation of the transcription factors, cyclins and its inhibitors
forms two independent cyclical loops, with transcription factors involves in the cyclic positive
regulation in clockwise direction, while the cyclins and its inhibitors involves in the negative reg-
ulation in anticlockwise direction. The coupling of the transcription factors and the cyclin and its
inhibitors by positive feedback loops generates rich bifurcation diagram that can be related to the
different events in the G1, S-G2 and M phases in terms of dynamical system theory. The differ-
ent checkpoints in the cell cycle is accounted for by appropriately silencing the positive feedback
loops that couples the transcription factors and the cyclin and its inhibitors.
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2Programme Epigénomique,Génopole, 523 pl. des terrasses de l’Agora, 91057 Evry
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Abstract

In this work, we propose a general methodology based on automated deduction and statistical
inference that helps the biologist to mine large datasets, extract and filter information, confront
sources of data and finally gather various pieces of evidence for raising hypotheses about the regu-
latory processes. Devoted to the analysis of perturbed data, this approach is directly inspired from
the work of the biologist who defines a set of experiments to analyse logically the results using
his/her background knowledge as well as logical reasoning. We used this approach to identify new
transcriptional regulatory pathways in the case of the response of the yeast (Saccharomyces cere-
visiae) to irradiations. The variables of interest (genes of the yeast) are described by seven-time
points series of expression taken during the period time of cell response to irradiation, and mea-
sured for yeast strains differing by their genomic status (gene knock-out, ploidy and mating type
variations). While our methodology is driven by these gene expression data, it makes use of other
sources of data that provide descriptions of the same genes but according complementary criteria:
functional annotations, existence of known or potential regulators, position on chromosomes. Four
steps are required: 1) we identify groups of genes that remain co-expressed across all the tested
strains. This search is performed with spectral clustering, a recent kernel-based clustering method,
using on a linear combination of similarities measured for each considered yeast strain. Cluster-
ing provides a codebook of clusters representants (average expression profiles). 2) we use these
mean expression profiles to determine clusters of interest. A cluster is considered to be of interest
if its average kinetics profile reveal expression variations after irradiation and present a singular
behaviour for one or more of the genetic alterations. 3) we consider each cluster of interest and test
how much the set of genes in a cluster of interest is homogeneous according the secondary sources
of data. At this stage, we are able on one hand, to identify which of the co-expressed genes par-
ticipate to same physiological function and on the other hand, to detect if the co-expressed genes
share some biological features that could reveal and explain their co-regulation. 4) the last step
is a deduction process which can be formalized using first order logic: we formalize biological
knowledge relevant for the studied genes into (logical) theorems and use them in combination of
informations induced at steps 2 and 3. Using logical deduction process such as modus ponens,
assumptions about the nature of regulatory mechanisms are produced. By means of this four step
strategy we characterized a set of gamma-rays yeast responses. First, we confirmed the relevance
of our methodology by retrieving a response of a large set of genes that has previously been iden-
tified in [1] and second, we provided evidence for the hypothesis that this set of genes could be
in fact divided into two clusters with two distinct transcriptional regulatory mechanisms (one of
them involving a potential dependency on chromatin structure modification). Targetted laboratory
experiments are now programmed to validate this hypothesis.
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Abstract

The concepts of stoichiometric matrix, elementary flux modes, extreme pathways and 
metabolic pathways provide insights into the analysis of metabolic networks for understanding 
the  relationships  between  structure,  function  and  regulation  of  the  metabolic  systems 
reconstructed  from genomic data. In  recent years, several studies were dedicated  to these 
concepts which yielded a rigourous formalism to describe and assess the metabolic processes. 
Specially, various algorithms where devoted to the computation of elementary flux modes. The 
most  prominent  algorithms are  the  first  one  developed by  S.  Schuster,  D.  Fell.  and  T. 
Dandekar, then the one developed by C. Wagner and the more recent one elaborated by J. 
Gagneur, S. Klamt in their unifying framework and new binary approach where it is shown 
that the both former algorithms can be embedded in a more general algorithmic framework 
stemming from computational geometry.

In this work, we describe a new algorithm based on the duality between two concepts 
stemming from network flows theory. This algorithm elaborates a basis of elementary flux 
modes that is also a basis of extreme pathways. Moreover, we also present how one can get a 
lower bound for the number of bases of elementary flux modes in metabolic networks.
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