
 
 
 
 
 
 

Proceedings of the Autrans seminar on 
 

Modelling and simulation of 
biological processes in the 

context of genomics 
 
 
 
 
 
 
Edited by:  Patrick Amar, François Képès, Victor Norris & Philippe Tracqui  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cover design and book layout: Patrick Amar



 

 



"But biotechnology will ultimately and usefully be better served by following the spirit 
of Eddington, by attempting to provide enough time and intellectual space for those who 

want to invest themselves in exploration of levels beyond the genome independently of 
any quick promises for still quicker solutions to extremely complex problems." 

Strohman RC (1997) Nature Biotech 15:199 
 

FOREWORD 
 

What are the salient features of the new scientific context within which biological modeling 
and simulation will evolve from now on ? The global project of high-throughput biology may be 
summarized as follows. After genome sequencing comes the annotation by ‘classical’ 
bioinformatics means. It then becomes important to interpret the annotations, to understand the 
interactions between biological functions, to predict the outcome of perturbations, while 
incorporating the results from post-genomics studies (of course, sequencing and annotation do not 
stop when simulation comes into the picture). At that stage, a tight interplay between model, 
simulation and bench experimentation is crucial. 

 
This scientific development is necessarily a long-term trend for the following (non 

exhaustive) reasons. 
1. (Post-) genomics is characterized by the massive accumulation of molecular data, 

allowing in principle to generate predictions of a more quantitative nature than before. 
Modeling / simulation is the priviledged tool to test quantitative predictions that involve 
a great number of objects and their interactions. Since we ultimately challenge our 
understanding of biological phenomena by prediction testing, simulation is going to play 
a major and increasing role in the progress of the biological sciences.  

2. Simulation becomes irreplaceable when it is difficult or impossible to experiment on live 
material for economical, technical or ethical reasons. The predictive outcome of a 
successful simulation guides the in vivo experimentation, thus reducing its cost ; the in 
vivo experimental results validate or falsify the initial model : this is how the synergistic 
loop between these two types of experimentation can be primed. 

3. Ambitious modeling / simulation attempts stumble on fundamental obstacles, including 
the lack of proper definitions for such basic biological notions like information, function, 
organization, and the difficulty of defining the domain of observability / falsifiability of 
a model. Overcoming these obstacles requires a long-term effort. 

4. The now recognized relevance of mechanical processes in the control of biological 
functions at different levels (DNA accessibility, endomembrane morphogenesis, signal 
mechanotransduction, cytoskeletal and cell adhesion remodeling...) can hardly be 
analysed without considering physical models and associated simulations based on 
mathematical descriptions. 

 
The undersigned are scientists from various (geographic and scientific) areas who started in 

January 2001 to face these challenges in a stimulating year-round workshop that was initiated and 
supported by genopole®. Some of us were initially more familiar with the field of modeling / 
simulation, while others were involved in various aspects of (post-) genomics. After 14 months of 
work, we held a small multidisciplinary seminar in Autrans, which was open to everybody. For us, 
it was an opportunity to listen to other viewpoints and to improve our work following suggestions, 
reactions and criticisms. In the course of, and beyond the scientific program, this seminar was a 
permanent (albeit mostly from 8 am to 1 am) forum for informally exchanging ideas. 
 

We are glad to welcome to our year-round workshop several participants who expressed 
their interest in our endeavors. 
 
Patrick Amar, Pascal Ballet, Gilles Bernot, Paul Bourgine, Alessandra Carbone, Franck Delaplace, Jean-Marc Delosme, 
Maurice Demarty, Jean-Louis Giavitto, Christophe Godin, Misha Gromov, Janine Guespin, Roberto Incitti, François 
Képès, Olivier Michel, Victor Norris, Alain Rambourg, Michel Thellier, Philippe Tracqui, Abdallah Zemirline. 
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Hyperstructures 
 
Synthesis proposed by Janine Guespin-Michel 
 
I chose to present the discussions of this workshop, not as a report of the events but as a 
presentation of the topics, namely: what are hyperstructures? What is the aim of this concept? 
What is the use of simulating hyperstructues?  
The drawback of this choice is that it does not show the evolution of the discussion during the 
2 hours of the workshop, from a rather critical attitude toward a more positive one. 
 
The propositions of the organisers of the workshop (Michel Thellier and Vic Norris) are in 
italics 

I. What are hyperstructures ? 
  
 They appear during the operation of a particular cellular function (when this 
functioning requires association between macromolecules),  and as a consequence of it, for 
instance as changes in affinity between the molecules that stabilise their association as long 
as the function is required.  

 They are most often of a heterogeneous nature and in addition to proteins and lipids 
may also involve DNA, RNA, ions etc.. 

 Many of them are dissipative structures that only exist during active, energy- 
consuming functioning. But Vic Norris proposes that they include some of the stable cellular 
substructures 

Examples:  
-protein/protein: an enzymatic complex has been described by J. Ricard, the structure 

of which exists during its functioning but lasts a little longer 
-proteins /lipids: the hyperstructure which consists in the PEP phsphorylating glucose 

permease, might also involve the glycolytic enzymes thus leading to channelling.  The 
bacterial chemiotactic apparatus (Denniss Bray) 
 -protein/lipid/DNA : bacterial cell division structures 
 -Proteins/lipids/DNA/RNA: transertion structures in bacteria.  
 Structures that are more or less stable depending on the species: The Golgi apparatus. 
  Stable structures:  mitochondrion (or more exactly, hyperstructures within the 
mitochonrion mediated for example by calcium binding to cardiolipin). 

   
Discussion; 

Some mathematicians wondered whether the word “ structure ” was really appropriate, 
since, in mathematics it was successfully replaced by the word “ category”. (A discussion 
ensued, that showed that so far this does not seem to be pertinent in biology where the word 
“ structure ” seems satisfactory)  
 Questions: Are hyperstructures purely material, or might they be virtual such as 
metabolic networks  (Spatial co-localisation is essential) 
 Is there a level of generalisation? 
 Is there evidence for a glycolysis hyperstructure ?  
  Since these structures are often short-lived, could they include intermediate metabolic 
steps?  



Is it the material aspect (structure) or their purpose (function) that is the pertinent level to 
characterise them?  (The interesting point is precisely that these two properties are 
interconnected, and cannot be dissociated) 
 Do time constants impose hierarchies?  How can you account for the existence of, say 
three time scales in chemiotactism? Were thermodynamic studies performed ?   
 
 Critics. This concept groups structures of much too widely different natures, it is too 
much heterogeneous (stable/unstable, different sizes, different time scales).  

 
 Proposals  and agreements. 

Wouldn’t it be simpler to call them dissipative structures?  
Cells from the immune system form aggregate through chemical reactions that mediate 

the scale change. They may be a new example of hyperstructures in which chemical 
modifications and not only affinity changes are involved in the formation of the structure. 

 Thermodynamic studies have been performed for the mitotic spindle, which is a very 
good example of a hyperstructure.  
 

II. What is the aim of the hyperstructure concept ? 
This notion allows us to :  
- handle a biological level intermediate between the molecule and the cell 
- focus on the importance of the function for the structure (in contrast to the general 

point of view that stresses the reverse relation). 
- connect approaches most often dissociated, between fields in biology, (genome, 

proteins/lipid affinities,  various networks) or even between biology and other scientific fields 
(liquid crystals, tensegrity …) 
 
Discussion:  
 Critics:  

-There is a lack of experimental work in this field, mainly because experimental work 
is not even possible in most cases. (A reply is given in the next section. 
 -Too many unrelated ideas. (For instance the liquid crystals are only interesting in 
biology for studying DNA through very nice experimental devices. (Vic Norris strongly 
advocated the broader interest of liquid crystals). 
  
 Proposals and agreements  
This concept emphasises several new and important aspects: 

-The importance of taking into account three-dimensional space,  
-The importance of the dynamics between construction and destruction. 
-The importance of being aware of the possible multiplicity of functions for a single 

protein, which should have consequences in terms of evolution theory and of localisation. 
-In addition it stresses the importance of working hypotheses, in contrast to more than 

10 years of data accumulation without explicit hypotheses 
 
The cell cycle in E.coli is a good example of what the hyperstructure concept can contribute. 
Although everything seems known concerning this bacterium, whose genome has been 
sequenced for some time, it is still impossible to understand the mechanisms underlying 
something of such paramount importance as the cell cycle. None of the explanations offered 
so far are satisfactory. Why is this? Couldn’t it be that current explanations sought arise from 



a quest for THE  miracle protein? What if, instead, the explanation were in terms of an 
interaction between dynamical structures1? 
 
A posteriori the author of the synthesis has taken advantage of her position to add one more 
argument: The chemiosmotic gradient was discovered by Mitchell when the whole community 
in the field was looking for the miracle protein. Mitchell showed that the answer was a proton 
flux (I do not know whether a hyperstructure can be involved). This explanation was only 
accepted after a long history of rejections, mainly from editorial boards. (Mitchell had to edit 
his own journal). 
 

III What is the use of simulating hyperstructures? 
 
As noticed before, the concept of hyperstructure is rather complicated and often not easily 
amenable to experimental testing. Therefore, in silico experiments are needed to allow 
investigation of  some of their properties, and even to test whether the concept is coherent. 
An example is the 3D model created by Lois Le Sceller2 which shows that it is  possible to find 
simple general rules to generate hyperstructures whose existence and stability depend on a 
flux of material. 
Models may also prompt new ideas.  (Indeed the very idea of a level of hyperstructures arose 
from the combination of a biological enigma and a very simple simulation of structure 
generation by a multi-agents model) 
 
Discussion. 
 -When the model is not amenable to experimental tests, one must be very cautious in 
choosing the formalism to avoid generating automatically the expected results. 
 -Multi-agent models may be best suited for the purpose of simulating hyperstructures. 
 Nowadays, hypotheses tend to be limited by the technology available. In the case 
where the hyperstructure postulated is not readily amenable to experimentation, simulation 
may permit the emergence of unexpected properties characteristic of the living system. Three 
steps may be proposed: formulation of the hypothesis (the hyperstructure); simulation, that 
allows the multiple consequences of the hypothesis to be revealed and that may suggest novel 
experiments; performing these experiments.  
 
 
 
 

 

                                                 
1 NORRIS V, ALEXANDRE S, BOULIGAND Y, CELLIER D, DEMARTY M, GREHAN G, GOUESBET G, 
GUESPIN J, INSINNA E, LE SCELLER L, MAHEU B, MONNIER C, GRANT N, ONODA T, ORANGE N, 
OSHIMA A, PICTON L, POLAERT H, RIPOLL C, THELLIER M, VALLETON JM, VERDUS MC, 
VINCENT JC, WHITE G, WIGGINS P.  Hypothesis: hyperstructures regulate bacterial structure and the cell 
cycle. Biochimie 81: 915-920.  
2 Le SCELLER, L., RIPOLLl, C., DEMARTY, M., CABIN-FLAMAND, A., NYSTROM, T.,SAIER Jnr, M. and 
NORRIS, V.  Modelling bacterial hyperstructures with cellular automata. Interjournal of Complex Systems : MS 
366. 



 



Endomembranes 
Synthesis proposed by Roberto Incitti 
 
The starting point of the “endomembranes” session is a model for the morpho-genesis and the 
function of the Golgi apparatus, based on one experimental approach of A. Rambourg and F. 
Képès. The model was presented and discussed as a paradigm of a dynamical structure in the 
context of molecular cell biology. A molecular and a physico-chemical model was also presented 
to explain the tubulization and the vesiculation that is observed. 

I. The morphological model

The structures making up the secretory pathway had, until recently,  been observed only in a 
static way on two dimensional projections. Stereoscopic techniques, consisting in taking two 
micrographs of the object by two different angles and at different stages, allow a three 
dimensional and dynamical view of the structure. In the following, we summarize the 
observations that were made possible by this techniques, in  two animal and one yeast cases, the 
former with regard to three mutants: at a first stage, the mammalian Golgi apparatus appears as 
consisting of a  pile of 8/9 thin saccules. Those saccules undergo a fenestration, starting  from the 
first one, which leads to the formation of a tubular network that  finally breaks up to form 
vesicular granules containing the secretory cargo. 
 
One further examination is allowed by the use of yeast temperature-sensitive  mutants: when set 
at suitable temperatures, they loose the wild type  phenotype, and accumulate various types of 
structures (small vesicles,  membranous sheets, tubules, secretory granules, etc.) that do not 
follow  the dynamics described above. In particular, the secretion of granules  can be blocked. In 
one case one can also observe that the structure itself disappears, if no secretory cargo is 
transported. This suggests that  the Golgi apparatus is not a permanent structure, but it is 
continuously  renewed and that there is a causal link between content sorting and  container 
formation. This defines the Golgi apparatus as a dissipative  structure. 

II. The molecular model

The molecular model is intended to explain the tubulization of the saccules  which leads to 
vesiculation, and, ultimately, to secretion granules. Is is  based on a cytoplasmic protein (Sar1), 
that is known to induce tubulization  of membrances, and on a transmembrane protein (Sec12). 
The model proposes  that by random fluctuation Sec12 gathers a hypercritical concentration at  
certain spots and then recruits Sar1, giving a complex capable of recruiting  the secretory cargo 
on one side of the membrane and a cytoplasmic protein  (COPII) on one other side. COPII 
polymerizes to form a coat which exerts a  mechano-chemical bending force leading eventually to 
the breaking up of a  vesicule. 

III. Extensions

Some further study is proposed that could validate and extend the model: 
 

1. In S. cerevisiae, the site of ER exit changes from one budding event to the other, unlike in 
Pichia pastoris, where one observes that the Golgi elements tend to pile up where they are 
formed. This may be explained  by the sequestration of sec12 and by the viscosity of the 
cytoplasm. 



 

2. Look for the possible existence of a matrix protein that gives to the Golgi apparatus some 
cohesiveness, as is suggested by the fact that, in plants, remnants of the Golgi apparatus 
are observed when the secretory function is prevented by various means, as in one of the 
observations on mutants described above. 

3. A typical phenomenon of animal cell is the aggregation of many Golgi apparatus on a few 
giant ones. One possible explanation is that they stack around a microtubule. 

 
Finally, an interpretation of those three phenomena can be given in terms of an evolution 
scenario. 

IV. The physico-chemical model

The above molecular model is similar to the known mechanism of the clathrin-mediated 
vesciculation in endocytocis, with the dynamin playing the role of Sec12 and the clathrin that of 
COPII. The migration of the dynamin across the membranes under certain conditions has been 
modeled in  the paper of J.-B. Fournier et al. that was presented by J.-B. Fournier at  the 
conference. 
 
The membrane is modelled by a plane surface, in which a sufficient amount of  wedges are 
inserted, that locally exert an anisotropic (i.e. varying w.r.t.  the direction) inclusion. The surface 
presents a budding invagination and  the wedges are free to diffuse across the surface. The 
authors find that the  local curvature induced by the wedges causes the exertion of long range  
elastic forces among the wedges. By carrying out the simulation, they find a  regime in which the 
wedges form a ring around the budding invagination,  which is reminiscent of the the process of 
vesicle scission. F. K\'ep\`es  pointed out that this could be the case of Sar1, that has three 
hydrophobic  legs that may help this protein to stay fixed on the membrane and preventing  from 
crossing it. It seems verifiable whether this inclusion is anisotropic. 
 
The above model is expected to capture the long-range elastic interactions  among the membrane 
inclusions, and to yield accurate interactions for  separations as small as about three times the 
particles size, and for  protein host of a size comparable to the thickness of the membrane. This  
kind of simulation can also be carried out on spherical and a cylindrical  surface. The authors also 
describe the simplifications made in the model. 
 
The talk of J. Prost pointed out another possible mechanism for the vesiculation and the bending 
of the membranes. It is known that the latter  can be caused not only by self-assembly of 
moleculat coats, as in the  clathrin-mediated vesiculation, but also by the action of microtubules 
or  that can pull the membranes. The latter may take place by the action of Sar1,  which is capable 
of recruiting nanotubules, or by a molecular motor. 
 
During the discussion at the conference, it was clearly stated that there are other possible 
mechanisms that may explain the morphogenesis observed  in the Golgi apparatus. It is known, 
for example, that asymmetric bilayers  can easily undergo a bending process, due to forces 
depending on local  curvature. It those forces can accentuate the curvature, a sufficiently  large 
random fluctuation can start a process of bending. Moreover, the  morphogenesis can be 
explained by several mechanisms, each intervening  at a specific time. To this effect, it would be 
interesting to know the  time scale of the migration described in the physico-chemical model 
presented  by J.-B. Fournier. J.-M. Delosme suggested that an order of magnitude may  suffice to 
have an idea of the range of validity of this model in the  morphogenesis of the Golgi apparatus. 
 



On models and experiments in molecular biology 
 

An account by Jean-Marc Delosme 
 
During the discussion led by members of the workgroup on “observability”, a key motivation 
for their endeavor appeared clearly.  Some words, such as “epigenesis”, cover different 
meanings within the community of biologists.  To some, epigenesis involves DNA methyl-
ation and other chemical mechanisms, while, to others, it has a broader meaning. Thus, 
staying with the epigenesis illustration, a particular “epigenetic” hypothesis for the 
explanation of the transmission of a modification from a cell to its progeny should be stated in 
a formal way in order to be properly understood by the community as a whole.  Indeed, the 
hypothesis would then be understood independently of the meaning of the word “epigenetic”. 
    
Another reason for getting out of empiricism and employing a formalism is the complexity of 
the hypothesis.  Refering to the case study in the paper by Bernot, Guespin et al.., the 
hypothesis that there may be populations of pseudomonas aeruginosa bacteria that keep on 
producing  mucus outside the lungs of patients because of an epigenetic mutation  cannot be 
stated just that simply.   A formalism must be selected and a model of the object under study 
must be constructed using that formalism.    
 
A model with parameters varying continuously and that could be tweaked to fit observations 
does not appear appropriate for the study of epigenesis.  Lack of numerical accuracy of 
observations, variability within populations, and, more fundamentally, genericity in a 
mathematical sense (e.g.  in affine geometry, 3 points are in generic position if they do not lie 
on a straight line: a notion  that applies mutatis mutandis to non-linear dynamical systems) are 
considerations that lead to considering models within a discrete formalism.  Physicists have 
devised generic approaches, for instance by identifying the symmetries and the relevant 
variables (e.g. rules for identifying the slow variables in generalized hydrodynamics), such 
that the models constructed using these approaches capture the phenonena at a level that is not 
too fine (e.g. mesoscopic vs. microscopic) .  The use of a generic approach is the physicist:s 
way of selecting the proper formalism within which to construct a model for the problem at 
hand. 
  
The formalism (or underlying theory) used for the case study is the one presented by  
Marcelline  Kaufman in her Logical Analysis of Regulatory Networks in Terms of Feedback 
Circuits paper. The formalism uses multivalued logical variables and, in addition, a simple 
temporal logic.  It accounts for changes of values of variables in an asynchronous fashion so 
that, although the models constructed using it are not continuous, they still capture the 
essential phenomenon of hysteresis, hence the memory effect in dynamical systems with 
multiple stable states. The model constructed for the case study using this formalism is 
presented schematically in Fig. 1.b of the paper by  Bernot, Guespin et al.  The model may be 
viewed as a means of describing a complex hypothesis (of course the hypothesis is not very 
complex in this example but the approach employed has been devised so that it can handle 
complex hypotheses in a similar fashion). 
 
A model consists in modes of operation, i.e. modes of interaction or relations between 
components or parameters whose number is typically sufficiently large that one cannot readily 
figure out its behaviors.   The model is not the whole story, and one does not merely want to 
validate the model.    Since the objective of this type of modeling is understanding, one 
actually wants to validate (or attempt to refute, following Karl Popper) not only the model but 



also statements about model behavior.  These statements (hypotheses) combined with the 
model make up a (complex) hypothesis; it is this pair that will be submitted to experiments. 
Separating model and statements about the model (such as feedback loops in the model for the 
case study and a statement about which loop is functional) makes things cleaner, albeit all are 
hypotheses and could be merged into the model. 
 
The model proposes some explanations about behaviors—which come out of modes of 
operation—and statements about its behavior are expressed as properties (hypotheses about 
the model, i.e. about modes of operation).  Formally, a model is a semantics, i.e. a 
mathematical description of some modes of operation, and properties about behavior coming 
out of modes of operation. belong to syntax, which indicates what one is allowed to write 
about a model.  A well-formed property is a property that one is allowed to write.  In addition 
a language enables to express the set of what can be asserted and a symbol links model—an 
interpretation of the language—and properties in order to express when a model satisfies a set 
of properties.  A well-formed property may be false in that the model does not satisfy it.    
 
In general there are experimental limits in that, even with an infinity of experiments, some 
formulas or properties cannot be refuted (or, consequently, validated).   On one hand, one may 
not be able to bring the model in some desired state in order to test a property this is the 
notion of “operability” (basically the notion of “controllability” in systems theory).   On the 
other hand, for a variety of reasons, one may not be able to observe enough about a biological 
system to conclude immediately if a property is true or false; this is the notion of 
“observability”.  To be able to refute a property, one must be able to construct experiments 
that  provide enough information to be able to say if it is true or false.  When this can be done, 
i.e. have both operability and observability of a property, the property is simply said to be 
observable. 
 
Four sets may be distinguished:  
P – the set of properties that are possible under the working hypotheses (a set that is restricted 
according to which problem one focusses on); 
O – the set of properties directly observable—without reasoning—on the biological object 
that the model is supposed to model (a property for which an experiment that would allow its 
observation has not been devised yet does not belong to O); 
 M – the set of properties of the mathematical model itself, i.e. the properties that are true for 
the model, properties that may or may not belong to O;  
S – the set of statements  (formulas) about the behavior of the model that are to be validated, 
statements that may or may not be observable. 
The model M itself may be incoherent, then any property may be proved to be true for the 
model and then M covers all of  P.  Of course only a coherent model is of any interest.   Even 
for a coherent model some statements may not belong to M (i.e. M does not satisfy the 
property; the statement is false in M);  these are internal contradictions. 
 
Assume a property in S (a consequence of statements in S) that also belongs to O but does not 
belong to M.   This provides a refutation, showing an incoherence between the statement and 
the model,  since the property is directly observable by at least one experiment and is not  a 
property of the model. 
Assume there is no such property.   There may remain some property in S  that does not 
belong to M.   Since the property does not belong to O, it is not possible to see by an 
experiment that it is incoherent with the model.   Hence statements can be made about the 
model for which one will never be able to devise an experiment in order to show that they are 



false in M (recall that, following Popper, in order to validate a model one tries as hard as 
possible to refute it). This is a sign that the formalism is too rich, that too many statements can 
be made about the model. 
 
Continuing with the considerations about the four sets, three things about a model are to be 
considered: 
- Do the observable properties of the model allow to imply (or falsify) the statements that are 
made?  Otherwise, if one cannot devise an experiment to try to falsify a property of the model, 
that modeling activity should not be considered scientific.  Note that to falsify a statement is 
not a bad news as far as the advancement of science is concerned since this enables one to 
improve the model. 
- Do the observable properties of the model imply the properties of the model? Restating the 
question in Popper’s way, if a property of the model is false is there an observable experiment 
that will show that indeed that property is false?  If yes, this means that the formalism is not 
too rich. 
- Does the model satisfy Occam’s razor?  In other words, is the model minimal with respect to  
the properties that can be expressed about the model?  In general one obtains a model—within 
an equivalence class of models that have the same properties—that cannot be said to be 
minimal.  However, using a proper definition of the observational equivalence of the models, 
one may be able to say that it is representative of the equivalence class. 
  
Returning  to the pseudomonas aeruginosa bacteria case study, a statement about a particular 
epigenetic modification is the hypothesis  J. Guespin tries, following a Popperian approach,  
to falsify.   Referring to the paper developing this example, although there is a positive 
feedback loop in the model this is only a necessary condition for the existence of a 
multistationarity that could result in that epigenetic modification, hence all the work remains 
to be done in order to devise an experiment, if not several, that could refute that hypothesis.  
Formally, the statement to be validated is that if at some time x = 2, then, later, in a strict 
future,  x = 2.  This property is true within the mathematical model, as shown by M. Kaufman 
and J. Guespin, hence here S is included in M.   
The only operability available is to boost x.  The observability consists in checking  if z = 1.   
To validate the hypothesis, an experiment consists in boosting x until x = 2, waiting, and 
checking if z = 1 (because x = 2 is not directly observable).   Where is Popper here?  Imagine 
an experiment where x = 0 and look at what happens, first the result is known (standard 
bacteria outside the lung, stay in the [0  0] state), second, and more important, this experiment 
cannot possibly falsify the formula.  Indeed, to succeed in falsifying a formula “A implies B”, 
the precondition A must be true (and then one can try to falsify B), hence here we need to 
have x = 2 to have any chance to falsify the model.   Thus Popper was here to show that we 
needed to have x = 2 in our experiment; hence that no other experiment than “x = 2” could 
have any interest.  
Here only one experiment is needed to prove the property.  This is because the precondition 
has no free variables; it is unique and only one experiment (if it succeeds) makes it true.  If a 
precondition has some free variables that can take any value, an infinity of experiments could 
be needed to find all the cases for which the precondition is true—since it may be that one of 
them falsifies the formula—and thus one cannot prove that the formula is true.   While one 
can prove when the number of experiments is finite that a formula is true, it is in the more 
general case, with free variables, that the proposed approach, inspired by methods in 
programming and software design, will show its real power.   Indeed there exist strategies  in 
software testing (such as “unfolding”) that increase the probability of falsifying a formula 
through a finite number of experiments. 



 



Organisation Group 
Proposed by Franck Delaplace 

The goal of the organisation group is to determine applied an theoretical tools for genomic 
analysis. Two kinds of direction has been shown : simulation and analysis. Simulation 
corresponds to a corpus of tools which simulate the behavior of biological process. Analysis 
corresponds to tools for the finding of structural and dynamical properties from a topological 
representation.  

Members of the group have presented works achieved in the group.   

• Jean Louis Giavitto has summarized the work of the group in his talk.   

• Christophe Godin has presented  tools for the simulation of plants growth. 

• Franck Molina has presented work on the definition of a language dedicated to the design 
of ontologies. 

• Franck Delaplace has presented works for the analysis of emergent properties applied to 
biological networks. 

Talks  and the discussion puts the emphasis on the relationships between models and compu-
tational frameworks.  

• Nowadays, the definition of a biological model requires to represent a large amount of 
relationships between components.  Finding  appropriate languages to deal with biological 
complexity appear to be a challenging problem. 

• Topological analysis of  biological networks to find characteristic patterns also appear to 
be an important trend. 



 



Conference synthesis 
 
Proposed by Victor Norris. 
 
The talks at the conference can be placed into one of four categories – physico-chemical 
approaches, metabolic modelling, interaction networks and miscellaneous – although of course 
no categorisation does them justice. 
 
The talks of Jacques Prost, Jean-Baptiste Fournier, Camille Ripoll and Yves Bouligand had 
physico-chemical approaches to the dynamics of intracellular structures as a common theme.  
Different sorts of modelling and simulation also played a large part in their work.  Prost brought 
together physics and biology in explaining how bacteria such as Listeria monocytogenes travel 
within and between human cells by locally polymerising actin using a bacterial protein, ActA.  
He showed how ActA-coated beads could move in a similar way and discussed symmetry-
breaking, persistence-lengths and the squeezing of cherry-stones to make them fly.  It would 
seem that Listeria has a lot to teach us about the operation of the actin cytoskeleton.  On a 
different tack, he showed how motor proteins travelling along microtubules could tug tubes of 
lipids.  One might imagine that this dynamic plumbing is crucial for intracellular transport.   
 
Fournier has developed a physico-chemical model based on long-range elastic interactions to 
explore how the curvature of membranes by proteins influences their distribution.  He applied 
this numerical model to the recruitment of dynamins by clathrin coats during endocytosis.  There 
is a general principle here that may underpin the behaviour of many proteins that are integral or 
peripheral to the membrane and, in my view, the model may be relevant to other fundamental 
events involving membrane curvature such as cell division.   
 
Ripoll applied physico-chemical theories about the condensation of counter-ions onto linear, 
negatively charged, cytoskeletal structures to explain a whole range of disparate findings about 
calcium control of cellular processes.  He proposed that condensation and decondensation of ions 
orchestrate kinases and phosphatases which in turn feed back on structures.  These structures 
might include hyperstructures (extended assemblies of different species of molecules that serve a 
cellular function) in which case the mechanism would be a powerful integrative one.  I wonder if 
the model might be usefully married to tensegrity to relate mechanical deformations to gene 
expression or explain the dramatic transitions that occur during the eukaryotic cell cycle.   
 
Bouligand took us through the history of liquid crystals in biology and showed us how cholesteric 
liquid crystals form in vitro and in vivo.  He discussed how liquid crystals in DNA may affect the 
transcription of genes and the replication and partitioning of chromosomes.  Planar twisted or 
cylindrical twisted cholesteric phases may be the equilibrium state of chromosomes on which 
DNA dynamics are based.  One of the many questions his talk raised is whether genome 
sequences could be used to determine which regions are in a liquid crystalline state.   
 
The take-home message from this group of speakers is that physico-chemical principles underpin 
intracellular events.  In the theatre of the cell, these principles provide the script that a host of 
molecular actors have learnt over the aeons to interpret.   
 
The next group, Athel Cornish-Bowden, Jean-Pierre Mazat, Christophe Chassagnole and Julie 
Fievret, focused on metabolism – and the necessity of using computer modelling.  Metabolism is 
what cells do, Cornish-Bowden reminded us, and attempts to exploit genomic data that ignore 



 

metabolism are doomed.  African sleeping sickness is caused by Trypanosoma brucei which has 
its glycolytic enzymes compartmentalised in a glycosome.  To identify targets for drug therapy, 
he used metabolic simulations to determine which of the glycosomal enzymes would be good 
candidates and which would be useless.  (Since these enzymes are co-localised, it is conceivable 
that their structure-forming properties might also be targeted.) 
 
Mazat showed how computer-modelling might be used in pursuit of the holy grail of a virtual 
mitochondrion.  The first steps involve using the kinetic parameters of enzymes to predict 
metabolic fluxes within mitochondria which vary according to cell type.  Like Cornish-Bowden, 
Mazat used metabolic control analysis to exploit experimental data by computer-modelling.  This 
can only lead to a better understanding of mitochondrial diseases.  Many mitochondrial DNAs 
have now been sequenced and he held out the prospect of deriving metabolic maps from genetic 
ones.  (Perhaps a key step in this will turn out to be the self-association properties of the 
mitochondrial enzymes and the structuring properties of transcription and translation within the 
mitochondrion?) 
 
Chassagnole also used metabolic control analysis in modelling how pollutants such as heavy 
metals affect the flux through the threonine pathway.  He determined the control points and 
showed that the multiple effects of these pollutants can only be understood by modelling the 
whole pathway.   
 
Fievret gave a different dimension to metabolism by introducing constraints due to molecular 
crowding and the cost of protein synthesis.  She introduced the concept of combined response 
coefficient which takes into account the necessity for cells to evolve a particular distribution of 
enzymes to optimise the flux through a given pathway.  An awareness of the evolutionary 
pressures on the entire system, in which a pathway is embedded, is clearly important.  Perhaps, 
these pressures on enzymes are more than just to optimise flows?   
 
In these presentations of metabolic modelling, there was little joy for proponents of the genome 
or proteome as the source of all wisdom – the emphasis was placed on control coefficients and on 
an integrative understanding of pathways.  That said, there was not much joy either for 
aficionados of enzyme superstructures or hyperstructures.  One possibility is that hyperstructures 
are important in the overall dynamics of the cell rather than simply in the maximisation of fluxes.   
 
Cellular life is all about patterns of interactions.  Interpretation of these patterns were proposed by 
Derek Raine, Jacques Ricard, Marcelline Kaufman and Jacques Demongeot. Raine gave us the 
history of power laws, self-organised criticality and small world networks in metabolism and 
gene regulation.  He derived a parameter related to information entropy to assess the complexity 
of a network based on the ratio of the clustering or cliquishness to the average path-length 
between two elements.  He examined gene expression during the cell cycle of Caulobacter 
crescentus in terms of this complexity parameter.  He also speculated about how these concepts 
might lead to a reformulation of intensive and extensive variables.  
 
Ricard told us more about information.  He pointed out that metabolic networks may contain 
more information than genetic ones.  He argued that in metabolic networks the nodes could 
usefully be considered to be the reactions themselves.  Then, beginning with Shannon’s theory of 
information, he derived expressions for metabolic networks in which the values correspond to 
either integrated systems or emergent systems.   
 



 

Kaufman took us through the logical analysis method for determining the dynamics of regulatory 
networks that include gene-protein networks and protein-protein interaction networks.  This 
essentially Boolean approach has been developed to allow asynchronous events in a network to 
be analysed.  This approach permits multi-stationarity states and periodicity to be predicted 
relatively easily from complex experimental data.   
 
Demongeot continued in the vein of logical analysis by discussing interaction matrices which 
represent how, for example, one gene regulates another.  He reviewed Stuart Kauffman’s work on 
the connectivity of systems of logic gates and its relevance to multi-stationarity and periodicity.  
He then raised the problem of the relationship between the number of steady states of the system 
and the number of regulatory circuits in the interaction matrix.  Whilst these analytical techniques 
should prove suitable for interpreting the wealth of transcriptome data now available, Demongeot 
showed us that these data are far from perfect and presented a statistical method that helps 
improve them. 
 
The preceding four talks were all of relevance to the interactions occurring in large intracellular 
networks, an understanding of which is critical if we are to exploit genome sequencing and the 
transcriptome.  The next series of talks were more general.  Pierre Auger began by arguing that a 
progression up through the levels in biology (starting with the atomic level and ending with the 
ecosystem) is accompanied by a reduction in the time required for the units to interact and by an 
increase in the size of the units.  This allowed him to apply an aggregation method to hierarchical 
biological systems and so obtain a simple model in which only a few global variables are 
important.  
 
Yannick Kergosien explored the relationship between adaptation and branching using a simple 
robust algorithm that is of general relevance to epigenesis or to other situations where multi-
dimensional tree graphs are drawn.  He showed us how repeated, abortive attempts at branching 
might precede a major branch point.  (It might be wondered whether such branching occurs in the 
case of gene expression within a population of bacterial cells where divergent patterns of 
expression could favour survival of the population.) 
 
Finally, Vincent Schachter gave us a salutary tour of the problems associated with trying to make 
sense of biological data.  These ranged from serious problems with the quality of the 
experimental data to the inadequacy or limited applicability of models.  What Schachter’s talk 
highlighted the importance of developing better and more integrative models and simulation 
techniques.  There was no shortage of candidate methods of simulation presented at the meeting 
on different occasions by the multi-disciplinary audience.  These ranged from multi-agent 
systems and cellular automata to L-systems, P-systems, MGS and SiliCell. 
 
I took away a couple of messages.  Firstly, to be successful in exploiting the results offered by the 
investment in the genome, a truly integrative modelling has to take into account physical 
chemistry of the sort presented at the conference.  Secondly, the gap between biological and 
physical approaches to complex systems is being bridged.  New concepts are being generated and 
those interested in integrative simulation now have the exciting task of learning to exploit them.   
 
  



 



Dynamin recruitment by clathrin coats: a physical step?
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Abstract – Recent structural findings have shown that dynamin, a cytosol protein playing a key-role
in clathrin-mediated endocytosis, inserts partly within the lipid bilayer and tends to self-assemble
around lipid tubules. Taking into account these observations, we make the hypothesis that individual
membrane inserted dynamins imprint a local cylindrical curvature to the membrane. This imprint
may give rise to long-range mechanical forces mediated by the elasticity of the membrane. Calculat-
ing the resulting many-body interaction between a collection of inserted dynamins and a membrane
bud, we find a regime in which the dynamins are elastically recruited by the bud to form a collar
around its neck, which is reminiscent of the actual process preempting vesicle scission. This physical
mechanism might therefore be implied in the recruitment of dynamins by clathrin coats.

endocytosis / clathrin / dynamin / membrane inclusions interactions

Résumé – Une étape physique dans le recrutement des dynamines par les capsules de clathrine ?
Des donnés structurales récentes ont montré que la dynamine, une protéine du cytosol qui joue
un rôle clé dans l’endocytose clathrine-dépendante, s’insère partiellement dans la bicouche mem-
branaire et tend à s’auto-assembler autour de tubules lipidiques. En tenant compte de ces observations,
nous faisons l’hypothèse que les dynamines impriment localement une courbure cylindrique dans la
membrane. Cette empreinte peut engendrer des forces élastiques de longue portée. En calculant
l’interaction multi-corps entre un ensemble de dynamines insérées dans la membrane et une capsule
endocytotique, nous trouvons un régime dans lequel les dynamines sont recrutées élastiquement par
la capsule pour former un collier autour de son cou, ce qui rappelle le processus précédant la scission
des vésicules d’endocytose. Ce mécanisme physique pourrait donc être impliqué dans le recrutement
des dynamines par les capsules de clathrine.
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FIG. 1: Schematic representation of a cytosol protein partly inserting within a lipid bilayer and inducing a local
membrane curvature via a binding region.

I. Introduction

In eukaryotic cells, membranes of different organelles are functionally connected to each other via
vesicular transport. Formation of transport vesicles from invaginated buds of the plasma membrane is
called endocytosis [1]. In clathrin-mediated vesiculation, vesicle formation starts with the assembly
on the donor membrane of a highly organized “coat” of clathrins [2], which acts both to shape the
membrane into a bud and to select cargo proteins [3–7]. The mechanism by which an invaginated
clathrin-coated bud is converted to a vesicle (scission) involves the action of a cytoplasmic GTPase
protein called dynamin [6, 8]. Dynamins form oligomeric rings at the neck of deeply invaginated
membrane buds and induce scission [9, 10]. How exactly dynamin is recruited and how the scission
actually occurs remains unclear [11, 12]. In this paper we propose that dynamin recruitment by
clathrin coats could be driven by long-ranged physical forces mediated by the membrane curvature
elasticity.

Cryo-electron microscopy has recently revealed the detailed structure of the clathrin coats at ')( ˚
*

resolution [2]. Clathrin units, also called “triskelions”, have a star-like structure with three legs.
Initially solubilized into the cytoplasmic fluid, they self-assemble onto the membrane surface into a
curved, two-dimensional solid scaffold. The latter is a honeycomb made of hexagons and pentagons
(geometrically providing the curvature) the sides of which are built by the overlapping legs of the
clathrin triskelions. In the plasma membrane, clathrins usually interact with “adaptor” transmembrane
proteins, which also serve to select cargo proteins. However it has been shown that clathrin coats can
readily self-assemble onto protein-free liposomes [13, 14].

Dynamin is known to be solubilized in the cytosol as tetramers, and to aggregate in low-salt buffers
into rings and spirals [9]. Dynamin also self-assembles onto lipid bilayers, forming helically striated
tubules that resemble the necks of invaginated buds (tube diameter +-,/.1032 ) [10]. Addition of GTP
induces morphological changes: either the tubules constrict and break [15], or the dynamin spiral
elongates [16]. These findings suggest that the scission of clathrin-coated buds is produced by a
mechanochemical action [16, 17].

At the earlier stages of the budding process, dynamins already strongly interact with bilayer mem-
branes. Indeed, in vivo studies showed that dynamin binds acidic phospholipids in a way that is essen-
tial to its ability to form oligomeric rings on invaginated buds [18–22]. Using a model lipid monolayer
spread at the air-water interface, it was shown that dynamins actually penetrate within the acyl region
of the membrane lipids [23]. This finding was recently confirmed by the three-dimensional recon-
struction of the dynamin structure by cryo-electron microscopy at '/. ˚

*
resolution [24]: dynamins

form T-shaped dimers the “leg” of which inserts partly into the outer lipid leaflet.
It was long ago suggested [25, 26] that particles inserted within bilayers should feel long-range

interactions mediated by the elasticity of the membrane. Indeed, a protein penetrating within a bilayer
and binding its lipids—such as dynamin—may in general produce a local membrane curvature (see
Fig. 1). Because of the very nature of the curvature elasticity of fluid membranes, this deformation



FIG. 2: Piece of a model membrane showing a clathrin coated bud and the imprints of inserted dynamins.

relaxes quite slowly away from its source, and the presence of another inserted particle produces an
interference implying an interaction energy [25]. The first calculation of this effect was performed
for two isotropic particles each locally inducing a spherical curvature [27–29]. The interaction was
found to be repulsive, proportional to the rigidity 4 of the membrane and to the sum of the squares
of the imposed curvatures; it decays as 57698 , where 5 is the distance between the particles. The
case of anisotropic particles producing non-spherical membrane deformations is even more inter-
esting, since their collective action on the membrane is expected to have nontrivial morphological
consequences [30–32]. The local deformation of a membrane actually involves two distinct curva-
tures, associated with two orthogonal directions (as in a saddle or in a cylinder). Recent calculations
showed that the interaction between two anisotropic inclusions is very long-ranged and decays as5 6): [33–35]. It is always attractive at large separations and favors the orientation of the axis of minor
curvature along the line joining the particles [34]. Note that these elastic interactions prevail at large
separations, since they are of much longer range than other forces, such as van der Waals or screened
electrostatic interactions.

II. Model

Among the above informations, let us outline the three points that are essential for our model. (i)
Clathrin coats are solid scaffolds that rigidly shape extended parts of the membrane into spherical
caps. (ii) Dynamins are solubilized proteins that partly insert within the membrane bilayer. (iii)
Inserted membrane hosts that imprint a local membrane curvature interact with long-range forces of
elastic origin.

We therefore build the following physical model. We describe a clathrin coated bud as an extended
zone bearing a spherical curvature. Technically, this is done by placing point-like spherical curvature
sources at the vertex of a hexagonal lattice patch (see Fig. 2). The precise physical realization of this



bud is not important as long as it is spherically curved and impenetrable by other membrane hosts.
Because dynamins partly insert within the membrane and seem to accommodate cylindrical curvature,
we model them as sources locally imprinting a cylindrical curvature. We place a large number of such
“dynamins” on a membrane in the presence of an artificial bud as described above (Fig. 2), and we
study whether the latter will recruit or not the dynamins through elastic long-range forces.

A. Long-range elastic interactions between many membrane inclusions

The elastic interaction between ; isotropic or anisotropic membrane hosts can be calculated from
first principles [34, 36]. The membrane is described as a surface which is weakly deformed with
respect to a reference plane. Without this assumption, analytical calculations are virtually impossible.
An obvious consequence is that we can accurately describe only weakly invaginated buds; neverthe-
less, we expect that our results will hold qualitatively for strongly invaginated buds. The membrane
hosts are described as point-like sources bearing two curvatures <"= and < : , associated with two or-
thogonal directions. These values represent the two principal curvatures that the hosts imprint on
the membrane through their binding with the membrane lipids (assuming the binding region is itself
curved). For instance, a spherical impression corresponds to <"=?>/< :A@ ( , a cylindrical impression cor-
responds to <=B>/< :C@ . , and a saddle-like impression corresponds to <�=?>"< :C@ED ( . This over-simplified
model actually contains the essential ingredients responsible for the long-range elastic interactions
between membrane inclusions: for protein hosts of a size comparable to the thickness of the mem-
brane, it yields accurate interactions for separations as small as about three times the particles size.
Note that the curvature actually impressed by a particle could be affected by the vicinity of another
inclusion, we shall however neglect this effect for the sake of simplicity (strong binding hypothesis).

The point-like curvature sources describing the membrane hosts diffuse and rotate within the fluid
membrane, because of the forces and torques exerted by the other membrane hosts and of the thermal
agitation FHGJI . We parameterize the orientation of a particle by the angle K that its axis of minor
curvature, i.e., the axis associated with min LNMO<�=PM�Q/M < : MSR , makes with the T -axis, in projection on theLUTVQXWJR reference plane. Given ; inclusions with specified positions TZY and W"Y , orientations KPY , and
curvatures <#=UY and < : Y , for [ @ (]\�\�\?; , we calculate the shape of the membrane satisfying the ;
imposed point-like curvatures and we determine the total elastic energy of the system. We thereby
deduce the ; -body interaction between the hosts ^`_OacbXLB\�\�\PQdTeY�QXW�Y�QXKPY�QN<�=UY�QN< : Y�Q�\P\�\fR . The mathematical
details of this procedure are sketched in Appendix A.

B. Pairwise interactions

Before studying the collective interaction between model dynamins and clathrin coats, let us de-
scribe how point-like spherical and cylindrical sources interact pairwise.

The membrane distortion produced by two inclusions modeled as point-like spherical curvature
sources is shown in Fig. 3a. Each inclusion appears as a small spherical cap away from which the
membrane relaxes to a flat shape. As evidenced by the plot of the interaction energy (see Fig. 3a),
such spherical inclusions repel one another. Calling 4 the bending rigidity of the membrane, g the
thickness of the membrane (which is comparable to the size of the inclusions), < the curvature set by
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FIG. 3: Shape of a membrane distorted by two inclusions imprinting local curvatures and interaction energy
as a function of separation. Distances are rescaled by the membrane thickness h and energies by i9h :Njd: . (a)
spherical inclusions of curvature j ; (b) cylindrical inclusions of curvature j ; (c) spherical inclusion of curvaturej and cylindrical inclusion of curvature kHlnm j . The shapes are calculated from Eq. (A13), the interaction energies
from Eq. (A12).

the inclusions and 5 their separation, our calculation gives (see Appendix A):^poUq 6 oUqrLs5tR]+vu"wp4xg : < :Ay g5{z 8 (1)

for the the asymptotic interaction at large separations, in agreement with previous works [27, 33, 34].
Note that the plot given in Fig. 3a corresponds to the exact interaction within our model, not to the



asymptotic expression (1).
The membrane distortion produced by two inclusions modeled as point-like cylindrical curvature

sources is shown in Fig. 3b. Each inclusion appears as a small cylindrical cap away from which the
membrane relaxes to a flat shape. The interaction between two such hosts depends on their relative
orientation. The minimum energy is found when the axes of the cylinders are parallel to the line
joining the inclusions. As evidenced by the plot of the interaction energy (see Fig. 3b), the interaction
is then attractive. It therefore turns out that two such hosts produce a weaker membrane deformation
when they are close to one another than when they are far apart. As described in Ref. [34], when their
curvature is strong enough, such inclusions tend to aggregate and to form linear oligomers. Their
asymptotic interaction energy is given by^p|?} 6 |d}9Ls5tR]+ D u�wp4~g : < :Ay g5 z : \ (2)

It decays as 5�6): , hence it is of longer range than (1).
Finally, we show in Fig. 3c the membrane distortion produced by the interaction between a spher-

ical source and a cylindrical one. The latter is oriented in the direction that minimizes the energy.
As evidenced by the plot of Fig. 3c, the interaction is attractive at large separations and repulsive at
short separations, with a stable minimum configuration at a finite distance. Calling < the curvature
set by the cylindrical inclusion and <�� the one set by the spherical inclusion, our calculations give the
asymptotic interaction ^poUq 6 |d})Lr5tR1+ D~� wp4~g : <�< � y g5{z : \ (3)

We may therefore expect that dynamins will be attracted by clathrins coats; however, owing to the
non-pairwise character of the interaction [34], it is necessary to actually perform the corresponding
many-body calculation. It is also necessary to check whether thermal agitation will or will not disorder
the inclusions.

III. Collective interactions between model dynamins and clathrin buds

As described in Sec. II, we build a model clathrin-coated bud by placing in a membrane ;�oUq point-
like spherical inclusions of curvature <�oUq on a hexagonal array with lattice constant � . Here, we have
chosen ;�oUq @���� and � @�� g . By changing the curvature <�oUq , we can adjust the overall curvature of the
clathrin scaffold, thereby simulating the growth of a vesicular bud. We then add ;�|d} @�� . point-like
cylindrical sources of curvature <�|?} modeling inserted dynamins.

To study the collective behavior of this system under the action of the multibody elastic interactions
(see Sec. II A) and of thermal agitation, we perform a Monte Carlo simulation. The details of the
simulations are given in Appendix B. To prevent unphysical divergences of the elastic interaction
energy, it is necessary to introduce a hard-core steric repulsion preventing two inclusions to approach
closer than a distance � . Since the size of the inclusions imprints is of the order of the membrane
thickness g , we have chosen � @ '/g . Actually, at such microscopic separations, other short-ranged
interactions intervene, the details of which are still unknown. Here, we disregard them, since our
interest lies in the mechanism by which the recruitment process and the formation of dynamin collars
is driven. In a later stage, which we do not model here, dynamin rings are further stabilized by
bio-chemical interactions [11].



0.0 0.2 0.4 0.6
dy

0.0

0.1

0.2

cl ������������������������������
������������������������������������������������������������������������ ��

��

�

�
�

�

�

FIG. 4: Phase diagram representing the typical equilibrium configurations of a system of model dynamins in
the vicinity of a curved clathrin scaffold. j |d} and j oUq are the curvatures associated with the dynamins and
clathrins, respectively, in units of the inverse membrane thickness h . In region � , the dynamins form a “gas”
non interacting with the clathrin scaffold. In region � , the dynamins form a system of linear oligomers non
interacting with the clathrin scaffold. In region � , the dynamins form a ring around the clathrin scaffold, which
is reminiscent of real endocytosis.

The results of the Monte Carlo simulations are summarized in the phase diagram of Fig. 4, in
terms of the curvatures <%oUq and <�|d} of the clathrins and dynamins imprints, respectively. Here, we have
chosen to span <�oUq between . to .J\&'1g36 = : for a lattice constant � @�� g and assuming g�+ � . Å, this
corresponds for the clathrin-coated bud to a maximum curvature of radius  -+¡�%>3Lsg¢<�oUq£R7+¥¤H.1032 .
Since our clathrin patch has � spherical sources on its diameter, the size of the bud is � ��+¦u�,`032 .
These values are typical for clathrin-mediated endocytosis [6]. For the dynamins, we have spanned <#|d}
between .J\£(pg 6 = and .J\ � g 6 = , which corresponds to a maximum curvature of the imprint +v.J\£(V032 6 = .
As for the membrane bending rigidity, we have taken 4 @ ¤H.§F�G)I , since for biological membranes at
room temperature 4 lies between ,/. and (#./.¨F9G�I [37, 38].

The phase diagram displays three regimes (see Fig. 4): a state in which the dynamins are disordered
in a gas-like fashion ( © ), a state in which the dynamins form linear oligomers that do not interact with
the clathrin bud ( ª ), and a state in which the dynamins form a ring around the clathrin bud ( 5 ). In
region ( 5 ), due to the shallowness of the dynamin imprints, the system is disordered by thermal
agitation. Increasing the curvature of the dynamin imprints increases the elastic attraction between
the dynamins (see Fig 3b) and leads to the formation of linear oligomers ( ª ). These oligomers wrap
around the clathrin bud when the latter is sufficiently developed ( 5 ). Typical snapshots corresponding
to the four points g , � , < , � in Fig. 4 are shown in Fig. 5. Note that in Fig. 5b the dynamin collar is
rather “gaseous” due to the weakness of the dynamins’ imprints, while in Fig. 5d the ring is tight and
well-ordered.

IV. Conclusion

In this paper, we have shown that if membrane inserted dynamins produce cylindrical imprints and
if the latter are sufficiently curved, then the resulting long-range forces mediated by the membrane
elasticity are strong enough to overcome Brownian motion and bring them into a collar around the
neck of a clathrin bud. Of course, simple diffusion could also bring dynamins around clathrin buds,



(a) (b)
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FIG. 5: Typical snapshots showing the equilibrium arrangement of model dynamins (bars) in the vicinity of
the clathrin scaffold (hexagonal array). The figures (a), (b), (c) and (d) refer to the corresponding points in the
phase diagram of Fig. 4.

FIG. 6: Membrane shape corresponding to point (d) in Figs. 4 and 5, showing the self-assembly of a ring of
dynamins around a clathrin bud.

and their binding into a ring could be the result of specific bio-chemical interactions. However, if a
cylindrical imprint can speed up this process, then evolution may have selected it.

To test this model, one might look experimentally for linear oligomers of dynamins (see Fig. 5c).
However, since “gaseous” rings are also possible (see Fig. 5b), the existence of such linear aggre-
gates may not be necessary. It would be more interesting to directly check, e.g., by cryo-electron
microscopy, the shape of the dynamin region that penetrates within the membrane.

Finally, note that our model is over-simplified since: i) many other integral proteins float around
dynamins, ii) dynamins may interact with various lipidic domains within the bilayer, iii) the mem-
brane may have a spontaneous curvature due to its asymmetry, and iv) fluctuations are not only ther-
mal but also active, and hence could be larger than we estimate. Nonetheless, we hope that our model
correctly captures the effects of the long-range elastic interactions.
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Appendix A: many-body interactions between point-like curvature sources

Let us outline the derivation of the interaction between ; anisotropic point-like sources that locally
imprint a curvature on the membrane. As explained in the text, such constraints modelize a wide
class of membrane inclusions, including transmembrane and cytosol proteins partly inserted within
the membrane.

For small deformations «¬LTVQXW3R with respect to the LUTVQdW3R plane, the free energy associated with the
curvature elasticity of a membrane is given by [39]:^p®Uq @ 4 '7¯ �HT°��W²±X³ : «µ´ : \ (A1)

Indeed, for small deformations, the Laplacian ³{:X«¬Lr¶"R is equal to the sum of the membrane’s principal
curvatures at point ¶ @ LUTVQXWJR . The material parameter 4 is the bending rigidity.

Determining the shape of the membrane in the presence of inclusions at positions ¶�· imprinting
local curvatures requires minimizing the elastic energy (A1) with local constraints on the membrane
curvature tensor. In the small deformation limit, the elements of the latter are given by the second
spatial derivatives of the membrane shape: «V¸ ¹N¹�LU¶"R , «�¸ ¹Nº"Lr¶"R and «�¸ ºBºHLU¶"R . Introducing � ; Lagrange
multipliers » ·YO¼ to enforce the curvature constraints, the Euler-Lagrange equation corresponding to the
constrained minimization is ³ : ³ : «�L¶/R @ ½¾·¿	=1À » ·¹N¹pÁ ¸ ¹N¹¢Lr¶ D ¶·9RÂ » ·¹Nº�Á ¸ ¹Nº]LU¶ D ¶·)R Â » ·º?º�Á ¸ ºBº]LU¶ D ¶·)R9ÃQ (A2)

where Á LU¶"R is the two-dimensional Dirac’s delta and a comma indicates derivation. By linearity, the
solution of this equation is «¬Lr¶"R @ÅÄc½¾Æ ¿	= » Æ/ÇÈÆ LU¶/R�Q (A3)

where the » Æ ’s and Ç�Æ ’s are the � ; components of the column matrices

É @
ÊËËËËËËËËËËÌ
» =¹N¹» =¹Nº» =º?º»C:¹N¹

...

ÍBÎÎÎÎÎÎÎÎÎÎÏ Q Ð3LU¶"R @
ÊËËËËËËËËËËÌ
©7¸ ¹N¹9Lr¶ D ¶H=?R©�¸ ¹Nº/LU¶ D ¶H=?R©7¸ ºBºHLU¶ D ¶H=dR©7¸ ¹N¹9Lr¶ D ¶ : R

...

ÍBÎÎÎÎÎÎÎÎÎÎÏ Q (A4)

and ©{LU¶/R @ ((#¤"wÒÑ :eÓ 0 Ñ : (A5)

is the Green function of the operator ³ : ³ : , satisfying the equation ³ : ³ : ©{LU¶/R @ Á LU¶/R .



We introduce a column matrix Ô containing the values of the � ; constraints

Ô @
ÊËËËËËËËËËËÌ
«�¸ ¹N¹9Lr¶H=?R«È¸ ¹Nº/LU¶�=BR«�¸ ºBºHLU¶H=?R«�¸ ¹N¹9Lr¶ : R

...

Í ÎÎÎÎÎÎÎÎÎÎÏ \ (A6)

With «¬LU¶/R given by Eq. (A3), enforcing the constraints yields the following equation for the Lagrange
multipliers: Äc½¾Õ ¿	=HÖ ÆPÕ » Õ @�× Æ Q (A7)

where the � ;ÙØ � ; matrix Ú is given by

Ú @
ÊËËËËËËÌÜÛ =�= Û = : \�\P\ Û = ½Û : = Û :�: ...

...
. . .

...

Û ½ = \�\�\ \�\P\ Û ½Ý½

Í ÎÎÎÎÎÎÏ Q (A8)

in which the Û ·�Þ ’s are ; : matrices of size � Ø � defined by

Û ·�Þ @
ÊËËËÌ ©7¸ ¹N¹N¹N¹§LU¶ÞP·9R�©7¸ ¹N¹N¹Nº1LU¶#Þ�·9Rv©7¸ ¹N¹Nº?º`Lr¶#ÞP·9R©7¸ ¹N¹N¹Nº1L¶#Þ�·)Rß©�¸ ¹N¹NºBº`Lr¶#Þ�·9Rß©7¸ ¹Nº?ºBº]LU¶ÞP·9R©7¸ ¹N¹Nº?º`Lr¶#Þ�·�Rà©�¸ ¹NºBº?º1Lr¶#Þ�·�Rá©�¸ ºBºBº?º1Lr¶#Þ�·)R

ÍBÎÎÎÏ Q (A9)

where ¶Þ�· @ ¶· D ¶#Þ . Setting ¶· D ¶#Þ @ Ñ Þ�·~âSã�äHåµK�·�Þçæè Â å?éê0AK�·�Þ�æëÈì Q (A10)

yields explicitely

Û ·�Þ @ (� w Ñ :ÞP·
ÊËËËÌ ãPäHåpL � K�·�Þ9R D '`ãPä/åpL�'1K�·�Þ�R ådé�0çL�'1K�·�Þ9RZâf'`ãPä/åpL�'1K�·�Þ�R D ( ì D ãPäHåpL � K�·�Þ�Rådéê0çLs'1K�·�Þ�RÈân'`ãPäHåpLs']K�·�ÞHR D ( ì D ã�äHåpL � K�·�Þ�R D ådéê0�L � K�·�ÞHR D ådé�0çL�'1K�·�ÞHRD ãPä/åpL � K�·�Þ�R D ådé�0çL � K�·�Þ9R D ådéê0�Ls']K�·�ÞHR ã�äHåpL � K�·�ÞHR Â '`ãPä/åpL�'1K�·�Þ�R

ÍBÎÎÎÏ \
(A11)

Integrating Eq. (A1) by parts and taking into account the constraints yields the elastic energy^V®Uq @ (' 4çÔVícÚ 6 = Ô§Q (A12)

where Ô í is the transpose of Ô . From Eqs. (A3) and (A7), the equilibrium shape of the membrane is
given by «¬Lr¶"R @ ÔVíBÚ 6 = Ð3LU¶"R%\ (A13)

When î @vï , Û ·�Þ as given by Eq. (A11) diverges: indeed Eq. (A1) correctly describes the mem-
brane elastic energy only for distances Ñ{ðñ Ñ�ò , where Ñ�ò is of the order of the membrane thickness. It



is therefore necessary to introduce a high wavevector cutoff Ñ 6 =ò in the theory. From the definition of
the Green function ©óLr¶"R , we deduce, in Fourier space©7¸ ¹N¹N¹N¹9LU¶/R @ ¯ � :XôL�'wpR : ô8¹¬õ Y�ö�÷ øô 8 \ (A14)

Hence, introducing the cutoff, we obtain©7¸ ¹N¹N¹N¹HLsù�R @ ¯�údû"üýò ô � ôL�'�wVR : ¯ :�þò �)K�ã�äHå 8 K @ �� '�w Ñ :ò Q (A15)

and similarly for the other elements of the matrix (A9). With the above prescription, we obtain

Û ·#· @ (� '�w Ñ :ò
ÊËËËÌ � . (. ( .( . �

ÍBÎÎÎÏ \ (A16)

As an illustration, let us consider the case of two identical isotropic inclusions, each prescribing
the curvature < . Then Ô í @ Ls<QN.JQN<QN<QN.JQN<�R�Q (A17)

and, from Eqs. (A12), (A8), (A11), and (A16), with Ñ = :ÿ@ 5 , the interaction energy is^V®Uq @ ,�('Ýwp4²L Ñ�ò <�R :y 5Ñ�ò z 8 Â u y 5Ñ�ò z : D � ' Q (A18)

in which we have discarded a constant term. Setting Ñ�ò @ g)>H' , we indeed obtain the leading asymp-
totic interaction (1). This special choice for Ñò allows to match the result of Goulian et al. (1993),
which was obtained from multipolar expansions. It should be noted that the interaction given by
Eq. (A18) is exact within the present formalism (for Ñ larger than + g ), whereas multipolar expan-
sions can only give in analytical form the leading asymptotic orders.

When many inclusions are present, the matrix Ú and its inverse, which determines the interaction
energy through Eq. (A12), can be easily calculated numerically once the positions of the inclusions
are defined.

Appendix B: Monte Carlo simulations

The Monte Carlo simulation that we perform employs the standard Metropolis algorithm [40]. For
given positions and orientations of the particles representing the dynamins, the energy is numerically
calculated from Eq. (A12). At each Monte Carlo step, we perform a Metropolis move consisting
in either a translation or a rotation of one arbitrarily chosen dynamin particle. The amplitude of the
moves is adjusted in order to keep an average acceptance rate of ,/. �

. We confine the dynamins inside
a circular box (of radius uH.]g ) centered around the clathrin lattice, which is kept fixed. To take into
account the hard-core repulsion (see Sec. III), we simply reject any move bringing two particles closer
than the minimum approach distance � (here '/g ). Note that in this simulation the membrane is not
discretized: the interaction energy that we use fully takes into account the elasticity of the membrane.
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[33] J. M. Park and T. C. Lubensky, J. Phys. I France 6, 1217 (1996).

[34] P. G. Dommersnes and J.-B. Fournier, Eur. Phys. J. B 12, 9 (1999).

[35] T. Chou, K. S. Kim, and G. Oster, Biophys. J. 80, 1075 (2001).

[36] P. G. Dommersnes and J.-B. Fournier, To be published (2001).

[37] J. B. Song and R. E. Waugh, Biophys. J. 64, 1967 (1993).

[38] H. Strey and M. Peterson, Biophys. J. 69, 478 (1995).

[39] W. Helfrich, Z. Naturforsch. 28c, 693 (1973).

[40] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087

(1953).



 



Virtual Mitochondria And Their Control 
 

Marie Aimar1, Bernard Korzeniewski3, Jean-Pierre Mazat1 and Christine Nazaret2 (alphabetic order) 
 
1Inserm EMI 9929, and 2ESTBB, Université de Bordeaux 2, 146 rue Léo-Saignat, F 33076, Bordeaux-
cedex France. 
3 Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland 
 
 
Résumé 
Dans la cellule eucaryote, les mitochondries sont des organelles responsable de la fourniture en 
énergie sous forme d’ATP. Le contrôle de la production d’ATP mitochondrial est un problème 
complexe avec différentes expression dans différents tissus et organes. 
Notre but est de continuer la modélisation des oxydations phosphorylantes mitochondriales, d’y 
ajouter le reste du métabolisme mitochondrial et d’intégrer cette mitochondrie virtuelle dans une 
cellule virtuelle. 
Pour construire les cartes du métabolisme mitochondrial, on se servira des séquences connues des 
génomes eucaryotes (10 à 15% du génome de la levure concerne les mitochondries). 
 
 
Abstract 
Inside the eukaryotic cell, mitochondria are internal organelles of prokaryotic origin, responsible 
for energy supply in the cell. The control of the mitochondrial ATP production is a complex 
problem with different patterns according to different tissues and organs. 
Our aim is to continue to develop the modelling of oxidative phosphorylation in different tissues, 
to model other parts of mitochondrial metabolism and to include this virtual mitochondria in a 
virtual cell. 
In constructing the complete metabolic map of mitochondria, we will take advantage of the 
sequenced genomes of eukaryotic organism, (10-15% of the yeast genome concerns 
mitochondria).  

 
 
Introduction 
Mitochondria are internal organelles inside the eukaryotic cell; it is the place of oxidative 
phosphorylation (OXPHOS), i.e. of an ATP synthesis coupled to respiratory chain functioning 
(Fig. 1). The respiratory chain itself is a series of oxido-reduction reactions linking the oxidation 
of a respiratory substrate (glucose, fatty acids, pyruvate etc.) to the reduction of oxygen in water, 
by an electron transfer through a succession of proteinous complexes, correctly arranged in the 
inner mitochondrial membrane. These complexes are made of polypeptides encoded both by 
nuclear and mitochondrial DNA. 
Mitochondria possess their own DNA (mtDNA), circular, double stranded molecules, involving 
1659 base pairs in human, sequenced by the group of Sanger in 1981 [1]. Each mitochondrium 
contains 2-10 mtDNA molecules. In man mitochondrial DNA codes for 13 mitochondrial 
proteins among approximately 70 in the respiratory chain [2-5]. Mitochondria play an important 
role not only in ATP synthesis but also (non-exhaustive list) in some specific metabolic 
pathways, in cell oxido-reduction ratio upholding, in cell calcium homeostasy and signalling, in 
apoptosis, etc. The mitochondrial metabolism is thus rich and varied and it is one of the aims of 
our work to understand how this metabolism can account for very different functions and 
behaviour of mitochondria in different tissues. 



 

Moreover mitochondria, though performing the same general functions, are different in different 
organisms from plant to animals, including yeast and heterotrophic flagellate  like Reclinomonas 
americana.  
The first aim of our work is to continue the modelling of oxidative phosphorylation in different 
tissues in order to simulate their functioning and to understand the basis in their control 
differences. 
In addition mitochondria hold a significant part of cellular metabolism : Krebs cycle, β-oxidation 
of fatty-acids, etc., and the second aim of our work will be to model this metabolism. In the third 
step we will include this virtual mitochondria in a virtual cell by modelling the exchanges of 
metabolites, energy and signals (calcium signals) between the cell and mitochondria. 
In constructing the complete metabolic map of mitochondria, we will take advantage of the 
sequenced genomes of eukaryotic organism, from which a significant part (10-15% in yeast) 
concerns mitochondria. Our project will also lean on sequenced genomes of prokaryotic 
organisms which are ancestors of mitochondria. This should help to ascribe functions to unknown 
ORF, possibly involved in mitochondrial metabolism.  
To sum it up, our work will consist in linking sequenced genomes to mitochondrial metabolism, 
in order to construct mitochondrial metabolic maps, to analyze the mitochondrial fluxes and their 
regulation.  
 
Results 
 Experimental studies enabled a great progress in our understanging of the complex set of 
mitochondrial functions. Nevertheless, it is frequently not easy to integrate a great amount of 
qualitative and quantitative experimental data in an intuitive way. In such cases, different 
quantitative mathematical methods, especially computer kinetic models of particular metabolic 
pathways can be used. 
 Well-tested kinetic models can prove to be very useful research tools. Such models help 
to interpret, analyse and process a great number of quantitative and semiquantitative experimental 
data concerning a sophisticated metabolic system under consideration. They may be very useful 
for explaining the basis and nature of different complex phenomena. Computer modelling forces 
a researcher to formulate all the problems in an explicit and quantitative way, which is not always 
the case with intuitive considerations. Kinetic models allow one to investigate how the 
macroscopic level of the cell behaviour emerges from the interplay of particular elements at the 
microscopic level of enzymatic reactions. They also help to check in a quantitative way, if all 
known elements and their properties suffice to explain the entire behaviour of the investigated 
metabolic system in vivo, or else, if some new factors possessing properties determined by a 
model should be looked for. Human brain could not cope by itself with such a sophisticated, 
multi-factor analysis. Finally, quantitative models can be used to calculate variable values and to 
simulate different dynamic properties that have not been yet measured experimentally (e.g. 
because of technical difficulties) and to predict the existence of completely new phenomena that 
have not been discovered yet in the experimental way. Of course, all such predictions have to be 
verified (or falsified) by experimental studies. In other worlds, theoretical predictions obtained 
with the aid of a computer kinetic model can inspire and direct further experimental studies. 
 Oxidative phosphorylation is probably the mitochondrial metabolic pathway that was 
most frequently modelled in the quantitative way. The general scheme of oxidative 
phosphorylation is presented in Fig. 1. Several different kinetic (and thermodynamic) models of 
this process have been developed. They are shortly summarised in Table 1. Among these models, 
only the model developed by Korzeniewski and co-workers has been tested for a broad range of 
experimentally-measured parameter values and system properties. This model was used to predict 
new properties of the system and the existence of new phenomena.  



 

 One of the most important predictions was that only a direct activation of (almost) all 
oxidative phosphorylation steps, in parallel with the activation of ATP usage, by some (still 
unknown) cytosolic factor X, transmiting the signal of stimulation of a cell by neural excitation 
(skeletal muscle, heart) or hormones (liver) can explain the large changes in fluxes (respiration, 
ATP turnover) accompanied by only moderate changes in metabolite concentrations (ATP/ADP, 
NADH/NAD+) in intact tissues [17,21,25]. Some other important predictions concern the effect 
of inborn enzyme deficiencies and the ethiology of mitochondrial diseases. First, it has been 
demonstrated in the theoretical way that the expression of enzyme deficiencies will depend on the 
origin of the mutation (nuclear or mitochondrial): mutations in mitochondrial genes encoding 
some subunits of oxidative phosphorylation complexes will generally tend to have a more 
harmful effect than mutations in nuclear genes encoding the remaining oxidative phosphorylation 
complexes/subunits [22]. Second, the effect of enzyme deficiencies will depend on the relative 
energy demand of a given tissue – the greater the energy demand, the stronger the impairment of 
oxidative phosphorylation [22]. This founding can help to explain the tissue specificity of 
mitochondrial diseases. Third, the above-mentioned direct activation of different steps in the ATP 
supply-demand system will essentially lessen the inhibitory effect of enzyme deficiencies on 
oxidative phosphorylation [23]. 
 Computer models of other metabolic pathways located in mitochondria, for example of 
Krebs cycle, were also developed. These models also helped significantly to understand the 
control and regulation of mitochondrial metabolism.  

 Some of the results obtained experimentally or predicted with the help of a model are 
understandable in the framework of metabolic control analysis. In this theory [28-30] the 
sensitivity of the flux of a metabolic network as a function of a step perturbation is analyzed in 
the linear domain around a steady-state. This allows to define the so-called „control coefficients”, 
which measure the fraction of a step perturbation transmitted to a whole flux (involving several 
steps including or not the perturbed one). The theoretical models of oxidative phosphorylation 
developed so far, allow more or less easily to calculate its control coefficients. The Korzeniewski 
et al. model was extensively used to this aim [17-20,31] . We are now adapting the model to 
different tissues in order to account for the differences in control coefficient we have measured in 
mitochondria isolated from different rat tissues [32, 33]. The values of control coefficients are of 
great interest in the prediction of the effects of a deficiency in mitochondrial diseases; they are 
also of interest in biotechnology, where some steps are amplified.  
 
Conclusion 
 
With the help of models of mitochondrial metabolism it is possible to analyse and to compare the 
metabolic organisation and functioning of different types of mitochondria. The basic knowledge 
(based on already studied enzymes and on reasonable hypotheses) of the kinetic parameters of 
enzymes or enzymatic complexes will enable us to predict the metabolic fluxes, their regulation 
and their control. In a sense our aim is to apply to mitochondria the method developed for whole 
cells in the post-genomic area, i.e. to construct and to analyse the metabolic maps from the genes. 
Due to the lower number of genes involved in mitochondria (10% of an eukaryotic genome, see 
table 2) this application could be easier than for whole cells and is, in any case, a compulsory step 
in cell metabolism modelling, because mitochondria are largely autonomous and independent 
units inside cells. This will impose to precisely recognise these sequences, involved in 
mitochondria. 
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Table 1. Quantitative models of oxidative phosphorylation available in the literature. 
Authors type of model chatacteristics references 
Chance and Williams one simple kinetic 

equation 
for isolated mitochondria; Michaelis-
Menten kinetic dependence of the 
respiration rate on [ADP]; black-box 
description 

[6,7] 

Rottenberg; Westerhoff 
and van Dam 

NET – non-equilibrium 
thermodynamics 

for isolated mitochondria; linear 
depencence of fluxes on thermodynamic 
forces; black-box description; limited 
range of application 

[8,9] 

Wilson, Erecińska and 
co-workers 

static kinetic model of 
one rate-limiting step 

for isolated mitochondria; kinetic 
description of cytochrome oxidase 
assumed to be the only rate-limiting step; 
depencence on external [ATP]/[ADP] 
instead of on ∆p 

[10,11] 

Bohnensack and co-
workers 

static kinetic model 
involving many steps 

for isolated mitochondria; kinetic 
description of many (but not all) 
complexes (phosphate carrier not included 
explicitly, respiratory chain described as 
one unit); tested for a limited set of system 
properties 

[12-14] 

Holzhütter and co-
workers 

dynamic kinetic model 
involving many steps 

for isolated mitochondria; kinetic 
description of all complexes; several 
assumptions are not justified; developed 
for mitochondria working in non-
physiological temperature (8 °C); tested 
for a limited set of system properties 

[15] 

Korzeniewski and co-
workers 

dynamic kinetic model 
involving many steps 

for isolated mitochondria and intact tissues 
(liver, muscle); kinetic description of all 
complexes; tested for a broad set of system 
properties; used for a series of new 
theoretical predictions 

[16-24] 

Saks and co-workers dynamic kinetic model 
involving many steps 

for intact heart; creatine kinase assumed to 
be essentially displaced from 
thermodynamic equilibrium; Pi assumed to 
be the main metabolite regulating 
oxidative phosphorylation; contradicts 
several experimental data concerning the 
value of, and relative changes in, [Pi] 

[25,26] 

 
 
Table 2. Number of nuclear genes known for coding mitochondrial proteins : 
SwissProt was used as a data bank. The interrogation was built with two kinds of keywords: different organism 
names (listed in the first column) and the prefix "mito"; the number of these occurrences is listed in the third column 
with the number of mtDNA uncoded proteins in brackets. The fourth column gives the percentage of the number of 
‘mito’ occurences scaled by the total number of known proteins in the organisms under study (second column). 
 
Organism Nb of 

known proteins 
Nb of “mito”citations 

 
% 

Arabidopsis thaliana 1513 101 (17) 6.67 
Sacharomyces cerevisiae 4864 603 (18) 12.39 
Drosophila melanogaster 1576 110 (13) 7.55 
Caenorhabditis elegans 2214 112 (12) 5.05 
Mus musculus 5070 397 (16) 7.83 
Homo sapiens  7819 636 (13) 8.13 
 



 

Figure legends 
 
Fig. 1. Scheme of oxidative phosphorylation in mitochondria. SH, respiratory substrate; 1., substrate 
dehydeogenation; 2., complex I; 3., complex III; 4., complex IV; 5., proton leak; 6., ATP synthase, 7. ATP/ADP 
carrier; 8. phosphate carrier; 9., ATP usage 
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Abstract - The enzymatic activities of threonine pathway in Escherichia coli are sensitive to 
pollutants such as cadmium, copper and mercury which even at low concentration, can 
substantially decrease or even block the pathway at several steps. Our aim was to investigate the 
complex effects on a metabolic pathway of such general enzyme inhibitors with several sites of 
action, using a previously-developed computer simulation of the pathway. For this purpose, the 
inhibition parameters were experimentally determined and incorporated in the model. The 
calculation of the flux control coefficient distribution between the five steps of the threonine 
pathway showed that control remains shared between the three first steps under most inhibition 
conditions.  Response coefficient analysis shows that the inhibition of aspartate semialdehyde 
dehydrogenase is quantitatively dominant in most circumstances. 
 
Keyword: Threonine, computer simulation, metabolic control analysis, biosynthetic pathway, 
pollutants. 

 

Résumé – Les activités enzymatiques de la chaîne de biosynthèse de la thréonine d’Escherichia 
coli sont particulièrement sensibles a des polluants tels que le cadmium, le cuivre et le mercure, 
qui peuvent diminuer ou bloquer le métabolisme bactérien. Les paramètres cinétiques de ces 
inhibitions ont été déterminés expérimentalement, puis incorporé dans un modèle mathématique 
de la voie. Ce modèle a été utilisé pour simuler l’effets de ces inhibition sur le flux de 
biosynthèse de la thréonine et calculer la répartition des coefficients de contrôle entre les étapes 
de la voie. Ceci a montré que le contrôle est toujours reparti entre les trois première étapes. 
 
Mots clés: Thréonine, simulation du métabolisme, théorie du contrôle du métabolisme, voie de 
biosynthèse, polluants. 



 

INTRODUCTION 
 

The enzymatic activities of threonine pathway in Escherichia coli are sensitive to 
pollutants such as cadmium, copper and mercury which even at low concentration, can 
substantially decrease or even block the pathway at several steps.   Such multiple sites of action 
must be taken into account when considering two important environmental roles of bacteria: in 
bioremediation of soils and as commensals of mammalian organisms. 

Our aim was to evaluate the effects of enzyme inhibitions on threonine production using 
Metabolic Control Analysis (MCA) [1-5]. For this purpose, a computer simulation of the 
threonine pathway synthesis [6-8] was used. This model is based on kinetic functions developed 
from measurements on the pathway enzymes under near-physiological conditions. In order to 
represent the effects of the different pollutants on the threonine pathway, the model was extended 
with kinetic terms for the inhibition. 

For this purpose, the kinetic parameters describing these inhibitions have been determined 
experimentally. In the first part of this experimental work, the more potent inhibitors were chosen 
by screening. Then the effects of these compounds on the different steps of the pathway were 
measured by titration of the enzyme activities. 

The threonine pathway in E. coli involves 5 steps from aspartate (figure 1). The first step 
is important owing to its regulation. It is catalyzed by three isoenzymes: the aspartokinase I 
(AKI) inhibited by threonine, the synthesis of which is repressed by threonine plus isoleucine (an 
amino acid synthesized from threonine); aspartokinase III (AK III) inhibited by lysine (which is 
also synthesized from aspartate in E. coli), the synthesis of which is repressed by lysine; and 
aspartokinase II (AK II), the synthesis of which is repressed by methionine, the third amino-acid 
synthesized from aspartate in E. coli (for a review, see Cohen [9] and Neidhardt [10]). 
Aspartokinase I and aspartokinase II are bifunctional enzymes which also catalyze the third step, 
the homoserine dehydrogenase reaction (AKI-HDHI and AKII-HDHII). The amount of 
aspartokinase II-homoserine dehydrogenase II is low, so it may be omitted in an initial modelling 
approach. 

  

MATERIALS AND METHODS 
 

Cells  
An E. coli strain K12 thiaisoleucine-resistant derivative (Tir-8) [11], de-repressed for the 
threonine operon [12], was used in the study. Bacteria were grown in a minimal medium at 37°C 
with 0.4 % (w/v) glucose as the carbon source. At the end of the exponential phase, the cells were 
harvested, washed and frozen at -80 °C in extraction buffer.  
 
Chemicals 
The different pollutants tested KNO3, KNO2, CuCl2, CdCl2, HgCl2 and ZnCl2 were from Sigma. 
The other chemicals were as described by Chassagnole et al. [6] 
 

Enzyme Assays 
The buffers and the crude extract preparation and the enzyme assays are described in a previous 
paper [6]. 
 

Initial screening 
In order to study the pollutants’ effects, we decided in the first instance to determine the potential 



 

inhibitions by all of these compounds through a rough screening on all the enzymatic activities, at 
5mM or the highest possible concentration given the solubility of the compound in the buffer. All 
the activities were measured at substrate concentrations around the Km value and the percentage 
inhibition calculated relative to controls.  
 
IC50 and Hill coefficient determination 
Each enzyme activity was measured as a function of the concentration of the inhibitory ion. The 
IC50 were calculated directly from the inhibition curves and the Hill coefficient by a classical Hill 
plot. 
 
Threonine pathway model  
The threonine  pathway model used here is the culmination of a combined experimental and 
theoretical study, the details of this work can be found in [6-8]. In order to reproduce the in vivo 
steady-state of the pathway, the measured in vivo concentrations of the different substrates and 
effectors and the enzyme activities have been introduced into the model. 
 
Incorporation of the effects of heavy metals in the model 
In order to represent the effects of the different heavy metals on the different steps of the 
threonine  pathway. A non-competitive inhibition term (eq. 1), with a Hill coefficient and a 
partial effect had been incorporated in each enzymatic rate equation (eq. 2), according to the 
experimental description of the inhibitions (Table II, III and IV). 
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where %inh represents the maximal limiting inhibition in the case of partial inhibitors. 
 
Simulation 
The dynamic modelling of the flux, the intermediates metabolites and the flux control coefficient 
determination have been done with the SCAMP (Simulation, Control Analysis, Modelling 
Package) software developed by Sauro and Fell [13-16]. With this software, the flux control 
coefficients and the overall flux response coefficient to an inhibitor are determined by numerical 
perturbations of the enzyme activities or inhibitor concentration respectively and recalculation of 
the corresponding steady state over a specified range of inhibitor concentrations.  The program 
also allows calculation of enzyme elasticities with respect to the inhibitors, and partial response 
coefficients (the product of an enzyme’s flux control coefficient and elasticity with respect to an 
inhibitor) [1] in order to assess the relative contribution of each enzyme to the total response to 
the inhibitor. 
 



 

  
RESULTS AND DISCUSSION 
 
Initial screening 
 The pollutants tested on the threonine pathway were nitrate, nitrite, copper, cadmium, 
mercury and zinc. The results of the initial screen of each of these are shown in table I. 

We can see that neither nitrite nor nitrate inhibit the activities, except for weak inhibitions 
of AKI by nitrate and threonine synthase (TS) by nitrite. However we consider that these 
compounds will not inhibit the threonine pathway significantly at environmental concentrations. 
On the other hand, we can see that heavy metals inhibit all enzyme activities; moreover these 
inhibitions are strong and in some cases total. Hence we decided to study further three of these 
compounds: cadmium, copper and mercury. 
 

Kinetic characterisation  of the inhibition by heavy metals 
Each enzyme activity was measured as a function of the concentration of the three toxic 

compounds cadmium, copper and mercury, at a constant concentration of substrate. Fig. 2 and 3 
give some examples of these results. All the enzymes were inhibited by these heavy metals,  
particularly aspartate semi-aldehyde dehydrogenase (ASD) by cadmium, copper and mercury, TS 
by copper, AKI  and homoserine kinase (HK)  by mercury. Mercury is the most potent inhibitor 
of the whole threonine pathway, though the most sensitive enzyme varies with the metal. The 
IC50, Hill coefficients and the maximum percentage inhibition of these inhibitions are 
summarized in table II, III and IV. 
 

Simulation of the effects of different pollutants  
The mathematical model has been used to simulate the effects of the different heavy 

metals (cadmium, copper and mercury) on threonine pathway flux values (figure 4a, 4b, 4c). We 
can see that the IC50 for the pathway flux is always larger than the smallest IC50 for the individual 
steps (table II), in general by a factor of about four. 
With the model it was also possible to calculate the flux control coefficient distribution between 
the different steps of the threonine pathway. In the “in vivo” steady-state conditions the control is 
shared between the three first steps 0.282, 0.249 and 0.466, respectively for  the aspartokinase, 
the aspartic ß-semialdehyde dehydrogenase and the homoserine dehydrogenase. The homoserine 
kinase and the threonine synthase (respectively 0.005 and 0.000) flux control coefficients can be 
considered as negligible. 

By increasing the cadmium concentration we observe (figure 5a) a transfer of the control 
from AK and HDH to ASD, reaching a maximum of 0.8 at 1.5 mM. This can be explained by the 
low IC50 for ASD.  Up until 1.5 mM, inhibition of ASD makes the largest contribution to the 
response of threonine flux to cadmium, but above this, the flux control coefficients of AK and 
HDH rise and these two enzymes make the larger contribution to the continuing pathway 
response as the cadmium concentration is increased. 
By increasing the copper concentration we also observe (figure 5b) in this case a transfer of the 
control from AK and HDH to the ASD, which attains a flux control coefficient of nearly 1.0. This 
means that all the control of the flux is shifted to the ASD. This is not just because ASD has the 
smallest IC50, but because only the ASD can be 100% inhibited. So by increasing the copper 
concentration, the ASD becomes the only controlling step and the response of the pathway to 
copper is accounted for almost entirely by the response of ASD even though all the enzymes 
exhibit significant elasticities with respect to copper throughout the range. 
When the mercury concentration increases, we once again observe (figure 5c) a transfer of the 
control from AK and HDH to the ASD, up to a maximum of 0.9. In this case, however, HK 



 

becomes a dominant controlling step. The first part of the curve can be explained by two facts: 
firstly the ASD and the HDH can be 100% inhibited, which is not the case for the AK activity,  
and secondly the ASD IC50 (1.66 µM) <<HDH IC50 (0.51mM), so for this inhibitor concentration 
range (0-25 µM) the HDH inhibition is negligible. 
In the second part of the curve, the transfer of control from ASD to HK, is explained by the high 
Hill coefficient (3.7) of this inhibition, reflected in the elasticitiy coefficient (-3.5).  Furthermore, 
as HDH is inhibited, homoserine concentrations start to rise (see Fig. 6), causing further substrate 
inhibition of the enzyme.  Hence at mercury concentrations above 0.025 mM, HDH makes the 
largets contribution to the pathway’s response to mercury. 

The variations of the intracellular concentrations of intermediate metabolite of the 
threonine pathway were also simulated with the model as a function of pollutant concentration. 
These concentrations: ß-aspartyl phosphate (ASPP), aspartic ß-semialdehyde (ASA), homoserine 
(HS) and O-phosphohomoserine (HSP) are represented as a function of the heavy metals in the 
figure 6. We can observe a slight increase of ASPP, the substrate of ASD, in all cases. In Figure 
6c the rise in homoserine can be seen as HK becomes the more controlling step.  
 

 
CONCLUSIONS 
 

All these results show the necessity of a model to understand the effects of pollutants such 
as heavy metals. In fact, these compounds are responsible for multiple effects on the metabolic 
pathway. So it is not possible to simply correlate the IC50 of the individual steps to predict the 
global effect on the flux. Another motivation for modelling is the simulation of a steady state 
corresponding to the in vivo concentrations of the different substrates and effectors of the 
threonine pathway. A true steady state with these intracellular concentrations will be difficult to 
maintain long enough for an experimental flux determination, making direct dissection of the 
inhibitor effects too difficult by experiment. 
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LEGEND TO FIGURES  
 
Figure 1: Threonine pathway from threonine in E. coli. 
The different steps are catalyzed by aspartokinases I, II and III (AK I, AK II and AK III), 
aspartate semi-aldehyde dehydrogenase (ASD), homoserine dehydrogenase (HDH), homoserine 
kinase (HK) and threonine synthase (TS).  
      means retroinhibition. 
 
Figure 2: Threonine synthase activity as a function of cadmium chloride concentration. 
The activity is measured in the presence of homoserine-phosphate 1 mM 
 
Figure 3: Homoserine kinase activity as a function of the mercury concentration. 
The activity is assessed in the presence of homoserine 1 mM. 
 
Figure 4: Threonine flux as a function of cadmium (a), copper (b) and mercury (c) 
concentrations 
 
Figure 5: Flux control coefficient of the threonine pathway activities as a function of 
cadmium (a), copper (b) and mercury (c). — AK , … ASD,   HDH and .. HK. (NB: the TS 
flux control coefficient is not represented because its value is always near zero). 
 
Figure 6: Intermediate metabolite concentrations of the threonine pathway as a function of 
cadmium (a), copper (b) and mercury (c). — ASPP , … ASA,   HS and  .. HSP. 
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Table I: Percentage of inhibition of toxic compound on enzyme activities. 
 

 mM AK I AK III ASD HDH I HK TS 
Nitrate 5 14 n.I. n.I. n.I. n.I. n.I. 
Nitrite 5 n.I. n.I. n.I. n.I. n.I. 32 

Cadmium 5 79 100 97 60 98 100 
Copper 0.2 85 63 100 50 36 80 
Mercury 1 100 74 100 100 100 95 

Zinc 5 100 99 78 (1) 88 100 99 (2) 
n.I. : no inhibition  (1) : 0.5 mM  (2) : 1 mM 
 
 
Table II : IC50 of different heavy metals on enzyme activities and threonine flux. 
 

 AK I AK III ASD HDH I HK TS Threonine 
Flux 

Cadmium 2 mM 0.1 mM 12.6 µM 2.76 mM 0.7 mM 0.13 mM 43 µµµµM 
Copper 62 µM 0.18 mM 33 µM 0.25 mM 0.47 mM 18 µM 93 µµµµM 
Mercury 0.95 µM 0.73 mM 1.66 µM 0.51 mM 5 µM 92 µM 3.7 µµµµM 

 
 
Table III : Hill number of different heavy metals on enzyme activities. 
 

 AK I AK III ASD HDH I HK TS 
Cadmium 1.23 0.7 1.17 2.51 1.65 0.79 
Copper 1.41 0.92 1.19 1.15 1.35 0.76 
Mercury 1.93 1.17 1.71 1.96 3.7 1.25 

 
 
Table IV: Maximum percentage of inhibition of toxic compound on enzyme activities. 
 

 AK I AK III ASD HDH I HK TS 
Cadmium 100 100 97 85 100 100 
Copper 100 80 100 60 90 100 
Mercury 100 100 100 100 100 100 
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Abstract 
Biotechnology is often presented as if progress in the past two decades represented a major 
success, but the reality is quite different. For example, ten major classes of antibiotics were 
discovered between 1935 and 1963, but after 1963 there has been just one, the oxazolidones. To 
illustrate the possibilities of doing better by taking account of the real behaviour of metabolic 
systems, we can examine how one might modify the activity of an enzyme in the cell (for 
example by genetic manipulation, or by the action of an inhibitor, etc.) to satisfy a technological 
aim. For example, if the objective is to eliminate a pest, one might suppose that the effect of an 
inhibitor could be to depress an essential flux to a level insufficient for life, or to raise the 
concentration of an intermediate to a toxic level. The former may seem the more obvious, but the 
latter is easier to achieve in practice, and there are some excellent examples of industrial products 
that work in that way, such as the herbicide ‘Roundup’ and antimalarials of the quinine class. A 
study of glycolysis in the parasite Trypanosoma brucei (which causes African sleeping sickness) 
indicates that for this approach to work the selected target enzyme must have a substrate with a 
concentration that is not limited by stoicheiometric constraints. That is not necessarily easy to 
find in a complicated system, and typically needs the metabolic network to be analysed in the 
computer. 
 
Metabolic analysis / stoicheiometric analysis / uncompetitive inhibition / drug design 
 
Résumé 
La biotechnologie est souvent présentée comme si les nouvelles technologies des deux dernières 
décennies constituaient une réussite éclatante, mais la réalité est toute autre. Par exemple, entre 
1935 et 1963 on a découvert dix classes majeures d’antibiotiques ; depuis 1963 on n’en a 
découvert qu’une seule, les oxazolidones. Pour illustrer les possibilités d’améliorer les résultats 
en tenant compte du comportement des systèmes métaboliques, nous pouvons examiner comment 
on peut modifier l’activité d’une enzyme dans la cellule (soit par manipulation génétique, soit par 
l’action d’un inhibiteur, etc.) pour satisfaire des objectifs biotechnologiques. Par exemple, si le 
but est d’éliminer une peste, on peut supposer que l’effet d’un inhibiteur puisse être d’abaisser un 
flux essentiel en-dessous d’un niveau indispensable à la vie, ou d’augmenter la concentration 
d’une métabolite à un niveau toxique. Le premier semble être le plus évident, mais le second est 
plus facile à réaliser dans la pratique, et on a d’excellents exemples de produits industriels très 
importants qui fonctionnent ainsi, comme le « Roundup » utilisé comme herbicide, ou la quinine 
comme médicament contre le paludisme. Une étude de la glycolyse dans le parasite Trypanosoma 
brucei (responsable de la maladie de sommeil) indique que, pour que cette approche soit efficace, 
il faut choisir comme cible une enzyme pour laquelle la concentration du substrat ne soit pas 
limitée par des relations stoechiométriques. Ceci n’est pas forcément facile à trouver dans un 
système compliqué, et nécessite typiquement une analyse métabolique par ordinateur. 
 
Analyse métabolique / analyse stœchiométrique / inhibition incompétitive / conception de 
médicaments 



 

Although the human genome project is yielding clues to thousands of new targets for drug 
development [1], selecting suitable targets is not easy, as we analyse here, and requires a systemic 
approach, i.e. one that recognizes that enzymes are organized into metabolic systems. Despite the 
triumphalism implicit in titles such as ‘Intelligent drug design’ [2] or ‘Drug discovery’ [3] for 
supplements in Nature and Science, there is now increasing recognition that intelligent drug 
design (or drug design tout court) remains something for the future, so that an industry analyst 
could recently write that ‘any regular reader cannot avoid being impressed by the startling failure 
of the pharmaceutical research effort’ [4]. Most currently prescribed antibiotics (and a good  
fraction of other drugs) are derivatives of agents in clinical use for 30 years or more [5], but this 
may appear less surprising when considered in the light of the low level of attention given to 
metabolism. The discovery of new classes of antibiotics has now virtually ceased—ten major 
classes discovered between 1935 and 1963; one class, the oxazolidones, since then—despite the 
urgent need for new antibiotics created by broad resistance to almost all existing ones by 
hospital-adapted pathogenic bacteria. In spite of genetic engineering, combinatorial chemistry, 
bioinformatics and so on, the impact of the human genome project on drug discovery has been 
disappointing. 

Unfortunately ‘intelligent drug design’, at least as understood by authors who use the 
term, appears not to include the idea that what cells do is metabolism and a major thing drugs are 
supposed to do is to alter metabolism: of the 500 current targets 30% are enzymes and 45% are 
receptors [6]. To forget metabolism when discussing strategies for drug design [2] or drug 
discovery [3] (these two supplements barely mention metabolism) is a mistake. 

Taking a broader view of biotechnology beyond the development of drugs, efforts to 
improve yields of industrial processes by overexpressing the enzymes thought to catalyse rate-
limiting steps have been equally ineffective. As long ago as 1989 it was known from experiment 
that overexpressing phosphofructokinase in fermenting yeast by 250% had no perceptible effect 
on the flux to ethanol [7], a result subsequently confirmed in other organisms, but this knowledge 
did not prevent the investment of vast amounts of money in similarly fruitless quests. In 1989 one 
could perhaps have explained the absence of known examples of success in terms of commercial 
secrecy, but a decade later the only plausible explanation must be that no examples are known 
because no examples exist. 

It is known from theoretical considerations [8] as well as experiments such as those in 
fermenting yeast [7] just mentioned, that increasing metabolic fluxes by significant amounts is 
very difficult. Decreasing them is easier, but still more difficult than one might hope. However, 
metabolite concentrations are much less stable than fluxes, and respond far more sensitively to 
perturbations in enzyme activities. This generalization is proving very helpful for probing the 
functions of supposedly silent genes [9] and it also suggests that pharmacological effects due to 
changes in metabolite concentration may be much easier to achieve than ones that require 
significant changes in fluxes. Significantly, ‘Roundup’ (N-phosphonomethylglycine), 
commercially by far the most successful of all herbicides, owes its effect to its capacity to raise 
the concentration of shikimate several hundredfold [10], and quinine, one of the more successful 
antimalarial drugs, likewise acts by increasing the concentration of haem in treated parasites to 
toxic levels [11]. Lithium, very effective in the treatment of manic depression, appears to exert its 
effect by decreasing the level of inositol [12]. Studying how such effects are brought about may 
offer a useful introduction to how intelligent drug design may one day become a reality. All three 
of the substances mentioned act by inhibiting enzymes, and all behave as uncompetitive 
inhibitors. 

The common inhibition types are easily confused in experiments in the spectrophoto-
meter, with the result that cases of mixed inhibition are frequently reported as competitive. 
However, steady-state experiments at substrate and product concentrations that are decided and 
fixed by the experimenter are very misleading as a model of inhibition in vivo, where 



 

concentrations are not fixed at all, and certainly not by an external agent such as an experimenter. 
For a typical enzyme that catalyses a reaction in the middle of a metabolic pathway it is a better 
approximation (though still not exact) to consider that the rate is fixed and that the substrate and 
products are adjusted by the enzymes that use them to whatever values will sustain the 
appropriate flux. In these conditions competitive and uncompetitive inhibition become very 
different from one another [13] and the uncompetitive component becomes the main determinant 
of the response of the system to a mixed inhibitor. 

These points are illustrated in figure 1. When the inhibition is competitive (figure 1c), 
effects on both flux and metabolite concentrations are very slight, but all become much larger 
when the inhibition is un-competitive (figure 1d). In the latter case the slopes are small at very 
low inhibitor concentrations, but the significant curvature causes the lines to become rapidly 
much steeper as the inhibitor concentration increases. The essential point is that a molecule that 
competes with a substrate is a molecule that a substrate can compete with, and so the effect of a 
competitive inhibitor can be nullified by relatively minor adjustments of the concentrations 
around the inhibited enzyme. By contrast, effects of uncompetitive inhibitor are potentiated by 
the variations in substrate that they generate, and fairly modest levels of inhibition may therefore 
produce huge changes in substrate concentration. It is essentially this kind of effect that is 
exploited by Roundup, which inhibits 3-phosphoshikimate 1-carboxyvinyltransferase, uncom-
petitively with respect to 3-phosphoshikimate [10]. 

Figure 1b shows the effects of varying enzyme activity without necessarily implying the 
presence of an inhibitor. In the basal state (point L on the curve), small variations in the activity 
of E 5 are almost without effect: in relative terms the effect of the flux is only 13% of the 
variation in enzyme activity. However, by the time the activity is decreased to about one-third 
(point M, corresponding approximately to the point in figure 1d where the steady state is lost) 
changes in flux are almost exactly proportional to changes in enzyme activity. On the other hand, 
if the basal activity had been twofold higher (point N), the system could stand quite large changes 
in activity in either direction with almost no effect on the flux. This type of curve explains why 
organisms can usually tolerate quite large losses of activity of many enzymes with almost no 
effect of phenotype, as studied for example in the context of mitochondrial diseases [14, 15]. 

Designing an inhibitor with significant uncompetitive character is a much more difficult 
task than designing a competitive inhibitor, because it cannot just be a substrate analogue. This 
difficulty is not an adequate reason for not attempting it, however, because solving a difficult task 
is likely to be more rewarding than solving an easy task if its solution is potentially useful and the 
solution to the easy problem potentially use-less. Nonetheless, the systemic context of the 
inhibition always needs to be considered because there are at least two circumstances where 
uncompetitive inhibition may not be much more effective than competitive. 

The first of these is that some enzymes do act in vivo in environments resembling the 
constant-concentration conditions of the spectrophotometer: an enzyme that acts on glucose at the 
beginning of a minor pathway, for example, will have very little effect on the glucose 
concentration in any ordinary conditions, because that is determined by controls on the major 
glucose-using pathways like glycolysis and glycogen synthesis; such an enzyme can therefore be 
treated like an enzyme in a spectrophotometer, and will respond to competitive inhibition as 
readily as to uncompetitive inhibition, unless feedback loops ensure that its activity responds to 
demand for the product of the minor pathway, in which case it may largely ignore any kind of 
inhibitor. 

The second point is that a metabolite concentration can only show a large response to 
changes in the activities of enzymes that consume it or produce it if it is largely free from 
stoicheiometric constraints. Some constraints are obvious from inspection: for example, in a cell 
with a fixed total NAD concentration the concentrations of neither reduced nor oxidized NAD 



 

can exceed the fixed total. However, much more complicated constraints may also exist, and 
identifying these may require stoicheiometric analysis by computer. 

Glycolysis in Trypanosoma brucei (figure 2), illustrates all of these points. It not only 
provides an example of a stoicheiometric relationship that one would be unlikely to discover by 
inspection, but it is also a very attractive system to model in the computer for several other 
reasons. T. brucei is responsible for a disease of major economic importance, African sleeping 
sickness, and is thus a major focus of research into tropical diseases. Its bloodstream form has 
possibly the simplest metabolism of any known organism, glycolysis accounting for nearly all of 
its metabolic activity, with glucose its only energy source [16, 17]. There is therefore some hope 
that it may be possible to model essentially the whole of its metabolism in the computer with 
experimentally deter-mined parameters for all the enzymes. Not only that, but most of the 
currently available kinetic data come from a single research group working to high standards, so 
variations due to arbitrary differences between the conditions used in different laboratories are 
largely avoided. All of this allowed the construction of a computer model [18, 19] that is about 
60% complete, in the sense that it includes about 60% of the experimentally determined values 
that an ideal model would contain. With the possible exception of models of the human 
erythrocyte [20] no other metabolic model even approaches this degree of completeness. 

Although at first sight the model in figure 2 suggests numerous po-tential targets for drug 
design, metabolic simulations have shown that the real number of useful targets is much smaller. 
Computer analysis of the model in figure 2 revealed four distinct stoicheiometric constraints on 
the metabolite concentrations. (The matrix algebra necessary to arrive at the stoicheiometric 
relationships systematically is explained elsewhere [21].) Three of these—oxidized and reduced 
NAD in the glycosome, adenine nucleotides in the glycosome, adenine nucleotides in the 
cytosol—are obvious from inspection, but the fourth, involving the metabolites marked by 
asterisks in the scheme, is not. It includes most of the transferable phospho groups in the 
glycosome, but not all of them: 3-phosphoglycerate is not involved, and 1,3-bisphosphoglycerate 
is counted only once even though it has two transferable phospho groups; it also includes 
cytosolic dihydroxyacetone phosphate and glycerol 3-phosphate (but not other cytosolic 
molecules, such as cyto-solic ATP). Once recognized, this relationship can be rationalized as 
representing that part of the glycosomal phosphate pool that is not accounted for by uptake of 
inorganic phosphate and export of 3-phos-phoglycerate. 

The existence of the stoicheiometric constraints may appear to be of purely academic 
interest, but they have a practical importance as well, because they place severe restrictions on 
the possible targets of an inhibitor intended to destroy the trypanosome by acting in a similar way 
to Roundup in plants. As the four constraints involve nearly all of the metabolites in the 
glycosome, they rule out many of the enzymes as useful targets for uncompetitive inhibition. Of 
the few that remain, all but the pyruvate transporter are ruled out by other considerations [19], so 
that instead of the wealth of potential targets suggested by visual inspection of figure 2 there is in 
reality just one. Until recently we overlooked a paper that bears directly on this point, and 
suggested the pyruvate transporter as a good target on the basis of theoretical analysis [19] 
without mentioning the experimental observation that inhibiting it in vivo does indeed cause the 
pyruvate concentration to rise, followed by osmotic Shock and, probably, death [22]. 

A frequent difficulty in simulations of metabolic pathways is the absence of 
experimentally determined kinetic parameters for reverse reactions, especially for reactions 
considered to be irreversible. Normal-ly the researcher has to choose between guessing the 
parameters for the reverse reaction from the equilibrium constant, or treating the reaction as 
irreversible. When the equilibrium constant is very high, as with pyruvate kinase, one may expect 
it not to matter one way or the other, but when simulating the T. brucei model we found that it 
did. The distribution of flux control was quite different in the two cases, with pyruvate transport, 
a step with no control at all with pyruvate kinase irreversible, becoming the second most 



 

important step when pyruvate kinase was allowed to be reversible. This was a surprising result, 
and although resolving it was not very important for the T. brucei model as such, it was desirable 
to study the general implication that all metabolic models would need to be composed entirely of 
reversible steps if they were to give valid predictions. 

The explanation [23] of this apparent anomaly proved to be quite simple, and relates more 
to the practices of biochemists than to the underlying biochemistry. There is no fundamental 
reason why an irreversible reaction should be insensitive to its product, as one may readily see 
from the reversible form of the Michaelis-Menten equation [24]: 
 

v = kAe0a – kPe0p
1 + a

KmA
 + p

KmP  
 
in which v is the rate, kA, kP, KmA and KmPare constants, e0 is the total enzyme concentration, 
and a and p are the substrate and product concentrations respectively. Assuming irreversibility 
means assuming that the negative term in the numerator is negligible, but assuming insensitivity 
to product means assuming not only this but also that the term in p in the denominator is 
negligible. Many enzyme reactions are known that are irreversible for practical purposes but 
which are nonetheless inhibited by their products. In practice, however, over many years 
metabolic models have nearly always confused these two effects: enzymes that have been treated 
as irreversible have normally been exempt from product inhibition as well. 

In the case of the model of glycolysis in T. brucei, making pyruvate kinase subject to 
inhibition by pyruvate (but still irreversible) proved sufficient to render the behaviour 
indistinguishable from that with a fullyreversible equation for this enzyme [23]. Thus the absence 
of product inhibition and not of reversibility was responsible for the anomaly noted earlier [19]. 
What is important is transfer through the pathway of information about the concentrations of 
metabolites: adequate regulation of any metabolic pathway requires mechanisms for enzymes 
early in the pathway to receive information about the concentrations of metabolites at the end 
[23]. The simplest mechanism is provided by serial product inhibition of all the enzymes in the 
system, but although this can regulate fluxes quite adequately it is very unsatisfactory for living 
systems because variations in flux are accompanied by huge variations in metabolite 
concentrations. In practice, therefore, living organisms virtually always obtain a more direct 
transfer of information by incorporating cooperative feedback inhibition [25]. 

The human genome project is suggesting as many as 30000 human gene products as 
research targets for drug development. Testing all these will be extremely expensive, with 
operation on a very large scale, and it will be essential to make efforts to restrict the number of 
targets to ones with a real chance of success. Metabolic simulation, as discussed here can help 
enormously to reduce the costs. 
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Figure Legends 
 
Figure 1. Effects of inhibition on an enzyme in the middle of a long pathway. Panel(a) shows a 
pathway of ten reactions converting a starting material X0 into as ink metabolite X10 via nine 
intermediates S1, S2 … S9. The concentrations of X0 and X10 are assumed to be10 and 0 arbitrary 
units) respectively, and those of the intermediates are those necessary to achieve a steady state. 
Each enzyme apart from E5 is assumed to follow reversible Michaelis-Menten kinetics with 
limiting rate 10 in the forward direction, equilibrium constant 5 in favour of the forward 
direction, and Michaelis constants 1 and 5 for the forward and reverse reactions respectively. In 
the case of E5, competitive inhibition was simulated by replacing the Michaelis constants for both 
directions by apparent values obtained by multiplying by a factor (1 + [I]/Kic), where [I] is the 
inhibitor concentration and Kic = 1; uncompetitive inhibition was simulated by replacing both 
limiting rates and Michaelis constants for both directions by apparent values obtained by 
multiplying by a factor (1 + [I]/Kiu), where [I]is the inhibitor concentration and Kiu = 1. Panel (b) 
shows the dependence of the flux through the pathway in the absence of inhibition on the activity 
of E5 relative to the basal state (point L). The point N illustrates how the flux would depend on 
enzyme activity if the basal activity were twofold higher. Panel (c) shows the effect of a 
competitive inhibitor on the flux through the pathway and on the concentrations of the substrate 
(S4) and product (S5) of E4. Metabolites earlier in the pathway behave like S4,, and those later in 
the pathway like S5, but in both cases with smaller slopes. Panel (d) shows the corresponding 
effect of an uncompetitive inhibitor. No steady state could be reached in the grey region at 
inhibitor concentrations above 1.7. The point labelled L refers to the same state as the point 
labelled L in panel (b); the point labelled M refers to a state similar to that of the point labelled M 
in panel (b). The labelling of the left-hand ordinate axis in panel (c) applies also to panel (d), and 
the labelling of the right-hand ordinate axis in panel (d) applies also to panel (c) 
 
Figure 2. The glycolytic pathway in bloodstream form Trypanosomabrucei. There are four 
compartments, labelled Host blood, Cytosol, Glycosome and Mitochondrion. Dihydroxyacetone 
phosphate and glycerol 3-phosphate diffuse between the glycosome and the cytosol, but the two 
transport steps are not explicitly shown; glycerol 3-phosphate is reoxidized under aerobic 
conditions to dihydroxyacetone phosphate on the membrane of the mitochondrion.’GROWTH’ 
represents all of the steps in the rest of metabolism that are driven by dephosphorylation of ATP. 
Each of the metabolites labelled * is counted once in the stoicheiometric constraint discussed in 
the text; each of those labelled ** is counted twice. 
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Abstract   
We discuss the background to the recent explosion of interest in the structure of homogeneous 
networks. We include a brief review of ‘small worlds’ and of the scale-free models that exhibit a 
power law distribution of nodes as a function of the number of links to or from them. The so-
called standard canonical law of Mandelbrot is also considered and some examples from biology 
given. We then present the various ideas of the complexity of a network and introduce a measure 
that we call β-complexity. Finally we show how this notion might arise from a thermodynamics 
of stationary systems maintained far from equilibrium by constraints.   
 

1. Prehistory 
 
Until relatively recently it was widely believed that naturally occurring, homogeneous networks 
could be at least adequately modeled as random. Relational networks, such as food webs, which 
show a trophic structure [1], are consequently not homogeneous so are not counterexamples. 
Other relational graphs do however turn out to have interesting statistical properties and their 
structure may provide insights in many areas of science.   
 
To set the scene we begin briefly with random graphs of N nodes, often called ER graphs [2].  
These graphs are obtained by connecting randomly chosen pairs of nodes with probability p. 
Interesting questions that can be addressed usually involve the way in which properties scale with 
N or with p. For example, the smallest number of edges connecting randomly chosen nodes 
averaged over a random graph scales as logN. On the other hand, the appearance of a dominant 
connected subset sets in around p = 1/N.  In the following we shall refer to networks and graphs 
virtually interchangeably, except that we shall regard networks always as connected.  
 
Of most interest to us is the distribution of the degrees of the nodes, that is the probability p(k) of 
picking a node having k edges, or, equivalently, the expected number of nodes of degree k, Np(k). 
For the ER graphs this is given by a Poisson distribution  

µµ −= e
k

kp
k

!
)(  

where µ = 2Np is the mean number of edges per node. (Strictly this is the distribution obtained by 
averaging over many realisations of the graph, but will hold to a good approximation for any 
particular realisation.)  It is a simple matter to compare this with the distribution of node degrees 
in naturally occurring networks. Perhaps the most interesting feature of the distribution is how 
many networks in nature do not actually follow it. In fact, many recent investigations have shown 
power law distributions over much of the range of degrees. Examples range from metabolic 
networks [3, 4] and protein networks [5] to the internet, co-authorship, citations and the language 
structure (see the table in [6]). These networks have come to be called ‘scale-free’ [7].  
 



 

It is obviously of interest to know how such networks can be constructed, since this may give 
insight into the evolution of these systems. We shall discuss various evolutionary models in 
section 2. It is also important to have some feel for the relevant properties of these networks. The 
most remarkable property turns out to be what has become known as the ‘small worlds’ structure. 
We shall discuss this also in section 2. We shall then introduce what we think of as a complexity 
parameter for these networks. Small worlds networks as originally constructed by Watts and 
Strogatz are not scale free. We shall extend the idea of a complexity parameter to a close relative 
of the power law distribution introduced by Mandlebrot in section 3. We shall then look at some 
examples of complexity in these networks applied to genetic expression. In section 4 we shall 
make some suggestions for the development of the theory of networks as models for a class of 
non-equilibrium self-organised structures. 
 

2. Network models  
 
The standard approach to the construction of network models has two key ingredients: growth of 
the number of nodes and a corresponding law of attachment, and reconnection. The original 
model of a ‘small world’ (SW) network is now widely known [8, 9] and makes use of the second 
of these only. We take a ring of nodes each initially connected to their k-nearest neighbours and, 
with probability p, rewire each connection randomly to a new node. The attraction of this 
network is that it interpolates between order and randomness in a very clear way. For p = 0 (no 
rewiring) the network is fully ordered; for p = 1, the network is fully random.  
 
Two parameters turn out to be of particular interest: these are the clustering coefficient and the 
diameter, or characteristic path length.  
 
The clustering coefficient C tells us what fraction of the nodes linked to a given vertex are, on 
average, themselves linked.  For a random graph C = µ and for an ordered graph with each node 
connected to its µ nearest neighbours C = 3(µ − 2)/4(µ − 1) [6]. For the small world, C can be 
computed numerically and is shown in figure 1.   
 

 
 
 
 

Figure 1. The ratio of clustering coefficient to characteristic length scale (or 
diameter) of the small world network of Watts and Strogatz [8] behaves as a 
complexity parameter.  
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Strictly we should distinguish between the diameter (the maximum number of edges in the 
shortest path between any pair of vertices) and the characteristic path length (the shortest distance 
between randomly chosen pairs of vertices averaged over the network). For convenience we shall 
use the term diameter even when we mean the latter of these, since in general they both scale in 
the same way. The diameter L of an ordered network scales as the number of nodes N; the 
diameter of a random network scales as logN. Exact calculations (or even good analytical 
estimates) of L are notoriously difficult, so the diameter of the SW network as a function of the 
rewiring parameter p comes from numerical computation as shown schematically in figure 1. 
Note that C remains high even as L approaches the random regime. Many other networks are now 
known to exhibit this small worlds behaviour including the scale free networks to be discussed 
below. 
 
A number of approaches have been proposed to define the complexity of a network. In graph 
theory the complexity κ(G) of the network G is defined as the number of different spanning trees 
of the network, and can be related to algebraic properties of the incidence matrix (see below) of 
the graph [10]. Structural complexity [11] of a graph can be defined in terms of the number of 
parameters required to define it. Edge complexity [9] has been defined in terms of the averaged 
variability of the second shortest path between nodes. What all of these definitions have in 
common, and in contrast to the notion of algorithmic complexity in computer science, is that both 
ordered systems and random ones have zero complexity. From the graph of figure 1 we see that 
the parameter C/L has the form of a measure of network complexity. It is low for both ordered 
and random networks at the extremes (p = 0 and p = 1) and high in between.  We shall adopt this 
as a measure of complexity, which we shall call β-complexity.  
 
The degree distribution of the SW network is similar to a random graph, but with a somewhat 
smaller variance for a given mean number of edges per node, and hence is unlike the many 
examples of natural homogeneous networks. To obtain a power law distribution, as well as 
reconnection, we have to allow preferential attachment of the new nodes in a growing network,. 
In the absence of reconnection we can attach each of the µ edges of a new node to existing nodes 
of degree ki with probability proportional to ki [7]. This gives a power law P(k) ∝ k−3. Altering the 
probability of attachment from ki to ki

α does not give a power law distribution [12], but allowing 
for some rewiring of the growing network can give a power law [13]. Table III of [6] summarises 
some of the methods used to grow networks and the resulting distributions. These differ in the 
rules for growth, rewiring and reattachment and ageing of nodes and can be tuned to a range of 
power law indices.   
  

3. The Standard Canonical Distribution and ββββ-complexity 
 
The power law distribution of word frequencies with rank, originally found by Zipf, was 
generalized by Mandelbrot [14] to what he called the standard canonical law (SCL), which gives 
the probability of occurrence of rank r as 
 

βµ)( +
=

r
Ppr , 

where P and β are constants and µ  is determined by Σpr = 1. For many purposes this is not only a 
more accurate representation of the data than a power law, but more convenient to work with. 
Examples of network degree distributions that fit this form include word frequencies [15], (where 
the network arises from by connecting words that occur together or in close proximity). The 



 

movie actor collaboration network and co-authorship network of neuroscientists also appear to fit 
this form better than the power law showing the characteristic curvature for small r. Although not 
strictly networks, rates of protein expression [16], and company sizes [17] also follow this 
distribution. The average number of edges per node is Σrpr ~ µ/(β − 1). 
 
The parameter β acts as an ‘inverse temperature’ [14] of the distribution. High values of β give a 
narrow range of degrees, equivalent to a small vocabulary; low values of β or high temperature 
correspond to a flatter distribution of nodes. The SCL distribution therefore interpolates between 
a random network with nodes of fixed degree and a random network with equal numbers of nodes 
of each degree (although such distributions which have β < 1 cannot be constructed). Obviously 
we expect the complexity of these networks to be related to β.  
 
The question therefore arises as to whether we can estimate C/L for the SCL.  Under certain 
assumptions about the absence of correlations in the network one can show that the SCL is 
approximately preserved for higher order neighbours with µ2 ~ µ2 for next-nearest neighbours 
and so on. We then introduce aliases for C and L [18], which we expect to have approximately 
the same temperature dependence as the exact quantities. We shall find that our definition of 
complexity does then indeed have the expected behaviour.  

3.1 Matrix representation of graphs: 
The adjacency matrix of a graph A is the matrix of which the i, j element is 1 if there is an edge 
between nodes i and j and is zero otherwise. An undirected graph is one for which aij = aji. Thus 
there is an edge connecting nodes i and j if aij =1. Consider now the matrix A2. There will be an 
edge connecting i and j via some node k if the (i, j)th element a(2)

ij of  A2 is non-zero.  
 
An alternative representation of a graph, given by the incidence matrix (which we mentioned in 
connection with complexity based on spanning trees) is the matrix B with bij = 1 if the ith edge is 
incident to the jth node with bij = 0 otherwise.  

3.2 Alias for C :  
There will be a triangle connecting node i to itself if a(3)

ii , the diagonal element of A3, is non-
zero. (In fact the value of the diagonal element is 6 times the number of such triangles.) Thus, 
defining the trace of a matrix as the sum of its diagonal elements, the number of triangles is 

∆ ∝ trace(A3). 

If P(a(3)
ii) is the probability that a(3)

ii ≠ 0 then the expectation value of the trace in a network of N 
nodes is NP(a(3)

ii). But we know the distribution of non-zero entries in A3 is given by the SCL 
distribution  

P3(k) = β

β
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i.e. P3(k) is the probability of finding a row of k non-zero entries in A3. Now, assuming these 
entries are randomly distributed in the row, we get 

∑= )/)(()( 3
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and hence ∆ ∝ P3µ3 .  
 
To obtain C we need to divide ∆ by the possible number of triangles if all pairs of edges from a 
vertex were themselves joined, averaged over the network. The maximum number of triangles on 
average is  
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Note that the dependence on µ is the same as a random graph. This is because we have ignored 
correlations between vertices. (Edges from a particular node are not equally likely to be 
connected to nodes of any other degrees.) Nevertheless, we would argue that the β-dependence of 
the result is likely to be in the right direction.  To simplify these expressions we consider large β 
for which we have C ∝ µ/(β − 1)2.  

3.3 Alias for L: 
We estimate the diameter of the graph by the number of steps L we need to take such that a node 
has a probability of 1/2 of being connected to itself. Thus 

∑ = 2/1/)( NkkPL  
defines L. This gives constant or 

L

L
L

L

L

)1()1(
)2(

)1(

−
=

−
−

−

β
µµ

β
µ β

β

= constant, 

and hence  

2)1(
)log(~log~/

−
−

β
ββCCLC . 

 

 
Figure 2 Complexity parameter C/L against inverse ‘temperature’ for the SCL distribution. 

 
Figure 2 shows just what we would hope for from a complexity parameter. In order to have a way 
of distinguishing this measure from others we propose to call C/L the β-complexity of a graph. 
(We assume that C/L has been scaled appropriately to be independent of the number of nodes, or 
equivalently that the limit N → ∞ is implied.) 
 
The question naturally arises as to whether β-complexity provides any useful insight. We look at 
two examples where it might.  
 
The first [16] comes from the synthesis rates of proteins during the development of Streptomyces 
coelicolor. These follow the SCL distribution with changes in β as the bacterium goes from 



 

exponential to stationary phase. There is a transition from one developmental phase to another 
marked by a drop in β as the genomic resources are more fully utilised and a peak as resources 
are focused on the synthesis of a smaller number of essential proteins. The development therefore 
consists in a transition through high complexity and we would expect to find this mirrored in the 
protein network, or genetic regulatory network underlying the observed rates. 
 
The second  [19] involves the messenger RNA levels in the bacterium Caulobacter crescentus as 
a function of the cell cycle. The results here are not so clear-cut. There is a good fit of the original 
data from about 3000 genes to the SCL distribution for mRNA level versus rank. But the 
temperature of the fit does not vary during the cell cycle. The published data on the 533 genes 
that vary significantly provide a division into 9 ranks on the basis of relative variability. This is 
not sufficient to test for a fit to the SCL law. However, if we assume the data can be described in 
terms of an SCL temperature then the associated β-complexity of the cell shows a remarkable 
increase between initiation and division (Figure 3). We have previously predicted such an   

 
 
 
 
increase in a model in which diversity of expression underpins cell cycle regulation.  

4. Thermodynamic Complexity 
 
Interesting though it is, the fitting of power laws or SCL distributions to network data provides 
limited insight into the origin and development of networks and the reason behind the structures. 
It also has apparently little predictive power. This is at least in part because the growth and 
rewiring modes of construction of networks are not uniquely determined by the few measurable 
parameters such as slope or ‘temperature’. What we need are universal insights like the 
association of power laws with self-organisation [20].  Thus, in this final section we want to 
speculate about the possible role of networks as models of a (specially interesting) example of 
non-equilibrium thermodynamic behaviour.  
 
First consider that many natural networks are not constructed systematically, but by stochastic 
processes. One thinks here of the evolutionary development of say a metabolic network by 
random evolutionary mutations. One can think therefore of a network exploring its environment 
by testing the efficacy of some random rewiring against some fitness landscape.  It is then the 
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Figure 3. The relative variability of expression of 533 mRNAs in Caulobacter crescentus 
plotted as a function of rank at initiation (left panel) and division (right panel). The 
variability is defined as the percentage change from the average; the rank labels those that 
change the most to those that change the least.  



 

nature of the fitness landscape that provides the feedback by which structure is imposed on the 
network.  
 
In the absence of any information from the environment the entropy ∑ =

R

r rr pp
1

log , (or relative 
information) [21] is maximised by a uniform distribution of node degrees pr = 1/R (where R is the 
maximum node degree). Such a network will have a low β-complexity since it encodes no 
information from the environment. Now let the network be in contact with a ‘heat bath’ which 
induces random rewiring subject to conservation of ‘energy’ E = Σrpr = constant. This constraint 
on the system is communicated to the system by the environment via the energy cost of rewiring. 
The entropy ∑ ∑+= rrr rpppW βloglog will be maximised for an exponential distribution of 
nodes, which is the distribution of a growing network without preferential attachment [6]. We 
expect this random network to have low β-complexity.   
 
Now consider the constraint Σprlog(r + µ) =  ε = constant. This gives rise to the SCL distribution 
(or to a power law if µ = 0). We should expect an arbitrary network, rewired to maximise the 
corresponding entropy, would have an SCL distribution of node degrees. Mandelbrot argues for 
this ‘cost function’ as appropriate to the transmission of information in words of length up to 
some fixed maximum. (The rank of a word must increase exponentially with its length for a fixed 
alphabet.) This is pertinent to metabolic networks since the links between metabolites are bought 
at the cost of the synthesis of enzymes up to some maximum number of linked amino acids. 
Alternatively, we can think of the constraint as the conservation of a quantity that is the 
geometric mean of the ranks. Whatever the rationale, the constraint is maintained by the 
interaction of the system with its environment. When the system has reached a stationary state, 
the entropy logW is less than the maximum (for pr = p) because ‘work’ has been done on the 
system. Conversely, work - here a decrease in complexity - is the constrained release of energy.  
 
Note that we do not have to refer explicitly to the dissipation required to maintain the system far 
from equilibrium: the subsystem of interest does not include the mechanism required to maintain 
the constraints which will in general be dissipative.  
 
This leads to the following idea for a network model of a system maintained in a stationary state 
far from thermodynamic equilibrium by Mandelbrot type constraints. Introducing a constraint on 
the number of nodes N for completeness, we have, for the entropy S  
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where nr is the number of nodes of degree r and 

∑
=

+=
R

r
r rn

1
)log( µε ,  ∑

=

=
R

r
rnN

1

.               (4.2) 

The stationary distribution is, of course, the SCL 
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where logn0 = −λ. and λ is defined by the second of equations (4.2). We therefore have three 
extensive variables, ε, N and R. The corresponding intensive ones are  

ε
β
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N
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∂
∂ . 

Clearly, from what we have said above, we should like to identify the question mark (?), or some 
function of it, with the complexity of the network. To us this makes sense: the complexity of the 



 

network is related to the way in which it can perform useful ‘work’, and this arises from the way 
in which it is constrained. Note that the rank is a natural measure of (phase space) volume since it 
is related to word length. 
 
We can illustrate this in the following table, which gives the parallels between conventional 
equilibrium thermodynamics and stationary, constrained, network thermodynamics. 
 

Equilibrium Thermodynamics Networks 
Temperature Information temperature 
Pressure Thermodynamic complexity 
Volume Rank 
Equation of state Complexity as a function of Information Temperature 
Chemical potential Cost of introducing an additional node 
Total energy Total cost 
 
From the point of view of applications to biology this holds out the prospect that we may one day 
understand how (genetic regulatory, protein, metabolic) networks operate to the same extent that 
we understand steam engines [22]. 
 
Finally, let us turn to self-organisation. So far in this section we have thought of a network with 
given nodes exploring possible reconnections. We now think of the network also as growing by 
exploring a vast potential network space with feedback from the fitness landscape. To be specific, 
imagine a metabolic network evolving through mutations of enzymes. The addition of a node is 
irrelevant to the fitness of the network unless it leads to some consequential rearrangement of the 
network architecture to include the new metabolite in some functional way. (Of course, a single 
new product might be of use elsewhere in a cell, but that is outside the rules of this particular 
thought experiment.)  Thus, sometimes a mutation will lead nowhere (although it might not be 
eliminated if it is not harmful) whereas on other occasions it will lead to a rearrangement of 
connections on various scales. The network has the potential to self-organise. Furthermore the 
tuning required for the classical sandpile [20, 23], namely a near zero rate of infall of sand, is met 
by genetic evolution, at least under some circumstances, for which the rate of mutation is 
sufficiently slow to allow an avalanche of reconnections to occur before the next mutation. We 
therefore have also the prospect that network evolution provides a nice model of a self-organised 
critical system. 
 
Acknowledgements: We thank Camille Ripoll and Michel Thellier for discussions on 
intensive and extensive variables for complex systems that led to the ideas of section 4.   
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Abstract

We describe one of the simplest models which exhibit an adaptive branching behaviour. It is an-
alyzed both experimentally and formally, and its successive bifurcations provide a good model of
what R. Thom called ”generalized catastrophes”. Some theorems on the stochastic adaptability of
the algorithm to very general shapes of target are given. The model further displays the phenomenon
of abortive branching : each macroscopic branching appears after a burst of micoscopic branchings
which stop growing after a very short time. The mathematical analysis of the model explains why and
how this behaviour occurs. The applications of these models to Evolution (natural and artificial) and
Epigenesis are discussed, and a higher dimensional version is applied to growing a tree in a space of
shapes in the context of a database of medical images.

Keywords: branching, bifurcation, evolution, epigenesis, angiogenesis, tree, auto-organization,
adaptive.

Résumé  Ramification adaptative en Evolution et Epiǵenèse

Nous décrivons un des modèles mathématiques les plus simples qui soit capable de ramification adap-
tative et étudions sa pertinence biologique. Ayant défini dans un espace une probabilité chargeant
une région appelée cible, et un ensemble appelé graine, état initial du réseau à faire croître, chaque
tirage d’un point au sein de la cible définit un nouveau point à ajouter au réseau. On peut observer
expérimentalement l’apparition d’arborescences qui adaptent progressivement la forme du réseau à
celle de la cible. On peut aussi montrer plusieurs théorèmes d’adaptativité stochastique du réseau
à des cibles très générales. L’étude plus fine des ramifications révèle l’existence du phénomène de
ramifications abortives dont l’étude formelle s’apparente au concept de catastrophe généralisée. Ce
modèle est applicable à l’espace tridimensionnel pour modéliser l’épigénèse, mais aussi à des espaces
de dimension plus grande, comme des espaces de formes, dont nous discutons quelques applications
dans le cadre de l’Evolution en Biologie, et pour des applications de bases de données de formes en
imagerie médicale.

Mots-clés: ramification, bifurcation, evolution épigénèse, angiogénèse, adaptation, arbre, auto-
organisation.

Introduction

The adaptive branching phenomenon in Biology

Branching phenomena are very common in Biology, and often related to some adaptation. They can
take place in physical spaces when epigenetic morphogenesis is the question. There they can be com-



pared to or related to the morphological branching phenomena which rivers, sparks, or transportation
networks display, where some variational or optimality principle can be recognized. It is tempting to
look for some function being optimized as soon as some tree morphology is recognized, starting from
plant biology! But one can also think of using trees when the objectives are given by humans and to
be met by technology. Algorithmics has been such a fertile field of application. Even in Biology trees
occur in more abstract spaces like those where phylogenetic trees are constructed. There also, one can
either consider these trees as given and try to explain them from simpler principles, or use trees as a
tool to explore and understand complex data spaces such as those which arise from the collaborative
biological research.

The algorithm we are going to present can be used in both ways. We call it epigenetic, as opposed
to preformationist algorithms, since it relies on adaptivity properties and environmental geometry
rather than built-in information to evolve shape. We will study some of its features in a naturalist’s
way, so as to be able to look for similar patterns in biological phenomena and perhaps infer some
interesting properties. On the other hand, its power can be used for more technologically oriented
problems like the one we briefly mention at the end of this paper.

Some other simple models

Looking for the simplest models for adaptive branching, one has first to consider physical phenom-
ena which can exhibit such behaviour. Among them, diffusion based models have been studied very
early, for instance related to cristal growth. Diffusion can be coupled to reaction (since Turing) or
other phenomena like accretion, and involve a number of diffusible species. The biologically oriented
models of Gierer and Meinhard [1] used two diffusible species to obtain branching paterns. In [2,3]
we described how to get branching with a single diffusible element, and moreover the adaptive proper-
ties of that model were experimentally demonstrated, especially the growth of the branching network
toward preassigned targets, together with competition and target sharing phenomena. Such proper-
ties are important to model such epigenetic phenomena as angiogenesis towards tumors. However
the interesting range of parameters with such a simple model is limited and the phenomenon rather
unstable. In the sequel, we will rather consider a model less directly relevant to physical epigenesis
but very robust and perhaps better adapted to the study of branching in abstract biological spaces. We
insist on keeping an epigenetic approach in that we do not use any ”preformation” and keep genetic
information, i.e. the set of building rules, to a minimum.

A simple adaptive branching algorithm

Definitions, the algorithm

Here we introduce the algorithm in a simple setting which is not the most general one. The evolution
takes place in the usual n-dimensional space

�����
. A fixed subset of it, finite or not, is called the target

and noted � , with a probability defined on it. A second subset of
���

, which we call the network, is
going to be modified (it will ”grow”) at each step of the algorithm. We shall note

� � the network
after step � . Starting with an initial network

�	�
, each step will add a point to the network.

To start, one needs to define an initial network
���

, a target � with its probability distribution, and
a real number 
����������� . At each step, say � :

- randomly draw a point, say ��� , from the target (using the given probability distribution);
- look for ��� , the point of the network

� ��� � which is closest to ��� ;
- compute ��!�#" 
%$&�'��(*)+��,-
�./$0�1� ;



- ”graft” ��!� on the set
� ��� � to get

� � " � ��� ��2435��!�76 .
The stopping criterion can be the number of steps, or some condition on the network. The case of

a tie for the choice of ��� formally calls for a procedure, either stochastic or deterministic, to choose �%� ,
but those cases are very unprobable (we will not develop that issue here). The formula to compute ��!�
uses vector (or affine) algebra; typicaly 
 is taken small, making �8!� close to �1� but slightly displaced in
the direction of ��� .

Since each point added to the network is related to a definite point of the former network, the
network has the structure of a finite tree. Branching points can thus be defined (more than one point
grafted), besides ”branch points” (one graft) and ”tip points” (no graft). One could include in the
definition of the network the line segments joining points to their grafted sons and compute closest
points on this object, but we will not do it.

Experimental results

Figure 1: Linear target(left): network after 1000, 5000, 25000 steps

Figure 1 shows the result of the algorithm for a target being a line segment with uniform probabil-
ity distribution, starting from a single point, and for 
 " ��$&�'��� . The network grows toward the target
and branches several times in a way that looks adapted to the geometry of the target.

Starting from two points as the initial network can lead either to cooperation in a ”market sharing”
way or to a ”winner takes all” competition, depending on the situation of the two seeds and the
geometry of the target (figure 2).

Adaptation to more complex shapes of targets is also seen. In figure 3, the network adapts to
two differents targets (i.e. two components of the target) the one on top being a circle with uniform
probability and the bottom one being a disk with uniform probability, with the disk getting a total of
four times more probability than the circle. On that figure the target have not been drawn. Notice the
different morphologies of the network in the two cases.



Figure 2: Two seeds either sharing the target (left)or competing for it (right)

Adaptativity theorems

The former experimental results are supported by the following two theorems which show the adaptive
power of the algorithm. To state them we modify our definitions. Instead of defining first the target
and second a probability on it, we start with a probability on

���
and define the target as the set of

points of
�9�

for which any neighbourhood has positive (i.e. :;� ) probability.

The first theorem states that for any ball we choose in the target and probability ��,=< as close
to 1 as we wish, there is a definite number of steps after which the network willi, with the chosen
probability, approach the ball to a distance we could choose in advance.

Theorem 1. >?
	�@A���%���B�C>D<E:*���F>HGI�KJL�+>DML:*�ON'$QP/$�RS�QTU)VG��1M'.WX:Y���+>DM ! :YMZ�/[]\^� � \^_�>D�`:
\a��RL�QTU)bG��1M ! .dc � � �:e��,f< .

The second theorem states that, if the target is compact (here this means closed and bounded), for
any distance M and any probability �g,h
 we choose, there is a definite number of steps after which all
the points of the target will be at a distance less than M .

Theorem 2. � being a compact target, >?
L�4A�i�����j�k>D<-:l���+>DME:l���/[]\ � � \ such that >D�Y:
\a��RL��Nnm�o prq�sDtH)vu5� � � .xwyMZ�:*��,`< .

Consequence. Let us define an active point of a network as a point which, for at least for one
point of the target, is the closest among the network points: it is thus a point which still has a non-zero
probability of being grafted. A consequence of the second theorem is that after the same number of
steps, and with the same probability, no active point of the network remains further than M from the
network. Whereas the network is an increasing set a part of which (the active set) approaches the
target, the active set really tends to fit the target, leaving no point behind.

Abortive branchings

Decreasing 
 usually makes branches straighter, and one could think that in the limit the algorithm
tends to the clean branchings of a deterministic process. This does not happen because of a phe-
nomenon which occurs repetitively in the vicinity of macroscopic branchings: many small branching
appear but are soon inactivated by one of their branches winning over the other one. We called



Figure 3: Evolution to a target (undrawn) made of a circle (top) and a disk (bottom)

”abortive bifurcations” this phenomenon. Analysing the 2-dimensional case leads to a good under-
standing of the phenomenon.

The geometry of branching

Branching occurs when some grafting takes place at a point of the network, say z , which is not a tip.
This implies that z is closer to some point of the target than any point on the branch already grafted
on z .

Demonstrating abortive bifurcations

Figure 4 shows an instance of successive abortive bifurcations before a macroscopic branching ap-
pears. To see them, one should use small 
 and magnify the network at a distance from the target
where a macroscopic branching is likely to occur. Notice the constant qualitative pattern of the net-
work at each abortive bifurcation : after one of the branches wins over the other one, i.e. hides it from
the target, the network bends back to the center of the target. In some contexts like Evolution, such
repetition of abortive attempts of differentiation might probably be used to detect the imminence of a
major branching.

Analysis of abortive branching

To understand why so abortive branching happens repetitively before a major branching can remain,
one can restrict the study to the simple -dimensional case with a linear target. The evolution of the



Figure 4: Small abortive bifurcations slightly before a stable branching (going right to left)

Figure 5: Phase portraits far from (left) and close to (right) target

two tips, say { and | , that arise from a branching can be summarized by the evolution of the vector
|},y{ . Each of the two tips hides the other one and wins when the vector crosses some direction
related to the ends of the target. The evolution of the vector is stochastic but the the expectation of the
dynamical system which governs it can be computed easily from the target geometry and the position
of the tips. Figure 5 shows the phse portraits of the dynamical system acting on the vector and the
critical directions for two different distances to the target. When far from the target, all the trajectorie
eventually cross one of the winning lines. Getting closer to the target modifies the picture, and a
growing number of trajectories are able to make their way without hitting either of the critical lines.
The real vector field that acts on the the couple of tips can be viewed as the sum of that deterministic
(expected) field and a stochastic component which can be made small with 
 small. The whole picture
thus involves a bifurcation stochastically perturbed, the deterministic part of which depends on the
position relative to the target. It fits with the idea of a ”generalized catastrophe” proposed for study
by Thom in [4].



Adaptive branching and evolution

Theories of biological evolution have given a major role to adaptation, especially through the concept
of fitness. Branching is also essential in the classification of species and the building of phylogenetic
trees. Such trees are not only a convenient classification of a set of past species but they account for the
historic events that their branchings represent. It is tempting to try to relate branching and adaptivity
for phylogenetic trees at the abstract level of the model we described and look for the possibility of
some of the phenomena we observed, especially abortive branching. Let us consider the relevance of
the former model to biological evolution as our problem : it should be discussed carefully elsewhere,
but we shall outline some possible research directions toward intermediary models slightly closer to
the biological reality of evolution.

The evolution of a specie in time can be represented by the trajectory of a representative point
in some high dimensional parameter space. To account for a bifurcation into two species, there is
a difficulty for classical deterministic modeling unless we study the evolution of sets like in our
network formalism. Alternatively, an evolutionary tree can be seen as a union (in set theoretic terms)
of deterministic trajectories. If we want species to adapt to environments, our target will represent
some set of environments. Our next problem is to give some meaning to the distance from network
to target and justify the model’s rule for growth toward the target. We shall mainly adress the latter
question, assuming for the moment, in still vague terms, that fitness improvement can be expressed
by a the decrease of some distance.

Assume that a set of populations is distributed in a space where environmental characteristics
may vary with location. If each population evolves and improves its fitness to its local environment,
the union of all the trajectories representing the different populations will not, in general, follow the
model we described. But if we also assume that some combination of a diffusion of individuals and a
local competition, both at a faster time scale, results in the property for the system that, at any location
and at any time, the globally fittest population is predominant, then any improvement of a population
in the system towards its local environmental characteristics will follow the rule of our model (ex-
cept for the exact direction and intensity of the improvement, to be discussed soon), i.e. will make
smaller the distance from an environmental point to the fittest population. Of course, to arrive at this
interpretation, we shifted from a rule where we draw points from the target to a rule where we draw
points from the network and we should wonder whether this change still permits using the model.
First of all, one may imagine the case of several locations having the same environmental character-
istics. However, a genericity argument can be used: if the space of environmental characteristics is
of a sufficient dimension, the mapping from the ”location space” (2 or 3 dimensional) to the space
of environments generically has no multiple points and should be an embedding under some natural
hypotheses. Probability measures should also be examined : the correspondence between locations
and mapped environments can serve to induce probability on the target from a probability measure
on location space (e.g., related to population density, some rate of mutation, etc...) to establish model
equivalence. As for the relation of the rule for computing grafted points ( � !� " 
%$&���~(})+��,*
1.�$&��� ,
see section 2) and the exact directions and intensities of populations changes improving fitness, we
should probably explore the assumption that the different changes which improve fitness average to a
vector, like the gradient of fitness, the direction of which would correspond to the rule of our model,
but that point should be examined further, together with the question of relating fitness and distance.



A modi ed algorithm

Some implementation issues

At each step of the algorithm, one has a closest point within the network. But most points are inactive
and it is computationally more efficient to periodically detect and mark inactive points to avoid testing
them for proximity (one can also maintain a list of active points: several variants and data structure
can be used). A network point gets inactive when the other points of the network hide it from all the
target points. In the of a linear target, it is easy to check that condition: one only needs checking the
visibility of the end points of the target. In the case of a more complex target shape, however, no such
simple rule is available. Another reason for modifying the algorithm is the number of comparisons to
be performed, even if active points have been selected.

Avoiding garbage collection and using search trees

We experimented with success a modified version of the algorithm, where a binary search tree is used
to locate the closest points, and where no garbage collection is needed. The new rule is that after
some branching occurs, one definitively assigns a part of the target to the future growth of each of the
two branches. After each target point has been drawn, one thus first locates the branch to be grown
by successively comparing the distances to couples of sons of the former branchings points, starting
from the root (a classical binary search in a tree). Such algorithm remains very efficient even with
large trees in high dimensional spaces. It also behaves quite like the former one, with good adaptive
properties, but of course with no abortive bifurcations since the subregions of the targets cannot move
after each bifurcation.

Growing trees in shape spaces

Discrete trees are a data structure that has long been used in algorithms to organize comparisons.
But there is also a need for continuous trees to organize morphogenetic or evolutive processes into
continuous branching families of shapes. These viewpoints fuse in the technology of databases for
continuously varying data like images or 3-dimensional protein shapes. We experimented the former
algorithm to grow trees in a space of shapes extracted from medical images, but the technique can
be extended to many problems of comparative morphology, possibly in the context of evolutionary
studies.

The set used was the set of all the sections of a complex bone (human scapula). The original sur-
face was reconstructed from a set of parallel sections acquired from CT-scanner, but considering any
possible section in any direction leads to a very complex family where queries are still problematic.
Each section is a set of polylines (some of the sections are not connected) but so far we kept only a
single component so as to be able to use a simple matching procedure. Sections are thus points in a
space the dimension of which is about 100. Randomly drawing sections from the set of all possible
sections, and starting from simple shapes like a circle, we could grow a tree in the shape space and ob-
serve branchings that progressiveley led to the actual members of the set of sections. When searching
for closest curves, prior matching was used, in order to focus on shape. Such methodology is close
to some of the procedures used in exploratory statistics [6], but here we emphasized the construction
of a continuous family with branchings that could be used in the comparison and study of complex
biological objects.



Conclusion

A simple algorithm has been described which can adapt a finite subset with a tree structure to very
general targets in

�&���
. A major advantage of it is the small number of parameters to be chosen

and the robustness of the adaptability property. The adaptability properties have been illustrated
experimentally and supported by two theorems. The phenomenon of abortive bifurcations has been
analysed and its pertinence to problems in biological evolution has been briefly sketched. As an
application to databases of shapes, a tree is grown in a space of curves taken from medical images.
Let us notice that whereas reconstructing putative family trees for species, languages, or myths, has
been quite common, probably due to the lack of historical data, no theoretical morphogenesis seems
to exist yet, that would study in a very general way how to organize the building of known structures
under various constraints. Technology must already solve such problems in their instances, but some
more abstract approach could be of interest.

Appendix: Proofs of the adaptativity theorems

We want to prove that >?
��a��������j�X>D<�:e���F>HGK�`J��+>DMS:*�ON�$QP/$�RL��T�)bG��1M�.FX:e���+>DM5!�:*MZ�/[]\�� � \�_
>D��:�\a�1RS�QTU)bG���M5!j.Oc � � 	:���,�< where

� � is the network after the n-th accretion. A problem
is that successive accretions due to points drawn from T�)bG��1M�. may grow different branches of the
network instead of adding their effects to the same tip. We thus choose a ball TU)b�D����.���TU)VG��1M'.
with RS�QTU)v�H����.F�:�� where � is a positive real number small enough (to be computed later). We
know from elementary probability results that waiting long enough guarantees us to witness as many
drawings from T�)v�H����. as we wish, whatever the smallness of RS�QTU)v�H����.F . We will call �H����$�$�$ the
points drawn from TU)v�H����. , �n���%$�$�$ the corresponding closest network points, and � ! � ��$�$�$ the points
consequently added to the network. We call � � the point of the initial network

�	�
closest to T�)v�H����. ,

and ��� " tH)7�'�����1!� . . If we can get a ��!� close enough to its ��� , it has to be in TU)VG��1M5!�. and we are done.
Let us compute how ��� decreases with � :

���B�D� " tH)7�'�B�D�/�1� !�j�D� . " )+��,`
�.+tH)7�'�B�D�����1�B�D��.
� )F��,-
�.�tH)7�'�B�D����� !� .

(since otherwise ���B�D� would not be closer to ���B�D� than � !� )
� )+��,`
�.8)7tH)7�'�B�D���1���V.~(�tH)7�'����� !� .�.

� )F��,-
�.%)7�5��(����v.
If we took � such that, for all the ��� we need,

� � 
H���� )+��,-
�.
then

���B�D� � )+��,-
��'�'.+��� � )+��,-
����'. �B�D� � �
Just choose � big enough to get �A� � )+�d,�
��'�'. � � � w=M ! ,UM and take � accordingly. After � points have
been drawn from the TU)b�D����. you chose, which happens with a probability greater than ��, < after a
computable number \ of steps of the algorithm, the network will have entered TU)VG��1M�!B. .

The second theorem states that >?
��¡��������j� >D<S:;���+>DM¢:=���/[]\£� � \ such that >D�4:;\a��RL��Nnm�oHprq�sDtH)7uZ� � � .gw
M5�:¤�	,y< . Cover � with balls of radius M���¥ . Using the compacity of � , extract a finite covering



)7TU)vu/���1M���¥�.�.1�W¦���¦i§ . Apply the former theorem and simultaneous inference to get \ such that with a
probability greater than ��,`< :

>C� � � �©¨ []�Fª�� � � _��Fª��«TU)vu/���/�¬M���¥�.�$
Then with probability greater than ��,f< :

>?u��«�*[''��� �  �©¨ _ tH)7uZ� � � . � tD)vu5�1u�ª�.~(�tH)vu�ªn���Fª8.gw=M'�¬¥�(y�¬M���¥ " M
The consequence on the active set is obvious: if any point of the target is less than a distance M

away from the network, then no point of the network can be active unless it is within that distance
from the target.
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Abstract 
 
The new tools available for gene expression studies are essentially the bio-array methods using a large 
variety of physical detectors (isotopes, fluorescent markers, ultrasounds,…). Here we present an image 
processing method independent of the detector type, dealing with the noise and with the peaks 
overlapping, the peaks revealing the detector activity (isotopic in the presented example), correlated 
with the gene expression. After this first step of image processing, we can extract information about 
causal influence (activation or inhibition) a gene can exert on other genes, leading to clusters of co-
expression in which we extract an interaction matrix explaining the dynamics of co-expression 
correlated to the studied tissue function.  
 
Introduction 
 
The total mRNA’s of genes to test have been extracted from the studied tissue (in the present case a 
glioma tissue). Then DNA’s are synthesized by reverse transcription from these mRNA’s including 
bases labeled with the isotope P33. Resulting DNA’s are then tested against identified complementary 
DNA’s (cDNA targets), previously amplified by PCR and fixed on a nylon gel. The hybridization 
results are revealed in a phospho-imager and yield a digital image coming from the radioactive 
hybridization plate, called the bio-array image or shortly the bio-image. cDNA hybridized with a 
P33DNA means that the complementary sequence of the P33DNA is present in the related mRNA 
proving that the corresponding gene is expressed in the studied tissue. 
 
Peak segmentation 
 
The first encountered problem is the fact that the bio-images are extremely noisy and that we have to 
low-pass them in order to suppress the high-frequency noise (see Figure 1). 
 

        
            a)        b)  c)            d) 

Figure 1: a) raw data 1 b) low pass filtering bio-image 1 c) watershed segmenting and d) contouring 
bio-image 2 



 The result of this pre-treatment is a better separation of the isotopic activity peaks, allowing a 
watershed separation and contouring [1]. Then we will apply a more accurate segmentation and 
contouring method called the potential-hamiltonian method: let us remark than the peaks are about 
Gaussian, with a relatively weak kurtosis and skewness allowing in particular the respect of the 
conservation “law”: 2/3 of the peak activity are concentrated into the set of points (x,y) where the 
Gaussian curvature C(x,y) vanishes, i.e. inside the maximum gradient line of the peak. By exploiting 
this property, it is possible to neglect the part of the peak outside the projection of this remarkable line, 
called in the following the characteristic line, its equation being:  
  

C(x,y)=∂2g/∂x2∂2g/∂y2–(∂2g/∂x∂y)2=0, 
 

g(x,y) denoting the gray function at the a pixel of coordinates (x,y). 
 
  G  Gaussian peak   H 

Figure 2: representation of g

 

We are thus led to consider t
its level line H(x,y)=0. We di
limit cycle. Let H'(x,y) be th
the characteristic line (see F
following crude system: 
 

dx/d

h
H’               p  
 
  

, H and H’ (with indication of  potential p and Hamiltonian h parts) for a 
Gaussian peak 

 
he new height function H(x,y)=C(x,y) instead of the function g(x,y) and 
splay after a plane differential system of which the characteristic line is a 
e function defined by: H'(x,y)=H(x,y). Vanishing of H'(x,y) occurs on 
igure 2 for the visualization of g, H and H’) and if we consider the 

t= -α∂H'/∂x+β∂H’/∂y, dy/dt= -α∂H'/∂y-β∂H’/∂x, 



 
where α and β are real parameters, then the first part of this differential system is of steepest descent 
potential nature and along this flow, the orbits converge to the set of zeros of H'(x,y), on which the 
second part of convective Hamiltonian type becomes preponderant [2]. Parameters α and β are used to 
tune the speed of convergence to the limit cycle. To cope with random noise and numeric instabilities, 
we modify slightly the system into: 
 

dx/dt=-α∂H'/∂x[H(x,y)/G(x,y)]+β∂H’/∂y, 
dy/dt= -α∂H'/∂y}}[H(x,y)/G(x,y)]-β∂H’/∂x, 

 
where G(x,y)=grad(g)2. 
 
The added term [H(x,y)/G(x,y)] speeds up the descent to the vanishing of H(x,y) and forces the 
stability. The usual discretization of Runge-Kutta yields ultimately the algorithm which is quite easy to 
implement. On each pixel (i,j) (boundary effects being neglected), the function H(i,j) reads:  

H(i,j)=[g(i+2,j)-2g(i+1,j)+g(i,j)][g(i,j+2)-2g(i,j+1)+g(i,j)]-[g(i+1,j+1)-g(i,j+1)-g(i+1,j)+g(i,j)]2. 
 
We have seen that an important property of the characteristic line is that in the case of a Gaussian 
peak, it delimits a volume equal to 2/3 of the total volume of the peak. This property remains about 
exact in case of kurtosis and skewness of the peak. Hence by multiplying by 3/2 this volume, we get a 
good estimation of the gene activity and this value is better than those obtained by a watershed method 
due to over-segmentation (Figure 1). This approach is interesting because the lower part of the peak is 
often low-frequency noisy. The method seems particularly efficient when the mesas are well separated. 
If they are close (Figure 3), then we need to tune the parameters α and β (Figure 4). In further 
developments of the method, we look for a dynamical calculation of these parameters  in terms of the 
data. Finally, we can standardize the estimated activity in terms of a bio-image with small squares 
symbolizing in gray levels the degree oh hybridization of the cDNA’s (Figure 5). From such bio-
images acquired at different times of the cell cycle in cells from the same tissue, we can study the 
interactions between genes by estimating an interaction matrix. 
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Figure 4: treated bio-image 2 (top), succeeding limit cycle (left bottom) and false contour (        and 
right bottom) 

 
 
 
 
 
 
 

          
 
 
 
 
 
 
 

Figure 5: standardized bio-image 2   



Interaction matrix 
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Figure 6: interaction graph of the flowering operon of Arabidopsis thaliana (top) and an attractor of its 

Boolean dynamics (bottom) 
 

For each operon, we can define an interaction matrix M, which just expresses that if its coefficient mij 
is positive (resp. negative), the gene j is a promoter or activator (resp. repressor or inhibitor) of the 
gene i. If mij is null, then gene j has no influence on the expression of gene i. The interaction graph can 
be built from the interaction matrix M (Figure 6) by  drawing an edge (j,i) + (resp. -) between the 
vertices representing the genes j and i, iff mij>0 (resp. <0). In order to calculate the mij’s, we can either 
determine the s-directional correlation ρij(s) between the state vector {xj(t+s)}t∈C of gene j at times t+s 
and the state vector {xi(t)}t∈C of gene i at times t, t varying during the cell cycle C, or identify the 
system with a Boolean neural network. We define the connectivity K(M) of the interaction matrix M 
by the ratio between the number m of edges of the interaction graph and its number n of vertices: in 
general, for known operons (lactose operon, Crow operon of the phage λ, lysogenic/lytic operon of the 
phage µ, gastrulation operon,…), K(M) is between 1.5 and 3. The observed induction proportion 
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(number of positive edges divided by m) is between 1/3 and 1/2. If some signs of the mij‘s are 
unknown, then we can take it random by respecting the induction proportion. 
 
Gemetic network dynamics 
 
If we consider the interaction graph of the flowering operon of Arabidopsis thaliana (Figure 6 top) [3], 
then we can easily define from it a Boolean dynamics: the gene i has the state 1 if it is expressed and -
1 if not. The change of state of gene i between t and t+1 obeys a threshold rule: 
xi(t+1)=H(∑j=1,nmijxj(t)-bi) or x(t+1)=H(Mx(t)), where H is the Heaviside step function and the bi’s are 
threshold values. When t is increasing, the genes states reach a stable set of configurations (a fixed 
configuration or a cycle of configurations) called attractor of the genetic network dynamics. In Figure 
6 (bottom), an example of such attractor is given, with final states (in black boxes) different from the 
initial conditions.  
We will present first some qualitative results from the human genome observation, and after some 
theoretical corresponding statements recently proved : 
- in 1948, M. Delbrück [4] conjectured that the presence of positive loops (i.e. paths from a gene i to 
itself having an even number of inhibitions [5]) in the interaction graph was a necessary condition for 
the cell differentiation ; this conjecture has been written in the good mathematical context by R. 
Thomas in 1980 [6] 
- in 1992, S. Kauffman [7] conjectured that the mean number of attractors for a Boolean genetic 
network with n genes and with connectivity 2, was equal to √n. This conjecture is supported by real 
observations: we have about 35 000 genes in the human genome and about 200 different tissues, 
which can be considered as different attractors of the same dynamics. For Arabidopsis thaliana, 
K(M)=22/11=2 and there is 4≈√11 different tissues (sepals, petals, stamens and carpels) [3] and for the 
Crow operon [8] of the phage λ, K(M)=14/5=2.8 and there is 2≈√5 observed (lytic and lysogenic) 
attractors.    
Recently [9-15] the conjectures have been in part proved: 
Proposition 1: if all loops of the interaction graph are positive, then there exists a state vector x = (x1 
…,xn) in {-1,1}n, such that x and -x = (-x1, …, -xn) are fixed configurations of the genetic network 
dynamics. 
Proposition 2: if all loops of the interaction graph are negative, then there is no fixed configuration. 
Proposition 3: let a genetic network having n genes and n interactions, then a necessary and sufficient 
condition of existence of a fixed configuration x is the existence of a positive loop and –x is also a 
fixed configuration. 
Proposition 4: given a state vector x, the set of minimal matrices M having x as fixed configuration is 
given by the following conditions: 
1) mij = �ij xi xj, where �ij≥0 and, for all i, there exists j(i) such that �ij(i)>0  
2) -�ij(i)<bi ≤ �ij(i), where the bi’s are the thresholds of the corresponding genetic network [14]. 
Proposition 5: if m is the number of positive loops L={(i,j)} made from edges (i,j)’s from i to j, then 
if F is the number of fixed configurations, then F≤2m and 2m is reached iff: ∀ L, there does’nt exist (i,j) 
/ i∉L, j∈L. 
Proposition 6: if the genetic network has n genes and Kn interactions, with K=2, then the expectation 
of the number of attractors is √n, if n is sufficiently large. 



Open problems 
 
An important open problem concerns the relationship between the number F of fixed configurations 
and the number S of interaction loops of the interaction matrix M: the problem is in fact to find the 
best upper bound for F for a given matrix M, which is the discrete translation of the famous XVIth 
Hilbert’s problem of determining an efficient upper bound for the number of limit cycles of a 
polynomial differential system. Let us summarize the role of the architecture of positive and negative 
(with an odd number of inhibitions) loops of M on the occurrence of multiple stationary behaviors as 
obtained above: if the numbers of genes and interactions are the same, there is only one isolated loop 
(S=1) in M and either this loop is negative and the lowest bound (0) for F is reached, or this loop is 
positive and the upper bound (21) for F is reached. If the number of genes is n and the number of 
interactions is n+1, there is two interaction loops (S=2) with the following structure: if both loops are 
negative, F=0; if there is a positive loop and a negative loop disjoint, F=0; if there is a positive loop 
intersecting a negative loop, F=1; if there is a positive loop intersecting a positive loop, F=1; if there is 
two disjoint positive loops, F=22. If more generally the number S of loops of M is m, then: if all loops 
are negative (resp. positive), F=0 (resp. 2≤F≤2m)  and iff all loops are positive and disjoint, F=2m. An 
interesting open problem is now to make exhaustive the determination of F and S and in particular to 
find the circumstances (related to the loops structure) in which we can relate the number of 
intersecting and isolated loops to F. The approach for solving this open problem could consist first in 
finding coherent relationships between analogous properties discovered for continuous versions of the 
regulatory networks and for general Boolean networks.   
 
Conclusion 
 
A geneticist could exploit the results above in the following sense: we have shown that it would be 
possible to characterize the minimal interaction matrices having certain state vectors as fixed 
configurations. The determination of these matrices is not unique, but permits to focus on certain 
important equivalence classes in which the expected matrix has to belong. This considerably restricts 
the choice of the possible interaction matrices compatible with observed fixed configurations, when it 
is impossible to directly get from experiments all interaction coefficients, but possible to observe the 
phenomenology of fixed  or cyclic configurations. This corresponds in genetics to the observation of 
stationary expression behaviors without experimental measure of the inhibitory and activatory 
coefficients of promoters and repressors. The possibility to obtain (even in an equivalence class) a 
sketch of the interaction matrix permits to construct (by randomizing the unknown coefficients of M) 
more complicated interaction matrices, then to test if they still have the observed states and keep or 
reject definitively these tested matrices and propose further experimental strategies using bio-arrays 
for refining knowledge about the interaction structure of the studied genetic networks. 
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Abstract 
 
Many phenomenon occur in a living cell. Most of them are very complex and difficult to 
understand. However, several cell components seem to have simple  interacting and behavioral 
rules. The aim of this paper is to show how complex phenomenon could appear with simple local 
rules by using a multi-agents simulator. 
 
Introduction 
 
A cell can be divided into numerous autonomous entities in interaction. Molecules, ions, membrane, 
and organelles can be seen as interacting reactive agents. A reactive agent is an abstraction or a 
simplification of a biological entity. It has sensors to get information from its local environment, a 
simple behavior to change its internal state and actuators to modify the environment [FER95]. 
We will see below computer examples that show how, complex phenomena can appear from simple 
behaviors and local interactions. Each example is then explained from a biological point of view. 
Finally, we will try to extract the common points of these examples to determine the chacteristic of 
self-organization.  
 
Simulator 
 
A multi-agents simulator was developed to test self-organized systems. It allows to design agents 
with sensors to get information from the environment, with actuators to modify the environment 
and with a algorithmic behaviors to make decisions. Each agent has a 3 dimensional shape which 
can be controlled in the 3 directions (x, y, z) and in the 3 rotation axes (rx, ry, tz). 
The agents live into an environment which is a set of 3D -grids. Each 3D-grid contains data shared 
by the agent. For example, an agent can read into the grid the identification of each agent to decide 
if they can bind together.  
An important part is the visualization of the 3D-matrix containing the agents. That is why, a 3D 
viewer was designed to explore the in-silico environment. A classical 3D plotter is used to draw the 
simulation results and a basic simulation controller is included (play, pause, stop). 
The next chapter will focus on different self-organized systems simulated using this simulator. 
 
Simulations 
 
Molecule transportation 
This system shows how two types of agents can create complexes without any sense of density. The 
first type of agent is “static” and the second type is “transporter”. A static agent can be moved by a 
transporter agent from one position to another. The rules are the following: 
- A transporter moves at random (there is 26 neighbors for a cube in a 3D matrix) 
- If a transporter is free and moves onto a static agent, it gets the static agent. 
- If a transporter has a static agent and moves onto another static agent, first it moves and then it 
drops its own static agent (only if the place is free, that is if the place is not already occupied by a 
static agent). 



 
These rules are inspired from [DEN91]. 
The two last rules are in opposition: get and drop could be seen as a +z and –z movements. 
With these simple rules, transporter agents are able to make well-defined groups of static agents 
without definition of density. A simulation with 15 transporters and 50 statics into a 25x25x25 
cubic environment, after 10 000 steps of simulation, shows the formation of groups of static agents 
(Figure 1). 

 
Figure 1: the left screenshot is the initial state of the system (time step = 0). The right image shows 
the formation of 2 groups of static agents after 10 000 time steps. Static agents are yellow (light), 
free transporters are red (dark) and filled transporters are magenta (light-dark). A free transporter 

does not have a static agent on it and a filled transporter has one. 
 
This kind of system could represent the transportation of molecules by others. More precisely, when 
a molecule “transporter” meets a molecule “static”, a complex of the two molecules is created . 
Then the complex moves at random and dissociates into its two constituents when it meets a 
“static” molecule. Static molecules could be viewed as nucleation centers. 
 
Particles flow 
This system shows how one type of agent that can avoid each other, creates a linear structure which 
minimize the agent collisions. An agent is a simple cube moving along the x-axis (if the way is free 
in front of it), or moving along the y-axis (if another agent is present -> collision). We design two 
opposite rules for this system: the first set of agents moves from x- to x+ and the second set from 
x+ to x-. It represents two opposite particle flows that collide one with one another. 
The environment is an n.p matrix where agents evolves: 

 
Initially, we locate agent s at random onto the matrix. Then, we simulate the system and observe the 
formation of a linear structure (Figure 2). 
 

Simple Initial configuration 
2 agents in opposition are 

going to meet. 

Step 1: agents are moving 
in opposite directions. 

They are going to collide. 

Step 2: agents collide and 
choose one of these 4 

possible configurations with 
the same probability 



  
 

Figure 2: the left screenshot shows the initial state of the system, which is a set of agents located at 
random. The right image shows the formed a linear structure after 100 steps of simulation. 

 
This system could be compared as two flows of particles or something like hydrophilic and 
hydrophobic molecules composing a membrane. 
 
Membrane deformation 
 
This system aims to reproduce a qualitative 2D cell membrane deformation. For this, we use a 
simple type of agent called unit membrane agent. An agent is linked to its two neighbors with 
elastic forces. 
 
 
 
 
 
 
 
 
 

 
Figure 3: the membrane is compound by a set of agents (Figure 3-a) pair wise linked at the 

equilibrium state. An agent take into account three forces to calculate its movement. Two forces 
come from the elastic attraction between agents (E1 and E 2) and the third is the osmotic pressure (O) 

which is radial (Figure 3-b). The next step consists in adding an external force applied onto one 
agent (Figure 3-c) to get a membrane deformation. 

 
The simulation result can be seen in Figure 4. 
 
The shape of the membrane is obtained by the local behaviors and interactions of each agent Ai 
when one of these agents, A 0, is submitted to a strong enough centripete external force: 
A0 attracts its two neighbors (right and left neighbors), then the right neighbor of A0 attracts its own 
right neighbor and the left neighbor of A 0 attracts its own left neighbor and so on.  
The duality at the equilibrium state (Figure 4-a) is the opposition between the elastic forces and the 
osmotic force. An external perturbation force produces a new equilibrium state (emergence) for the 
system (Figure 4-b) which expresses a qualitative cellular membrane deformation.  
 

E1 E2 

a b c 
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Figure 4: the left image (a) is the initial state of the system (before applying an external force F) and 
the right image (b) shows the membrane deformation obtained after 100 time steps. 

 
Cicatrisation 
 
When a separation between fibroblast cells happen, the cells try to reduce the “hole” thanks to 
migration and proliferation. To reproduce such phenomenon, a fibroblast agent is designed. It can 
move in 8 directions according to its neighbors (adhesion and  migration) and is able to create a 
clone of itself (proliferation or mitosis). A more accurate work can be found at [DOUG98]. The 
next figure shows how fibroblast agents will cicatrize (Figure 5). 
 

 
t = 2    t=300 

 
t = 400    t = 500 

Figure 5 : initially (t=2), two blocs of agents (in black) are placed face to face and are separated by 
a hole (in white).  Agents are able to move and to clone themselves. Like this, the white hole is 

settled by the fibroblast agents (t=300, t=400 and t=500). 
 

This system could be used to determine parameters like shape of hole for graft skin or rates of cell 
adhesion and proliferation during a cicatrisation. 
 
Ring detection 
 
In many biological phenomenon like trees cut or otolithes concretion, alternance of light and dark 

a b 



structures is observed. The detection of such structure is difficult because 
1.  the rings are not well separated and the contrast is low 
2.  the rings have different thickness 
3.  there are “nods” where different rings are merged [BAL97a] [BAL97b]. 

 
A solution consists in defining two populations of agents working either on light rings, either on 
dark rings. An agent is able to follow dark or light rings and can  increase the contrast between 
rings. Like this, there is a cooperation between the two populations. The increase of contrast could 
be viewed as a pheromone pathway. An example on an otolithe photo can be seen on the Figure 6. 

 
Figure 6: agents are placed at random on a noisy and few contrasted image with alternance of dark 
and light rings (A). Then they move around the rings according to their opposite behaviors (dark 
and light agents) (B). After all, they are able to detect the different rings (D) thanks to their dual 

enforcement behaviors (C). 
 
This system is able to find a probalistic solution of the rings positions. There is an opposition (a 
competition and a cooperation) between the two types of agents: darks and lights. Biologically, this 
system could be viewed as an hyperstructure formation guided by an environment where the 
alternance between dark rings and light rings can be guaranty.  
 
Discussion 
 
Each system has at least 2 opposite rules (rule+ and rule-) which imply the emergence of specific 
patterns. For instance, for the molecule transportation system, the rule+ is “Get static agent” and the 
rule- is “Drop static agent” and for the particle flow simulation, the rule+ is “+x movement” and the 
rule- is “-x movement”. The different rules are summarized in Table 1. 
 
Simulation Rule +  Rule - Axe / Plan Emergence 
Molecules 
transportation 

Get (+z) Drop (-z) z Group of molecules 



Particle flow  +x -x x Line of particules 
Membrane 
deformation 

radial tangent radial / tangent Deformation 

Cicatrisation Adhesion Movement (x,y) Group of organized 
fibroblast cells 

Ring detection +z (light agents) -z (dark agents) z Dark and light 
pathways 

Table 1: rules implied into the emergence of patterns. Remark that each opposite rule can be seen as 
a spatial opposition (axe). 

 
For a given simulation, it is possible to attribute for the two opposite rules, a spatial opposition. 
These spatial oppositions, integrated into the agent behaviors, could be a mean to understand, to 
explain intracellular and cellular phenomenon and a mean to develop a computer model for an 
integrative cell simulator. 
 
Conclusion 
 
We have seen how simple rules allow to get complex organized systems. We think that such self -
organized systems could be interesting for the understanding of intracellular and cellular 
phenomenon. Moreover, such systems could be easily simulated. Thus, the development of a virtual 
cell designer application, based on these concepts, should be a good alternative to more descriptive 
applications like E-Cell [ECE01] or Virtual Cell [VCE01]. 
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Abstract 
 
Hyperstructures or modules have been proposed to constitute an intermediate level of 
organisation within biological cells.  Cells can usefully be equated to autocatalytic networks 
that increase in mass and then divide.  To begin to model relationships between 
hyperstructures, autocatalytic networks and cell division, we have written a program of 
artificial chemistry that simulates a cell fed by monomers.  These monomers are symbols that 
can be assembled into linear (unbranched) polymers to give different lengths.  A reaction is 
catalysed by a particular polymer or ‘enzyme’ that may itself be a reactant of that reaction 
(autocatalysis).  These reactions are only studied within the confines of the 'cell' or 'reaction 
chamber'.  There is a flux of material through the cell since monomers and polymers may be 
both acquired by and lost from the cell.  Eventually, the mass of polymers in the cell reaches a 
threshold at which, in this version of the program, we then analyse the cell.  In the conditions 
studied (few types of monomers and short polymers), our results indicate that the most 
important enzymes are those that catalyse the addition of monomers; these enzymes may 
correspond to the precursors of ribosomes.  Future development of the model will entail 
attributing increased probabilities of reactions to polymers that are colocalised so as to allow 
evaluation of the consequences of hyperstructure formation along with exploration of the 
consequences of cell division.  
 
Introduction 
 
The existence of a level of organisation in biology has been proposed intermediate between 
macromolecules and cells: this level is that of modules [1] or hyperstructures [2, 3].  Non-
equilibrium hyperstructures result from the co-localisation of many different macromolecules 
in order to perform a particular function.  For example, cell division in bacteria would be 
performed by a hyperstructure comprising division genes, their mRNA and enzymes, together 
with particular lipids and ions such as calcium, whilst the uptake and metabolisation of many 
carbohydrate sugars would involve a hyperstructure comprising the genes, mRNA and 
enzymes of both the phosphoenolpyruvate:carbohydrate phosphotransferase system and the 
glycolytic pathway [4].   
 
Biological cells are autocatalytic networks [5] and several of their salient characteristics 
follow from this.  For example, they take up nutrients and perform chemical reactions so as to 
gain mass, and then divide to form daughter cells.  The evolution of autocatalytic networks 
within a self-contained system of artificial chemistry has been observed  [6] and, in this 
context, the importance of simulating division has recently been shown [7]. 
 



  

To begin to model the formation and evolution of autocatalytic networks and their relationship 
with hyperstructures and cell division, we have written a program that can be approximated to 
a simulation of a cell that is fed by monomers which are the source of "energy" for the system.  
In this simulation, the monomers are labelled 1 to n.  Different numbers of these monomers 
can be assembled into linear (unbranched) polymers to give different lengths.  A polymer may 
be cleaved or added to another polymer or monomer in a reaction in which the order and total 
number of monomers are conserved.  A reaction is catalysed by a particular polymer or 
‘enzyme’ that may itself be a reactant of that reaction (autocatalysis).  More than one variety 
of enzyme may separately catalyse the same reaction; a single variety of enzyme may catalyse 
more than one reaction; some polymers do not catalyse reactions.  These reactions are only 
studied within the confines of the cell.  The initial cell is created by the self-association of a 
random number of each monomer and a random number of a random selection of polymers 
formed outside the cell.  The cell is then supplied with monomeric nutrients at regular or 
intermittent intervals.  The cell is also supplied with enzymes but at a rate much lower than 
the rate of supply of nutrients.  There is a flux of material through the cell since monomers 
and polymers may be lost from the cell (note that this facility is not used in the version 
described below).  The dynamics of the system is described by representations of its state at 
discrete time steps.  At each time step, a nutrient may or may not be incorporated into the cell 
depending on the availability of the nutrients outside the cell.  At each time step, the cell is 
modified by calculating on the basis of concentrations whether each variety of enzyme 
catalyses its cognate reactions.  Each variety of enzymes is examined.  This results in changes 
in the numbers and types of monomers and polymers present in the cell.  The time step is 
repeated until the mass of polymers in the cell reaches a threshold (corresponding to the size 
at which cell division would occur) and the cell is then analysed in terms of the number and 
nature of its polymers, reactions and their connectivity.  
 
The model 
 
1) We consider a set of monomeric molecules (monomers) of different nature labeled 1 to n. 
2) These monomers are “nutrients” which are present outside a “reaction chamber” or “cell”.   
3) Different numbers PD (for Polymerisation Degree) of these monomers can be assembled 

in linear (unbranched) polymeric molecules (polymers) to give different lengths.  The 
symbol Pj({k}) represents a polymer containing PD=j monomeric units and {k} is an 
ordered set of j symbols each symbol being an element of the set of n monomeric units 
defined above.  For example, if the polymer Pj({k}) is the string 23112 then j=5 and {k}= 
{2,3,1,1,2}.  Polymers containing PD=j monomeric units therefore exist in a maximum of 
nj different permutations.   

4) A polymer containing PD=p monomeric units may be cleaved or added to other polymers 
(PD=q) or monomers (PD=1) such that the order and total number of monomeric units is 
conserved in the reaction.  Reactions between molecules are of the form, Pp({k}) ⊕ 
Pq({l}) = Pp+q({k}{l}) where {k} and {l} are ordered sets of the monomeric units and 
({k}{l}) is the result of the addition of these sets in the order k to l.  This reaction is 
reversible but is not commutative i.e. Pq({l}) ⊕ Pp({k}) = Pp+q({k}{l}) is a different 
reaction.  It is therefore the equivalent of reactions of addition (left to right) or cleavage 
(right to left).   

5) Reactions are catalysed by a particular polymer Pp({k}) that may itself be a reactant 
(autocatalysis) and that we term “enzyme” for convenience.  More than one variety of 
enzyme e.g. Pp({k}) and Pq({l}) may separately catalyse the same reaction.  A single 



  

variety of polymer may catalyse more than one reaction.  No monomer may catalyse a 
reaction.  Some polymers do not catalyse reactions.   

6) Reactions of the above type are only studied in the confined volume of a cell or reaction 
chamber that, in its initial form, we regard as created by the self-association of a random 
number of each monomer and a random number of a random selection of polymers made 
outside the cell (by "abiotic" mechanisms that may be different from those in (5) and that 
we do not study).   

7) Nutrients are then supplied to the cell at regular or intermittent intervals.  The cell may 
also be supplied with polymers but at a rate much lower than the rate of supply of 
nutrients.   

8) The dynamics of the system is described by representations of its state at discrete time 
steps.  At each time step, nutrients may or may not be incorporated into the cell depending 
on the availability of the nutrients outside the cell.  In principle, there could be an efflux of 
material through the cell since the possibility also exists of losing monomers and polymers 
from the cell (for example, the probability of a monomer or polymer being lost could be 
inversely proportional to the number of reactions in which it is involved).  This possibility 
is not implemented in the version described here. 

9) At each time step, two lists that describe the system are updated.  The first list, the 
Moleculelist, contains a reference to each class of molecule present in the cell.   Each class 
of molecules has a description comprising its label (name), the number of copies, whether 
it is a monomer or a polymer and in the latter case, whether it is an enzyme.  The second 
list, the Enzymelist, contains a reference to each class of enzymes present in the cell.  Each 
class of enzymes has a description comprising its label, the number of copies, its activity 
status (active or inactive) and the reaction(s) it catalyses.  A reaction is defined by three 
molecules, corresponding to two substrates, Pp({k}) and Pq({l}), and one product, 
Pp+q({k}{l}), and by the kf and kr for this reaction where kf and kr are the equivalent of the 
rate constants for the forward and reverse reactions, respectively.  An enzyme can catalyse 
more than one reaction.  Initially, the number of varieties of enzyme is chosen at random.  
Then the cell is fed in accord with (7).  

10) At each time step, the system is updated by calculating whether each variety of enzyme 
catalyses its cognate reactions.  Each variety of enzymes is examined.  The forward 
reaction can take place if the enzyme Pr({m}) is present and active and if kf * N({k}) * 
N({l})> kr * N({k}{l})* Nt where Nt is the total number of molecules in the cell and kf 
and kr are the rate constants for the particular reaction as catalysed by the enzyme. If the 
inequality is reversed, the reverse reaction occurs. 

11) Iteration during the time step.  A variety of enzyme is chosen from the Enzymelist either 
according to its concentration (as presented here) or at random (in the latter case, this 
choice is weighted by the number of copies, Nm, of the enzyme of a given variety, 
Pr({m}), such that the probability of choosing this variety is proportional to Nm/NEt where 
NEt is the total number of enzymes).   
 
The total increase and decrease in the number of copies of each molecule involved in a 
single catalysed reaction during the time step is obtained from: 
 
∆N({k}{l}) = - ∆N({k}) = - ∆N({l})        
(note that in the version presented here the concentration of the enzyme determines how 
many times the same reaction occurs within the time step) 
The set of molecules in the cell is therefore altered after every reaction.  After one variety 
of enzyme has been treated as above, another variety is chosen and its cognate reaction 



  

performed in the same way. Each variety of enzyme is chosen from the Enzymelist until 
all varieties have had the possibility of catalysing their reaction.  

12) At the start of each time step, the cell is tested to see whether it has grown to a threshold at 
which cell division could occur.  This test is based on the total number of polymers in the 
cell but alternatives include the number of monomers in the form of polymers as well as 
the number of copies of a specific polymer.  In the present model, all reactions cease at 
this critical cell size and the program ends. 

 
Method 
 
The program was written in Pascal Object and run on a PC under Windows.   
 
Results 
 
Here, we present a typical run of the program using only three types of monomer (Table 1).  
The number of copies of these monomers present in the cell is given in column CI, for 
concentration initiale.  The open circle symbol in column O indicates which of the polymers 
in column ID, for identity, were present in the cell at the start of the experiment.  CI gives the 
number of copies at the start - note that this cell did not initially contain polymers of types ID 
233 to ID 31321131212313211121.  CF for concentration finale gives the number of copies 
of the polymer at the end of the experiment - note that if a polymer has an entry in neither CI 
nor CF it is because it was formed during the experiment but disappeared before the end.  Ns, 
for node as substrate, indicates the number of different reactions in which a molecule was 
involved as a substrate; in other words, it is the node class of the molecule with respect to the 
reactions in which it has been consumed; Np, for node as product, indicates the number of 
different reactions in which a molecule was involved as a product; Nt, for node total, is the 
sum of Ns and Np.  In this analysis, the cell can be regarded as a network of molecules that 
are connected by catalysed reactions; a molecule that can be made from 2 different molecules 
and made into 3 others has a node class of Ns=2, Np=3 and Nt=5.  Reaction is the number of 
times the reaction occurred in the course of the experiment.  The right arrow (->) is the 
number of times the molecule was consumed, the left arrow (<-) is the number of times the 
molecule was produced and Net is the difference between consumption and production.   
 
The asterisks in column E (Table 1) indicate which of the polymers were enzymes.  Polymers 
either start as enzymes or acquire activity later.  This latter is simply a device to model the 
entry of a new enzyme by ascribing at random an activity to a polymer present in the original 
cell (Table 1); an alternative possibility not explored here is that acquisition of activity is due 
to a cofactor entering the cell.   
 
The kinetics of the numbers of monomers and polymers (Figure 1) show that an event 
occurred at time step 360 when enzyme 11 ‘entered’ the cell.  The reaction catalysed by 11 is 
2+3<==>23 and this led to a rapid increase in the numbers of 23 (Figure 2).  There were no 
enzymes catalyzing the reaction 1+1<==>11 so catalytic closure did not occur [5].  
Nevertheless, the system grew using its initial complement of polymer 11 until time step 688 
when it had doubled the number of its polymers (from 68 to 136).  23 was also an enzyme and 
catalysed the reaction leading to another enzyme 33+21<==>3321; 3321 catalysed 
2+33<==>233; 233 catalysed 11+31<==>1131, a reaction that consumes or generates 11 
Table 2).  Hence there is a cycle. (Note that the reactions of all enzymes are easily displayed 
although we do not show them here; many other reactions are indicated in Table 1).  



  

 
The numbers of members of a particular node class (where the class is the sum of the 
reactions in which the molecule is either a substrate or product) reveals a distribution with a 
long tail (Figure 3).  The molecules with the highest connectivities were 21 and 1121 and 
those with the next highest were 2, 313 and 31321 (Table 1).  We have not analysed 
connectivity in terms of catalysts in a context where an enzyme could catalyse several 
reactions although this would be possible. 
 
Discussion 
 
Artificial chemistry offers a powerful possibility for both testing existing biological concepts 
and for deriving new ones [6].  We have used a variant that we term artificial microbiology to 
study how autocatalytic networks develop when they are confined to cells that are allowed to 
grow to a fixed size.  For the limited range of monomers and polymers studied here, our 
results from a limited range of experiments, of which this is one, indicate that the most 
important enzymes are those that catalyse the addition of monomers.  This is in fact obvious – 
as a network evolves, the first limiting step in the growth of the cell is the flow of monomers 
into the cell and the second limiting step is the addition of these monomers onto polymers or 
onto other monomers.  The enzymes that add monomers may therefore correspond to the 
ancestral precursors of modern polymerases and ribosomes that also add monomers onto 
polymers.   
 
Abstract networks or graphs consist of nodes and the connections or links between them.  A 
particular node belongs to a node class which corresponds to the number of connections per 
node.  By allocating a metabolite to a node class on the basis of its connections to other 
metabolites, we and, independently, others have found that real metabolic networks have a 
power law distribution of node classes characterized by a long tail [8, 9, 10].  Similar 
distributions have been found for proteins [11].  Artificial microbiology permits the origin and 
properties of real metabolic distributions to be investigated.  For example, what confers 
robustness to fluctuations in nutrition?  Where should the highest node classes be located so 
as to assure a maximum use of inputs and a steady output?  What allows the network to be 
regenerated after starvation?   
 
In the version presented here, the program ends when the cell attains a size at which division 
might occur.  The importance of cell division in the evolution of autocatalytic networks has 
recently been described [7, 12].  Our program offers the possibility of exploring how 
competing autocatalytic networks within the mother cell may be separated by cell division 
into individual ones.  By selecting the faster growing daughter cell, the role of cell division in 
the evolution of networks can then be studied.  It seems likely that formation of 
hyperstructures [2] may make this role of division much more efficient.  Future development 
of the model will therefore entail attributing increased probabilities of reactions to polymers 
that are colocalised so as to allow evaluation of the consequences of hyperstructure formation.  
Finally, artificial microbiology may be extended to study what happens when other types of 
reactions are introduced [13], when the cell shifts from a growing to a non-growing state, 
when inactive enzymes are preferentially inhibited,  and when a coding polymer (DNA/RNA) 
is present.   
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Table 1 Summary of the cell 
 

O E ID CI CF Food Nt Ns  Np Reaction -> <- Net
° 1 53 107 54 1 1 0 0 0 0 0
° 2 54 0 54 6 6 0 1946 919 1027 -108
° 3 97 58 64 3 3 0 1307 602 705 -103

204 165 172 10 10 0 3253 1521 1732 -211

° * 11 14 6 5 5 1960 976 984 -8
° * 12 2 4 4 2 2 -2
° * 13 6 3 3 286 140 146 -6
° * 21 13 7 7 1481 734 747 -13
° * 22 3 3 1 1
° * 23 3 100 2 2 1021 559 462 97
° * 31 6 3 2 2 1639 818 821 -3
° * 32 15 1 3 3 14 14 -14
° * 33 6 3 3 786 390 396 -6

* 233 5 2 1 1 215 110 105 5
* 312 3 2 1 1 443 223 220 3
* 313 6 5 1 566 283 283
* 1121 7 5 2 1198 599 599
* 1131 1 1 1196 598 598
* 1212 2 1 1

3131 1 1
* 3232 6 3 2 1 10 8 2 6
* 3321 4 2 2 618 309 309
* 21121 4 3 1 248 124 124

22233 1 1
* 23321 3 2 1 48 24 24
* 31321 6 5 1 162 81 81
* 323232 1 1
* 1123321 1 1 1 1 1 1
* 1221121 1 1
* 2112112 2 3 2 1 24 13 11 2
* 3131121 3 2 1 152 76 76
* 3133232 1 1 1 3 2 1 1

112131321 1 1
132112112 3 2 1

* 211211121 2 1 1 26 13 13
* 212112112 2 1 1 22 11 11
* 313211121 5 2 1 1 37 21 16 5
* 332131321 1 1
* 11132112112 1 1
* 21132112112 1 1
* 211211121313 1 1
* 212112112312 2 1 1
* 313213131121 1 1
* 1212313211121 3 2 1
* 131212313211121 2 1 1
* 23321212112112312 1 1
* 12123132111213131121 1 1

31321131212313211121 1 1
Total 68 136 107 68 39 12158 6113 6045 68



  

Table 2 A reaction network 

Id Formation Step Reaction kf kr
a 11 360 2 + 3 <==> 23 20 222
b 23 0 33 + 21 <==> 3321 74 426
c 3321 60 2 + 33 <==> 233 43 823
d 233 80 11 + 31 <==> 1131 1 102
e 1131 100 313 + 21 <==> 31321 15 168
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Fig 1 Numbers of monomers and polymers  vs timestep 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2 Number of copies of polymer 23 vs timestep. 
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Fig. 3 Distribution of node classes. Number in Node Class vs Node Class 
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Listeria motility: what do we learn for genomics? 
 

Jacques Prost 
 

Institut Jacques Monod, CNRS, Universités Paris 6 et Paris 7 
  
In this talk we will bring together physics and biology to explain how bacteria such as Listeria 
monocytogenes travel within and between human cells by locally polymerising actin using a 
bacterial protein, ActA.  We will show how ActA-coated beads could move in a similar way and 
discuss symmetry-breaking, persistence-lengths and the squeezing of cherry-stones to make them 
fly. 
 



 



Dynamin recruitment by clathrin coats: a physical step?

J.-B. Fournier
�

and P.-G. Dommersnes
�

Laboratoire de Physico-Chimie Théorique and FR CNRS 2438 “Matière et Systèmes Complexes”,

ESPCI, 10 rue Vauquelin, F-75231 Paris cedex 05, France

P. Galatola

LBHP, Université Paris 7—Denis Diderot and FR CNRS 2438 “Matière et Systèmes Complexes”,

Case 7056, 2 place Jussieu, F-75251 Paris cedex 05, France

Abstract – Recent structural findings have shown that dynamin, a cytosol protein playing a key-role
in clathrin-mediated endocytosis, inserts partly within the lipid bilayer and tends to self-assemble
around lipid tubules. Taking into account these observations, we make the hypothesis that individual
membrane inserted dynamins imprint a local cylindrical curvature to the membrane. This imprint
may give rise to long-range mechanical forces mediated by the elasticity of the membrane. Calculat-
ing the resulting many-body interaction between a collection of inserted dynamins and a membrane
bud, we find a regime in which the dynamins are elastically recruited by the bud to form a collar
around its neck, which is reminiscent of the actual process preempting vesicle scission. This physical
mechanism might therefore be implied in the recruitment of dynamins by clathrin coats.

endocytosis / clathrin / dynamin / membrane inclusions interactions

Résumé – Une étape physique dans le recrutement des dynamines par les capsules de clathrine ?
Des donnés structurales récentes ont montré que la dynamine, une protéine du cytosol qui joue
un rôle clé dans l’endocytose clathrine-dépendante, s’insère partiellement dans la bicouche mem-
branaire et tend à s’auto-assembler autour de tubules lipidiques. En tenant compte de ces observations,
nous faisons l’hypothèse que les dynamines impriment localement une courbure cylindrique dans la
membrane. Cette empreinte peut engendrer des forces élastiques de longue portée. En calculant
l’interaction multi-corps entre un ensemble de dynamines insérées dans la membrane et une capsule
endocytotique, nous trouvons un régime dans lequel les dynamines sont recrutées élastiquement par
la capsule pour former un collier autour de son cou, ce qui rappelle le processus précédant la scission
des vésicules d’endocytose. Ce mécanisme physique pourrait donc être impliqué dans le recrutement
des dynamines par les capsules de clathrine.

endocytose / clathrine / dynamine / interactions entre inclusions membranaires

�
Author for correspondence (jbf@turner.pct.espci.fr)�
Present address: Institutt for fysikk, Kontor D-5 184. NTNU. N-7491 Trondheim. Norway.



 



Quelques problèmes de représentation des réseaux biologiques 
 

Vincent Schächter 
 

HYBRIGENICS - 3-5 impasse Reille, 75014 Paris 
  
Les travaux récents dans le domaine de la reconstruction des réseaux biologiques et de la 
simulation des processus correspondants s’appuient sur des choix de représentation plus ou moins 
explicite -- souvent présentés sous la forme d’un modèle de données, exprimé dans un certain for-
malisme, ce dernier comprenant ou pas des aspects dynamiques. Ces couples formalisme/modèles 
de données sont souvent conçus pour des applications précises. A partir d’une revue comparative, 
nous tenterons de mettre en évidence les avantages et les limitations des représentations discrètes 
existantes, et de pointer vers les problèmes ouverts correspondants. 
 



 



Information of metabolic networks 
 

Jacques Ricard 
 

Institut Jacques Monod, CNRS, Universités Paris 6 et Paris 7 
  
As most enzyme reactions associate two, or three, reagents, metabolic networks may possibly 
contain an information which can be large relative to standard genetic information. Network 
information is adaptive as a response to several signals. A peculiarity of metabolic networks is 
that they may well not conform to the subadditivity principle of Shannon’s information theory. 
This means that network information can be positive, nil or even negative. In that case, the 
system does not act as an information channel, but generates an information of its own and 
displays emergent properties. 
 



 



Virtual Mitochondria And Their Control 
 

Marie Aimar1, Bernard Korzeniewski3, Jean-Pierre Mazat1 and Christine Nazaret2 (alphabetic order) 
 
1Inserm EMI 9929, and 2ESTBB, Université de Bordeaux 2, 146 rue Léo-Saignat, F 33076, Bordeaux-
cedex France. 
3 Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland 
 
 
Résumé 
Dans la cellule eucaryote, les mitochondries sont des organelles responsable de la fourniture en 
énergie sous forme d’ATP. Le contrôle de la production d’ATP mitochondrial est un problème 
complexe avec différentes expression dans différents tissus et organes. 
Notre but est de continuer la modélisation des oxydations phosphorylantes mitochondriales, d’y 
ajouter le reste du métabolisme mitochondrial et d’intégrer cette mitochondrie virtuelle dans une 
cellule virtuelle. 
Pour construire les cartes du métabolisme mitochondrial, on se servira des séquences connues des 
génomes eucaryotes (10 à 15% du génome de la levure concerne les mitochondries). 
 
 
Abstract 
Inside the eukaryotic cell, mitochondria are internal organelles of prokaryotic origin, responsible 
for energy supply in the cell. The control of the mitochondrial ATP production is a complex 
problem with different patterns according to different tissues and organs. 
Our aim is to continue to develop the modelling of oxidative phosphorylation in different tissues, 
to model other parts of mitochondrial metabolism and to include this virtual mitochondria in a 
virtual cell. 
In constructing the complete metabolic map of mitochondria, we will take advantage of the 
sequenced genomes of eukaryotic organism, (10-15% of the yeast genome concerns 
mitochondria). 



 



Dynamic Simulation Of Pollutant Effects On The Theonine Pathway In 
Escherichia Coli 

 
Christophe Chassagnolea1*, Eric Quentina2, David A. Fellb, Pedro de Atauric and 

Jean-Pierre Mazata 
 
a INSERM EMI 9929 and Université de Bordeaux II, 146 rue Léo-Saignat, 33076 Bordeaux Cedex, 
France. 
b School of Biological and Molecular Sciences, Oxford Brookes University, Oxford OX3 0BP, U.K. 
c Departement de Bioquimica I Biologia Molecular, Universitat de Barcelona, Marti I Franques 1, 08028 
barcelona, Spain. 
Present address: 1 INSA – dGBA 135 Av. de Rangueil F–31077 Toulouse Cedex, France. 2 DIOSYNTH 
France, BP 26, 60590 Eragny-sur-Epte France. 
*Corresponding author: christophe.chassagnole@insa-tlse.fr,  phone: +33 (0)5 61 55 94 18, 
  fax: +33 (0)5 61 55 94 00 
 
 
Abstract - The enzymatic activities of threonine pathway in Escherichia coli are sensitive to 
pollutants such as cadmium, copper and mercury which even at low concentration, can 
substantially decrease or even block the pathway at several steps. Our aim was to investigate the 
complex effects on a metabolic pathway of such general enzyme inhibitors with several sites of 
action, using a previously-developed computer simulation of the pathway. For this purpose, the 
inhibition parameters were experimentally determined and incorporated in the model. The 
calculation of the flux control coefficient distribution between the five steps of the threonine 
pathway showed that control remains shared between the three first steps under most inhibition 
conditions.  Response coefficient analysis shows that the inhibition of aspartate semialdehyde 
dehydrogenase is quantitatively dominant in most circumstances. 
 
Keyword: Threonine, computer simulation, metabolic control analysis, biosynthetic pathway, 
pollutants. 

 

Résumé – Les activités enzymatiques de la chaîne de biosynthèse de la thréonine d’Escherichia 
coli sont particulièrement sensibles a des polluants tels que le cadmium, le cuivre et le mercure, 
qui peuvent diminuer ou bloquer le métabolisme bactérien. Les paramètres cinétiques de ces 
inhibitions ont été déterminés expérimentalement, puis incorporé dans un modèle mathématique 
de la voie. Ce modèle a été utilisé pour simuler l’effets de ces inhibition sur le flux de 
biosynthèse de la thréonine et calculer la répartition des coefficients de contrôle entre les étapes 
de la voie. Ceci a montré que le contrôle est toujours reparti entre les trois première étapes. 
 
Mots clés: Thréonine, simulation du métabolisme, théorie du contrôle du métabolisme, voie de 
biosynthèse, polluants. 



 



Metabolic analysis in drug design 
Athel Cornish-Bowden* and María Luz Cárdenas 

 
CNRS-BIP, 31 chemin Joseph-Aiguier, B.P. 71, 13402 Marseille Cedex 20, France 
E-mail address: athel@ibsm.cnrs-mrs.fr 
 
Abstract 
Biotechnology is often presented as if progress in the past two decades represented a major 
success, but the reality is quite different. For example, ten major classes of antibiotics were 
discovered between 1935 and 1963, but after 1963 there has been just one, the oxazolidones. To 
illustrate the possibilities of doing better by taking account of the real behaviour of metabolic 
systems, we can examine how one might modify the activity of an enzyme in the cell (for 
example by genetic manipulation, or by the action of an inhibitor, etc.) to satisfy a technological 
aim. For example, if the objective is to eliminate a pest, one might suppose that the effect of an 
inhibitor could be to depress an essential flux to a level insufficient for life, or to raise the 
concentration of an intermediate to a toxic level. The former may seem the more obvious, but the 
latter is easier to achieve in practice, and there are some excellent examples of industrial products 
that work in that way, such as the herbicide ‘Roundup’ and antimalarials of the quinine class. A 
study of glycolysis in the parasite Trypanosoma brucei (which causes African sleeping sickness) 
indicates that for this approach to work the selected target enzyme must have a substrate with a 
concentration that is not limited by stoicheiometric constraints. That is not necessarily easy to 
find in a complicated system, and typically needs the metabolic network to be analysed in the 
computer. 
 
Metabolic analysis / stoicheiometric analysis / uncompetitive inhibition / drug design 
 
Résumé 
La biotechnologie est souvent présentée comme si les nouvelles technologies des deux dernières 
décennies constituaient une réussite éclatante, mais la réalité est toute autre. Par exemple, entre 
1935 et 1963 on a découvert dix classes majeures d’antibiotiques ; depuis 1963 on n’en a 
découvert qu’une seule, les oxazolidones. Pour illustrer les possibilités d’améliorer les résultats 
en tenant compte du comportement des systèmes métaboliques, nous pouvons examiner comment 
on peut modifier l’activité d’une enzyme dans la cellule (soit par manipulation génétique, soit par 
l’action d’un inhibiteur, etc.) pour satisfaire des objectifs biotechnologiques. Par exemple, si le 
but est d’éliminer une peste, on peut supposer que l’effet d’un inhibiteur puisse être d’abaisser un 
flux essentiel en-dessous d’un niveau indispensable à la vie, ou d’augmenter la concentration 
d’une métabolite à un niveau toxique. Le premier semble être le plus évident, mais le second est 
plus facile à réaliser dans la pratique, et on a d’excellents exemples de produits industriels très 
importants qui fonctionnent ainsi, comme le « Roundup » utilisé comme herbicide, ou la quinine 
comme médicament contre le paludisme. Une étude de la glycolyse dans le parasite Trypanosoma 
brucei (responsable de la maladie de sommeil) indique que, pour que cette approche soit efficace, 
il faut choisir comme cible une enzyme pour laquelle la concentration du substrat ne soit pas 
limitée par des relations stoechiométriques. Ceci n’est pas forcément facile à trouver dans un 
système compliqué, et nécessite typiquement une analyse métabolique par ordinateur. 
 
Analyse métabolique / analyse stœchiométrique / inhibition incompétitive / conception de 
médicaments 
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Résumé  
Les systèmes biologiques sont composés de différents niveaux d'organisation. Habituellement, les 
niveaux de l'atome, de la molécule, de la cellule, de l'individu, de la population, de la com-
munauté et de l'écosystème sont considérés. Ces niveaux d'organisation correspondent en fait à 
des niveaux d'observation différents, c'est-à-dire à des échelles d'espace et de temps différentes: 
les niveaux plus microscopiques correspondent à des échelles de temps plus rapides et à des 
échelles d'espace plus petites. Ainsi, la dynamique globale d'un système biologique est le résultat 
des dynamiques couplées de chacun de ses niveaux d'organisation, dynamiques qui se déroulent à 
différentes échelles de temps. Les méthodes d'agrégation de variables tirent partie de l'existence 
de ces différentes échelles de temps afin de réduire la dimension des modèles mathématiques 
comme les systèmes d'équations différentielles ordinaires. Nous étudierons la dynamique d'un 
système présentant une structure hiérarchique, c'est-à-dire composée de groupes d'éléments, eux-
même constitués de sous-groupes qui peuvent à leur tour être structurés en parties plus petites et 
ainsi de suite. La structure hiérarchique du système provient du fait que l'on suppose que les 
interactions intra-groupe sont rapides par rapport aux interactions de type inter-groupe. Nous 
présenterons la méthode d'agrégation qui permet de construire un modèle global gouvernant la 
dynamique de quelques variables macroscopiques à une échelle de temps lente.  
 
Abstract  
Biological systems are composed of different levels of organization. Usually, one considers the 
atomic, molecular, cellular, individual, population, community and ecosystem levels. These 
levels of organization also correspond to different levels of observation of the system, from 
microscopic to macroscopic, i.e., to different time and space scales. The more microscopic the 
level is, the faster the time scale and the smaller the space scale are. The dynamics of the 
complete system is the result of the coupled dynamical processes that take place in each of its 
levels of organization at different time scales. Variables aggregation methods take advantage of 
these different time scales to reduce the dimension of mathematical models such as a system of 
ordinary differential equations. We are going to study the dynamics of a system which is 
hierarchically organized in the sense that it is composed of groups of elements that can be 
themselves divided into further smaller sub-groups and so on. The hierarchical structure of the 
system results from the fact that the intra-group interactions are assumed to be larger than inter-
group ones. We present aggregation methods that allow one to build a reduced model that 
governs a few global variables at the slow time scale. 
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This presentation deals with a logical method for describing and analysing the dynamics of 
regulatory networks in terms of feedback circuits. The most distinctive feature of this logical 
method is its fully asynchronous character: while the variables that are associated with the 
relevant components of a network are discrete, time is continuous. We first describe the method 
in its "naïve" Boolean form and use it to illustrate the major laws of circuitry (namely, the 
involvement of positive circuits in multistationarity and of negative circuits in periodicity). We 
then present more refined versions of our logical description by introducing successively 
multivalued logical variables, logical parameters and logical values ascribed to the thresholds. 
Finally, we illustrate on simple examples the inductive use of the logical method. This reverse 
approach aims to proceed rationally from experimental facts towards the elaboration of a model. 
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Le coût de la synthèse protéique et l’encombrement moléculaire imposent une contrainte 
globale sur la concentration totale d’enzymes dans une cellule, contrainte qui relie négativement 
entre elles les variations de concentration des enzymes. Pour un système métabolique donné, il 
existe une répartition optimale des concentrations d’enzymes, i.e. une répartition qui maximise 
les flux de ce système. L’interdépendance des concentrations et leurs relations avec les flux nous 

ont conduit à la notion de « coefficient de réponse combinée », 
i

iJ
i Q

Q
J
JR ∂∂= , qui mesure la 

sensibilité du flux J vis-à-vis de la variation de concentration Qi de l’enzyme i. Comme cette 
variation affecte les concentrations d’autres enzymes de la voie, l’expression de J

iR  est différente 
de celle d’un coefficient de contrôle. Sauf au flux maximum, une valeur donnée de J peut être 
obtenue avec deux valeurs de Qi, l’une inférieure, l’autre supérieure à la valeur optimale. Une 
approche analytique a montré que la valeur absolue de J

iR  était toujours plus élevée au-delà 
qu’en deçà de l’optimum, et ce quelle que soit la règle de redistribution de la concentration de 
l’enzyme. Du point de vue évolutif, ceci signifie que la sélection pour augmenter un flux sera 
toujours plus forte lorsqu’il s’agira de faire diminuer une concentration d’enzyme trop élevée que 
de faire augmenter celle d’une enzyme trop peu abondante. Ce résultat peut expliquer l’existence 
des mécanismes destinés à limiter la synthèse protéique. Une approche expérimentale a été initiée 
sur la glycolyse chez S. cerevisiae, afin de vérifier différentes prédictions liées aux contraintes. 
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 Les acides nucléiques bicaténaires en double hélice donnent des cristaux liquides d’un type bien 
particulier, appelés « cholestériques », parce que cet état un peu singulier de la matière fut décrit 
initialement pour de nombreux dérivés du cholestérol. Il est connu aujourd’hui pour de nombreux 
polysaccharides et polypeptides, naturels ou de synthèse. Cet état cristallin liquide est obtenu 
pour des concentrations très élevées de l’ADN dans l’eau, entre 5 et 20%, comparables à celles 
que l’on trouve dans les chromosomes et beaucoup de noyaux cellulaires. C’est surtout chez 
certains procaryotes (bactéries et dinoflagellés) que ces états cristallins liquides furent observés in 
vivo, mais nous pensons qu’ils interviennent également chez les eucaryotes. 
 Chaque chromosome ne comporte qu’une seule molécule d’ADN (éventuellement en 
cours de duplication) et cela vaut en particulier pour le nucléoïde bactérien, comme pour l’un 
quelconque des chromosomes du noyau des dinoflagellés. C’est ce filament très long, mesuré en 
millimètres, qui est replié sur lui-même un grand nombre de fois en constituant une minuscule 
goutelette cristalline liquide, plus ou moins étirée, avec des boucles d’ADN qui s’étendent plus 
ou moins loin à l’extérieur du cristal liquide. Nous pensons que l’ordre de l’ADN au sein de la 
phase cristalline liquide, ainsi que sa fluidité, facilitent de nombreux aspects du fonctionnement 
du chromosome, dans sa duplication, comme dans sa participation à la synthèse des protéines. 
 Les progrès concernant la préparation des phases cristallines liquides de l’ADN 
conduisent à de nombreuses perspectives d’applications, dont beaucoup sont encore fort 
spéculatives, mais méritent discussion, notamment les problèmes de production de certains 
peptides à grande échelle en milieu acellulaire. 
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One of the many problems in biology is to understand how a multitude of dynamic processes are 
integrated to assure the organisation and functioning of the cell. We propose that the 
condensation of counter-ions plays a major role in this integration. This condensation is based on 
the phenomenon of the confinement of counter-ions in the immediate vicinity of a 
macromolecule at a critical charge density. We review this phenomenon and discuss briefly the 
theoretical and experimental implications in the context of the cell considered as a dynamic 
continuum of charged structures. These structures create an intracellular network that extends 
from the membrane to the nucleus and that condenses ions. Our hypothesis is that the local level 
of condensed calcium modulates the activity of many kinases and phosphatases to generate short- 
or long-term changes in the phosphorylation status and in the stability of the network of 
structures via positive and negative feedback loops. We further propose that the ability of cells to 
discriminate between signals and to respond appropriately is a global or collective property of the 
network as mediated by counter-ion condensation. Evidence consistent with this hypothesis is 
based on calcium changes in plants subjected to abiotic stimuli. Further investigation will require 
the quantitative imaging of the distribution of free, bound and condensed ions and extensive 
mathematical modelling. Finally, we suggest that the network of structures may actually be a 
network of hyperstructures each comprising different species of molecules and macromolecules. 
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Abstract 
 
The new tools available for gene expression studies are essentially the bio-array methods using a 
large variety of physical detectors (isotopes, fluorescent markers, ultrasounds,…). Here we 
present an image processing method independent of the detector type, dealing with the noise and 
with the peaks overlapping, the peaks revealing the detector activity (isotopic in the presented 
example), correlated with the gene expression. After this first step of image processing, we can 
extract information about causal influence (activation or inhibition) a gene can exert on other 
genes, leading to clusters of co-expression in which we extract an interaction matrix explaining 
the dynamics of co-expression correlated to the studied tissue function. 
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Abstract

We describe one of the simplest models which exhibit an adaptive branching behaviour. It is an-
alyzed both experimentally and formally, and its successive bifurcations provide a good model of
what R. Thom called ”generalized catastrophes”. Some theorems on the stochastic adaptability of
the algorithm to very general shapes of target are given. The model further displays the phenomenon
of abortive branching : each macroscopic branching appears after a burst of micoscopic branchings
which stop growing after a very short time. The mathematical analysis of the model explains why and
how this behaviour occurs. The applications of these models to Evolution (natural and artificial) and
Epigenesis are discussed, and a higher dimensional version is applied to growing a tree in a space of
shapes in the context of a database of medical images.

Keywords: branching, bifurcation, evolution, epigenesis, angiogenesis, tree, auto-organization,
adaptive.

Résumé  Ramification adaptative en Evolution et Epiǵenèse

Nous décrivons un des modèles mathématiques les plus simples qui soit capable de ramification adap-
tative et étudions sa pertinence biologique. Ayant défini dans un espace une probabilité chargeant
une région appelée cible, et un ensemble appelé graine, état initial du réseau à faire croître, chaque
tirage d’un point au sein de la cible définit un nouveau point à ajouter au réseau. On peut observer
expérimentalement l’apparition d’arborescences qui adaptent progressivement la forme du réseau à
celle de la cible. On peut aussi montrer plusieurs théorèmes d’adaptativité stochastique du réseau
à des cibles très générales. L’étude plus fine des ramifications révèle l’existence du phénomène de
ramifications abortives dont l’étude formelle s’apparente au concept de catastrophe généralisée. Ce
modèle est applicable à l’espace tridimensionnel pour modéliser l’épigénèse, mais aussi à des espaces
de dimension plus grande, comme des espaces de formes, dont nous discutons quelques applications
dans le cadre de l’Evolution en Biologie, et pour des applications de bases de données de formes en
imagerie médicale.

Mots-clés: ramification, bifurcation, evolution épigénèse, angiogénèse, adaptation, arbre, auto-
organisation.
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A. The dynamics of secretory compartments 

1. Introduction 

 One of the major challenges facing modeling and simulation for the coming decades is to 
deal with dynamical systems whose structures are not fixed, but evolve as a result of the system's 
internal dynamics. Most biological and sociological objects are indeed such systems. Interactions 
among their components specifically generate other components or, at least, modify their internal 
structure. As pointed out by Fontana & Buss (1994), these objects may be considered as 
"constructive dynamical systems". In cell biology, the secretory process in eukaryotic cells 
corresponds to this type of system, as it appears to generate new structures as a result of its internal 
dynamics. 

 Eukaryotic cells have built up a highly specific way to excrete some of their proteins. All 
proteins are synthesized in the cytoplasm, but those proteins destined to the extracellular space are 
transported through a series of membrane-bounded compartments making up the secretory pathway. 
They cross the membrane of the endoplasmic reticulum (ER). They subsequently undergo 
successive chemical modifications as they are transported by membrane fusion / fission events 
through a series of membrane-bounded compartments: ER, Golgi apparatus (GA), secretory 
granules (SG). The latter finally fuse with the plasma membrane to deliver their content outside the 
cell (exocytosis). Eukaryotic cells are also able to internalize material from the extracellular space 
(endocytosis) through compartments, some of which are shared with exocytosis. Internalized 
material is often degraded in the vacuole. 

 Until recently the structures making up the secretory pathway had only been observed in a 
static way on two dimensional projections. Many of the controversies that arose during the last 
decades about the exact structure and functioning of secretory compartments may be attributed to 
the difficulty of retaining simultaneously the required spatial resolution and a kinetic view of the 
secretory process. It is the purpose of this chapter to present data on the structure of the secretory 
pathway obtained at the ultrastructural level with stereoscopic techniques, to pinpoint structural 
modifications along this membranous system, and to propose a discursive model dealing with the 
autonomous creation of new structures.  

2. Three-dimensional configuration of the secretory pathway  

 To obtain accurate and detailed information on the architecture of cell compartments, their 
three-dimensional features should be investigated  in sections of various thicknesses stained with 



heavy metals, examined with both standard and high voltage electron microscopes (EM). However, 
images observed on the fluorescent screen of the EM or conventional photographs of such images 
are not true representations of the reality but only shadows, projections of three-dimensional 
objects. As a result, serial sections examined or photographed under the EM screen to reconstruct a 
tridimensional object are in fact, serial projections which, when added together, may lead to 
erroneous interpretations  of the structure of this object. 

 Thus, as seen in Figure 1, the projection (vertical arrow) of the tridimensional statue on the 
snow will be interpreted as that of …a running wolf !!! and not as that of a human being, Mr. 
McGill, the founder of McGill University in Montreal (Canada).  

 

 
Stereoscopic picture of the statue of McGill on the McGill university campus in Montreal. Two pictures were 
taken in succession after moving the camera along an horizontal axis. The distance between the two pictures 
corresponded approximately to the interocular distance (60 mm). One of the photographs corresponding to the field 
viewed by the left eye was masked with a red filter and the other one, viewed by the right eye, with a cyan filter . The 
two pictures were then fused together to form a stereoscopic picture which, when examined with colored glasses, allows 
a three dimensional restitution of the scenery. The shape of the projection (shadow) of the statue is indicated by the 
vertical arrow. (see plate 1 at the end of the book) 

 To avoid these projection artefacts, electron micrographs should always be examined with 
stereoscopic techniques which allow the brain to reconstruct a given object in three dimensions 
from the projections on each retina of this object, viewed by each eye from a different angle.  In 
practice, two photographs of the same field are taken with the EM by tilting the object at two 
different angles. These two pictures correspond to two projection images of the same structure but 
photographed from two different angles. A three-dimensional view of the structure or the field 
under study may then be obtained by looking at properly adjusted pairs of such photographs either 
with a stereoscope or, as for the figure above, with colored glasses, the red lens being placed over 
the left eye. In this case, as in ordinary binocular vision, the three-dimensional structure of the 
objects can be directly observed and permits the observer to avoid laborious and problematic 
recontructions from serial sections. 

Figure 1 



3. secretory The pathway in animal cells 

 Two cases will now be examined to illustrate the two morphogenetic paths of Golgi 
maturation in animal cells. 
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Low-power electron micrograph of the Golgi ribbon (G) in a mucous secretory cell of the Brünner’s gland. The 
nucleus is not included in the section plane which is shown (B-A) in the inset at the lower right. Piles of cisternae of the 
endoplasmic reticulum (ER) are seen to surround the Golgi region. Secretion granules (g) are interspersed at close 
proximity of the twisted Golgi ribbon and accumulate at the apex of the cell. The lateral (Lm)  and basal (Bm) plasma 
membrane delineates the roughly conical shape of the cell. x 10,000 
 

3.1. Mucus producing cells of the Brünner's gland 

 Figure 2 shows an electron micrograph of an ultra-thin section through a secreting cell from 
a Brünner’s gland, a mucus producing gland in the wall of the mouse small intestine. The specimen 
was fixed in glutaraldehyde and postfixed with reduced osmium in order to selectively stain 
membrane-bounded compartments. A staining gradient is observed along the membrane 
compartments of the secretory pathway. As indicated in the inset at the bottom right, a diagram 
showing the morphology of the cell as observed with the light microscope, it is a pyramidal cell 
with a basal nucleus (N) and an apical (A) region filled with secretion granules. In the mid-region of 
the cytoplasm, the Golgi apparatus (G) appears as a continuous twisted ribbon-like element that 
caps the apical pole of the nucleus. In the cell observed with the EM, roughly parallel elongated and 
interconnected cavities form at the base of the cell and around the Golgi ribbon (G) a continuous 
network : the endoplasmic reticulum (ER). Secretion granules (g) are observed in the Golgi region 
and accumulate at the apex of the cell. Mitochondria (m) are interspersed throughout the cytoplasm. 
Biochemical as well as cytochemical studies indicate that secretory proteins are synthesized in the 
cytoplasm and cross the membranes of the cavities making up the endoplasmic reticulum. They are 
then transported in the GA where they are modified and packed within prosecretory granules. After 

N



their release from the GA, these prosecretory granules are further modified and transformed into 
fully mature secretion granules which, in most secretory cells, accumulate at the secretory pole of 
the cell. 

 

 

Figure 3 

Higher magnification of the Golgi ribbon in a region similar to that delineated by the rectangle in Fig.2. Underlying 
the cis-element (CE), several elements numbered 1 to 8 are seen in side views and display flattened (arrows) and dilated 
(*) portions. On the trans-aspect of the Golgi ribbon, prosecretory granules Pg are interconnected by relatively 
shrunken tubular elements (arrowhead). ER : endoplasmic reticulum cisterna. g : secretion granule. x 80,000 

 When a portion of the Golgi ribbon such as the one delineated by a rectangle in Figure 2 is 
examined at a higher magnification, its appears to consist of several (8 to 9) parallel elements 
(Figure 3). On one face of the ribbon, referred to as the trans-face of the GA, prosecretory granules 
(Pg) are still connected by thin interconnected tubules indicated by the arrowhead. At the opposite 
face : the cis-face, a tubular network the cis-element (CE) or cis-Golgi network is facing the 
endoplasmic reticulum (ER) from which it remains separated by a clear space containing small 
vesicles (v) or interconnected tubules. Such tubular vesicular elements are thought by some authors  



to form a separate structural compartment : the endoplasmic reticulum-Golgi intermediate 
compartment usually designed by the acronym : ERGIC. 
Diagram illustrating a small portion of the Golgi ribbon in a mucous secreting cell of the 

Brünner’s gland. The various elements making up the Golgi ribbon observed in side view (A) are 
shown in front views in the B part of the diagram. ER : endoplasmic reticulum. CE : cis-element ; 
Pg : prosecretory granule ; g : secretion granule. 

 
 The tridimensional structure of the various elements of the Golgi ribbon seen in in Fig. 3 or 
in the upper part (A) of the diagram in Fig. 4 is illustrated in front views in the B part of the same 
figure. As indicated above, when seen in front view with a stereoscope, the cis-element (CE) is 
exclusively tubular and forms a cis-tubular network. Subjacent to this tubular network, more or less 
flattened elements, (elements 1-8 on the right side of Figure 3, or elements 1-9 in the diagram) are 
strictly parallel and close to each other to form «stacks of saccules», usually thought to characterize 
the GA in eukaryotic cells. The diameter of the fenestrations perforating the first element is 
approximately half that of the meshes of the cis-tubular network. The next elements (2-6) are poorly 
fenestrated. Yet, wide perforations interrupt in register two or more elements to form pan-shaped 

Figure 4 
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cavities or « wells » (W) with a wide mouth opened on the cis-face of the stacked elements and a 
narrower bottom located in their lower half. The element 7 displays a few round or ovoid 
fenestrations. Its lumen contains an electron opaque secretory material which, as seen in side views 
(asterisk in Figure 3) may accumulate in dilated portions. The subjacent element 8, perforated with 
numerous pores, takes a fenestrated appearance and presents a few distensions which correspond to 
early prosecretory granules (Pg). The number of such prosecretory granules increases in element 9 
while the areas separating them are more and more fenestrated and become tubular. The tubular 
elements making up such intermediate areas are relatively shrunken (arrowhead, Figure 3) and 
deprived of secretory material. Finally, on the trans side of the stack, free prosecretory granules, a 
few residual tubular networks  as well as small tubular or vesicular profiles appear to result from the 
fragmentation of the superjacent tubulo-nodular (Figure 3, #8 or Figure 4, #9) element. Smaller 
mature secretion granules (g) are seemingly formed by transformation of prosecretory granules with 
emission by the latter of numerous small vesicles which may be observed at their periphery or in 
their immediate surroundings. 

3.2. Prolactin secreting cells of the pituitary gland 

 As in the mucous secreting cell of the Brünner’s gland, the segregation of prosecretory 
granules in other glandular cells appears to be concomitant with a progressive perforation of Golgi 
elements and their transformation into tubular networks when their three-dimensional structure is 
examined along a cis-trans axis from the cis to the trans aspect of the Golgi ribbon. Yet, in some 
glandular cells, remodeling of the free prosecretory granules into mature secretion granules may 
occur without emission of vesicles as seen in most cells. Thus, in prolactin cells of the pituitary 
gland (Figure 5), early prosecretory granules segregated in highly perforated elements on the  
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Figure 5 

Diagram showing a small portion of the Golgi ribbon of the prolactin cell and the proposed mode of formation of 
secretory granules. The drawing at the upper left shows the stack of Golgi elements and granules in a perpendicular 
thin section through the stack.  The various elements of the face of the stack  implicated in granule formation as well as 
the elements seen at a short distance from it are shown in three dimensions in the surrounding drawings. 

 



trans-face of the Golgi ribbon seem to aggregate to give rise in the next element to polynodular 
prosecretory granules separated from each other by tubular networks. Once liberated within the 
cytoplasm, seemingly by breaking of the tubular networks, they give rise to polynodular granules, 
closely apposed and usually parallel to the trans-face of the Golgi ribbon. Subsequently, these 
progranules migrate at some distance from the Golgi stacks and transform into more compact 
polymorphous granules which, in turn, give rise to the mature granules. 

 The breaking of the trans-tubular networks to liberate secretion granules in the cytoplasm 
implies that the various elements of the Golgi ribbon are permanently renewed from the 
endoplasmic reticulum in order to maintain their structural integrity. However, the structural 
complexity of the GA and its relative stability has prevented so far an exhaustive description of the 
kinetics of this compartment in cells maintained in their normal, in situ, environmental conditions.  

 Thus, recent biochemical and genetic investigations have made use of the baker's yeast 
Saccharomyces cerevisiae to analyse various cell biological processes and in particular those related 
to the secretory pathway which, in these cells as in mammalian cells, involves the GA (Figure 6). 
Temperature-sensitive mutants have been isolated that block protein traffic at various stages. When 
grown at a low temperature where the mutation is not expressed ("permissive" temperature), they 
display a phenotype resembling that of the wild-type (non-mutated) strain. Upon shifting to a higher 
temperature where the mutation is expressed ("restrictive" temperature), they gradually accumulate 
various types of structures (e.g. small vesicles, membranous sheets, tubules, secretory granules 
etc…), depending of the position of the block along the secretory pathway. Upon returning the cells 
to a permissive temperature, the phenotype of the wild-type cell is progressively restored. By 
examining the cells at various time intervals after a block or release of the block, it is possible to 
monitor the modifications of the tridimensional configuration of the membranous systems (e.g. ER, 
GA, etc…), which reflects their internal dynamics. 

4. The secretory pathway in yeasts 

 
 
a) Diagram illustrating the structure of cell organelles in the yeast Saccharomyces cerevisiae. N : nucleus ; ER : 
endoplasmic reticulum ; M ; mitochondrion ; G : Golgi tubular networks ; SG : secretion granules. The vertical arrow 
points to the subplasmalemal ER which may be continuous with some Golgi networks such as the one (G) seen left of 

 



the nucleus. b) A tubular network (TN), presumably Golgi in nature, contains dilations (vertical arrow) and is seemingly 
continuous with the subplasmalemmal endoplasmic reticulum (ER). 
b) High power magnification of a Golgi tubular network (TN) at the periphery of a yeast cell. A dilated zone of a 
tubule, presumably a prosecretory granule is indicated by the vertical arrow. x 73,000. 
c) A  non perforated sheet of endoplasmic reticulum (ER) seen in face view is continuous at its periphery with 
interconnected membranous tubules forming a wide-meshed tubular network (TN). Dilations along these tubules are 
indicated by vertical arrows. x 63,000. 

 In wild type strains of yeasts fixed in glutaraldehyde and postfixed with reduced osmium in 
order to selectively stain membrane-bounded compartments, there is a staining gradient along the 
membrane compartments of the secretory pathway. The endoplasmic reticulum, the content of 
which is usually faintly stained, consists of poorly fenestrated sheets (ER, Figure 6c) 
interconnecting the nuclear membrane with cisternae located beneath the plasma membrane (Figure 
6a, arrow). The GA consists of discrete separate units distributed throughout the cytoplasm (G, 
Figure 6a). They appear as small tubular networks with a stained material accumulating in dilations 
located at the junctions of membranous tubules. Some of these distensions are filled with an 
intensely stained material (Figure 6c, arrows) and are similar in size to nearby secretory granules 
(SG), suggesting that, as in animal cells, the latter are segregated by a progressive fenestration of 
membranous sheets and liberated in the cytoplasm by fragmentation of tubular networks (TN, 
Figure 6bc). Occasionally, as seen in Figure 6, tubular networks with stained dilations may be 
directly continuous with an ER cisterna beneath the plasma membrane (Figure 6b; Figure 7, "tER") 
or form the tubular periphery of an unperforated ER sheet (Figure 6c). Figure 7 exposes these 
features in situ. 

 

Figure 7 
Anaglyph image of a 0.25-µm thick section of a wildtype yeast cell. A stereoscopic, more focused, view may be 
obtained with anaglyph glasses. The cell is surrounded by a thick and heavily stained wall. The plasma membrane 
corresponds to the innermost dark line of the wall. Beneath the plasma membrane, cisternal ER (ER) appears as a 
lighter, discontinuous line. Long ER cisternae bridge the nuclear envelope to subplasmalemmal ER. A polygonal 
network of pale-stained tubules is connected to subplasmalemmal ER (tER, tubular ER). The unstained nucleoplasm 
(N) is surrounded by the pale-stained nuclear envelope, pierced with nuclear pores. Top left and bottom right, the grey 
spheroidal masses correspond to vacuoles. A few pale-stained vesicles, 20-50 nm in diameter, are visible (sV). A 
network shows nodules (LnN), some of which have the size and staining properties of secretory granules. Magnification 
10,000x. (see plate 2 at the end of the book) 
 



4.1. The sec7 mutant : a continuous membrane flow ? 

  When sec7 mutants of the yeast Saccharomyces cerevisiae were maintained at the non-
permissive temperature (37°C) for various time intervals, the secretion granules (Sg, Figure 8, 0 
min) observed at permissive temperature (SG, Figure 6) progressively decreased in number and 
soon disappeared. Concomitantly, the networks of Golgi tubules increased in size and lost their 
distensions (Figure 8, 5 min). After 15 minutes, these tubules which formerly were interconnected 
in all directions of space formed arrays of tubular networks parallel to each other (Figure 8, 15 
min). Between 15 and 30 minutes, these parallel elements were less and less perforated and finally 
transformed into stacks of five to eight flattened elements resembling those observed in the Golgi 
ribbon of animal cells (G, Figure 8, 30 min). At later time intervals, the size of the stacks did not 
increase but ER membranes started to accumulate on one side of the stacks and formed large 
reticulated bodies (ER, Figure 8, 60 min) made up of interconnected membranous tubules. Thus, in 
this mutant, segregation of secretory granules was blocked at the end of the secretory pathway. As a 
result, Golgi membranes accumulated to form a continuous system of stacked and interconnected 
flattened elements which on one side was itself continuous with accumulated ER membranous 
tubules. It was therefore postulated that membranes were continuously flowing down and 
accumulated as a result of a block at the distal extremity of the secretory pathway. The 
accumulation of interconnected tubules on one side of the stacked elements further suggested that 
the transition between ER and Golgi was operated by tubulization of usually poorly or non-
fenestrated ER cisternae. 
 

 
Figure 8 

A series of electron micrographs illustrating the modifications of the Golgi networks in a S. cerevisiae sec7 
mutant at various time intervals following a shift to the nonpermissive temperature of 37°C. Sg : secretion 
granule ; G : Golgi stack of unfenestrated elements . At 60 min, the diameter of the meshes of  the endoplasmic 
reticulum (ER) tubular network is almost similar to that of  the Golgi network shown at 0 min . x 70,000. (see plate 3 at 
the end of the book) 

 
 

G 



  4.2 The sec18 and sec23 mutants : tubes or vesicles ? 

 After over one century of work, the morphogenesis and dynamics of the GA are still matters 
of bitter disputes, although a good description of its biochemical functions has become available in 
the meantime. As stated in the introduction, part of this problem may be attributed to the difficulty 
of retaining simultaneously the required spatial resolution and a kinetic view of the secretory 
process. While EM allows proper spatial resolution, the biological specimen is dead. Live cell 
imaging can be achieved by photon microscopy, whose resolution is however insufficient to address 
the controversy.  

 To work around this difficulty, secretion was synchronized in a large population of yeast 
cells by inhibiting protein synthesis and/or by subjecting temperature-sensitive secretory mutants 
(sec18 or sec23) to double temperature shifts. The synchronized secretory events were kinetically 
monitored at the EM by categorizing and counting all membrane-bounded compartments on a 
significant number of cell sections selected at random. Five membrane-bounded structures orderly 
disappeared or reappeared at about the rate of secretory protein flow (Figure 9). 1/ Next to ER, very 
short-lived Clusters of Small Vesicles were the first detectable post-ER intermediates. 2/ Their 
constituent small vesicles were rapidly bridged by membrane tubules in a process that depended on 
the SEC18 gene, giving short-lived tubular Clusters of Small Vesicles. 3/ Fine and 4/ Large nodular 
Networks. 5/ Secretory Granules. Upon relieving a secretory block, each structure successively 
reappeared, seemingly by transformation of the previous one. When no secretory cargo was to be 
transported, these structures were not renewed. They disappeared at least 5 times faster than 
enzymes residing at the Golgi membrane, implying that these enzymes are recycled. 

 

 
Figure 9 

A gallery of yeast secretory membrane-bounded structures. The sec23 mutant strain was shifted for 10 min to the 
restrictive temperature, and returned for 15 min to the permissive one. Cells were fixed and processed for EM. 
Micrographs from 0.1-µm thick sections. Magnification 30,000x. 
 

 This study demonstrated that the yeast GA is at steady-state a continuously renewed set of 
transitory membrane-bounded structures, rather than a permanent entity (Figure 10). The post-ER 
SEC18-mediated fusion event lays the foundation for each element of the apparatus. This element 
then progressively self-transforms, ultimately into a set of secretory granules destined for fusion at 
the plasma membrane. Its birth and death are two fusion events separated by a relatively constant 
amount of time, presumably required to achieve its sequential functions. It is proposed that self-
maturation, among these sequential functions, provides the clock for this constant lifespan. The 
features and the very existence of this GA now appear as consequences of a dynamic equilibrium 
between production and consumption. Perturbing this dynamic equilibrium can reversibly cause 
morphological and kinetic changes. Perturbations thus reveal a rather flexible morphogenesis that 
contrasts with the constancies of the overall lifespan and function. Ultimately, experimental 
suppression of the flow of secretory cargo leads to the total disappearance of the GA, which in a 
way defines it as a dissipative structure. Like many biological structures however, this dissipative 
structure changes with time and even dies, as a consequence of its own internal dynamics. As such, 
it offers a challenging case study for modeling attempts.  

 
 

G 



 
Figure 10 

 
Diagram representing the phenotypes of sec18 and sec23 mutant Saccharomyces cerevisiae cells.  
These drawings are supported by stereo electron micrographs and are meant to reflect the concentrations of some 
endomembrane structures in mutant cells following temperature shifts. Upper left/ Controls grown at the permissive 
temperature of 20°C. There are very few small vesicles. A Golgi element is represented with varying calibers (NN). 
Secretory granules, some still interconnected by tethers, are often located next to the plasma membrane.  Upper right/ 
Mutant cells maintained 10 min at the restrictive temperature of 37°C. Nodular networks have disappeared and 
secretory granules are scarce. On the left (sec23), there is a limited increase in the number of small vesicles, most of 
which actually appear as short tubes. On the right (sec18), there is a large increase of small - generally round - vesicles 
(SV), and of clusters of unconnected small vesicles (CSVm) near ER cisternae.  Lower left/ Cells have been shifted for 
10 min at 37°C and 10 min at 20°C. A group of small vesicles emerge from an ER cisterna (left). Small vesicles within 
clusters are generally connected by tubules (CSVt). Nodular networks of the fine caliber are reforming (bottom). 
Secretory granules are observed near clusters or networks.  Lower right/ Ten min later, nodular networks are more 
elaborate. Secretory granules accumulate in the cytoplasm (SG). Other abbreviations: ER, endoplasmic reticulum; N, 
nucleus; NN, nodular networks; CW, cell wall. 

B. Content sorting coupled to container formation in cell biology: a model 
 Although the morphodynamical aspects of the secretory processes have been emphasized so 
far, minimal molecular aspects will now be introduced, that represent the internal dynamics 
counterpart of the early Golgi morphogenesis. 

1. Scope 

 The present model is described with specific reference to protein sorting from the 
Endoplasmic Reticulum (ER) to the ER-to-Golgi Intermediate Compartment (ERGIC), en route to 
the Golgi apparatus (GA) in the yeast secretory pathway (Figure 11). However, its validity extends 
far past that particular case. Firstly, it extends to all eukaryotic cells: in yeast, plant and animal 
cells, the molecular machineries described below are conserved. Secondly, content sorting coupled 
to container formation is a central and ubiquitous process in cell biology. In fact, it is with a 



different coat (clathrin) that the mechanochemical issues of the upcoming story have been best 
worked out so far. However, it is on the early secretory events described here that the intimate 
relation between the internal dynamics and the global form have been most strikingly demonstrated 
on live material (see above the sec18/sec23 experiments). It means that the exact protein and 
compartment names given below should be considered as indicative, while the molecular  interplay 
is essential. 

 

Figure 11 

Main secretory compartments in yeast. ER, ERGIC and GA are membrane-bounded compartments within the 
cytoplasm. CW, cell wall; ER, Endoplasmic Reticulum : first compartment along the eukaryotic secretory pathway; 
ERGIC, ER-to-Golgi Intermediate Compartment : second compartment; GA, Golgi Apparatus : third compartment, 
includes the isolated secretory granules. Further details may be found in earlier sections. 



2. Model 

2.1. Molecules 

2.1.1. alpha-factor : prototype of the secretory protein. It is a soluble protein that traverses 
the entire secretory pathway before being delivered to the outside medium. It must 
therefore be sorted away from the other ER components in order to move on to the 
GA. �-factor bears a signal for its sorting off the ER. 

2.1.2. BiP : prototype of the resident protein. It is an abundant soluble protein that resides 
in the ER. It must therefore be retained in the ER and sorted away from continuing 
cargo such as �-factor. BiP does not bear a sorting signal. 

2.1.3. Sar1p : prototype of the regulator. It is a cytoplasmic protein that can bind a 
Guanosine nucleotide (GDP or GTP 1) and hydrolyze, albeit inefficiently, GTP into 
GDP (plus one phosphate). It is a "GTPase" that alternates between a GDP- and a 
GTP-bound form. Sar1p is mostly associated with the ER membrane. 

2.1.4. Sec12p : prototype of the nucleator. It is a transmembrane protein that resides in the 
ER membrane, where it serves to initiate the events leading to protein sorting off the 
ER. Sec12p recruits Sar1p on the cytoplasmic side of the ER membrane. Sec12p 
catalyzes the exchange of a bound GDP for a bound GTP on the GTPase Sar1p; i.e. it 
is a "GDP/GTP exchange factor" for Sar1p. 

2.1.5. COPII : prototype of the coat. It is a cytoplasmic protein that is partly associated 
with the ER and ERGIC membranes. It coats these membranes and can exert 
mechanochemical effects on them. COPII can dramatically increase the GTP 
hydrolysis capability of Sar1p; i.e. it is a GTPase Activating Protein ("GAP") for 
Sar1p. 

2.2. Compartments 

2.2.1. ER lumen : soluble compartment in ER, bordered by 2.2.2. �-factor traverses it, BiP 
resides there. 

2.2.2. ER membrane : border of ER. Location for Sec12p. One portion of this membrane is 
where Sec12p is retained: this is the ER export site. The same site is where Sar1p and 
COPII are recruited onto the cytoplasmic face, and where a-factor is recruited on the 
lumenal side. 

2.2.3. ERGIC lumen : soluble compartment of ERGIC, bordered by 2.2.4.�-factor 
traverses it. 

2.2.4. ERGIC membrane : border of ERGIC. 

2.2.5. Cytoplasm : soluble compartment of the cell, where ER, ERGIC and GA belong. 
Another location for Sar1p and COPII. 

                                                 
1 GDP, Guanosine DiPhosphate; GTP, Guanosine TriPhosphate 



2.3. Successive events 

2.3.1. Random fluctuations will at a certain moment gather a hypercritical concentration of 
Sec12p at a certain spot on the ER membrane (Figure 12, step 1). 

2.3.2. This will allow for the recruitment of a corresponding amount of Sar1p-GDP from 
the cytoplasm onto these Sec12p (Figure 12, step 2). 

2.3.3. These Sec12p catalyze the exchange of a GDP for a GTP on each of the recruited 
Sar1p (Figure 12, step 3). 

2.3.4. Sar1p-GTP activity alone leads to the formation of ER-derived tubular domains 
("tubular ER"; Figure 13, step3, & Figure 14) and selectively mobilizes secretory 
proteins such as �-factor into this tubular ER 2 (Figure 12, step 3). 

2.3.5. Hypothesis: additional Sar1p is recruited on the cytoplasmic side of the ER mem-
brane selectively at the spot where �-factor is enriched on the other side. 

2.3.6. Sar1p-GTP then recruits cytoplasmic COPII onto the cytoplasmic face of the tubular 
ER membrane, thus forming a coat on this surface (Figure 12, step 4). 

                                                 
2 What was exactly observed in vitro was the Sar1p-dependent tubulation of saccular ER from animal cells (tubules 
emanating from ER). However, our in vivo data on yeast suggest that ER cisternae first fenestrate into polygonal 
networks, "tubular ER", which later fragment: a COPII mutant such as sec23, i.e. blocked right after Sar1p action, 
readily accumulates unfragmented tubular ER. 



 

 

 

Figure 12 
Successive molecular events of α-factor segregation into a coated area. α-factor and BiP are initially mixed in the ER 
lumen. Step 1: Sec12p molecules gather, thus nucleating an ER export site. Step 2: Sec12ps recruit Sar1p-GDP and start 
exchanging their GDP for GTP. Step 3: Sec12p/Sar1ps recruit α-factor and start recruiting COPII. They induce 
membrane tubulation, symbolized by limited bending. Step 4: COPII has been fully recruited and self-polymerizes into 
a membrane coat. The latter induces scission of the membrane tubules, symbolized by strong bending. (see plate 4 at 
the end of the book) 
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Figure 13 
Successive morphological events from an ER saccule (left) to a fenestrated network of tubules (middle) to a cluster of 
vesicles and short tubes (vesiculo-tubular cluster, right). The arrow numbers roughly correspond with those of Figure 
12. 
 

2.3.7. COPII self-polymerizes into a curved coat, thereby confering a local curvature to this 
particular membrane spot. This results in sectioning the membrane-bounded tubes of 
the tubular ER into a set of shortened, disconnected tubes (Figures 12 & 13, step 4). 

2.3.8. At that stage, �-factor has been tremendously enriched in the resulting new 
compartment by the above process. BiP has not been enriched. 

2.3.9. At a later stage — not within the scope of the present model — the GAP activity of 
COPII will favor the GTP hydrolysis by Sar1p, thereby inducing the uncoating of 
COPII off the newly formed membrane-bounded compartment, ERGIC. One round 
of coating/uncoating is thought to be controlled by one cycle of Sar1p through a 
GDP- and a GTP-bound form. 
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Figure 14 
Construction of a tubular network (dark grey) from a planar saccule by progressive fenestration. Background is light 
grey. This fenestration corresponds to step 3 of the Figures 12 and 13. 
 

3. Crucial point 

 The symmetrical statements 2.3.4 & 2.3.5 are crucial because they provide the causal link 
between content sorting (α-factor) and container formation (Sar1p and its morphogenetic effects). 
Together, they constitute a kind of positive feed-back loop, a virtuous cycle. The exact relevance of 
this positive loop to the causal link is very hard to test at the bench, and could much more easily be 
explored through modeling and simulation. 



4. Significance 

4.1. for the biologist 

 The paradigm of segregating two proteins, initially mixed, into two different compartments, 
sweeps across the entire field of cellular and molecular biology because it is a basic sorting process 
that is involved at all steps in compartmental traffic, secretory or otherwise: for instance in 
endocytosis, with clathrin playing the role of the coat, and membrane receptors playing that of the 
specific content. This topic traditionally drains many bench scientists, and it undergoes a conceptual 
revolution since 1997. 

 In biochemical terms, the question brought about by the symmetrical statements 2.3.4 & 
2.3.5 is that of an auto-catalytic mutual recruitment between secretory protein and coat. As stated 
above, it is very difficult to test this question at the bench. The relevance to the whole process of 
some of the interrelations (described in 2.3) is also questionable. Some of the extensions proposed 
below also bear on controversial questions that modeling/simulation would enlighten too. 
Membrane lipids are not among the actors proposed here, although they likely play a role. 
However, no precise data are available on their role in the described process. 

4.2. for the morphodynamicist 

 The basic model already includes the notion of a membrane curvature, i.e. a dynamic 
structural change. Numerous extensions to the basic model may be considered, including 
pathological (sec7 mutation, Brefeldin A drug, …) or cross-species (see Extension 5.1) variations. 

4.3. for the mathematician or the computer scientist 

 This discursive model provides a good opportunity to work out the interplay between 
models based on differential equations and discrete models based on sufficiently many local actors. 

 It encompasses a possible case of emergence: the local actors (proteins, membrane) are 
endowed with minimal properties, while a global behavior may be observed to emerge (e.g. auto-
catalytic mutual recruitment between content and coat). 

 This model permits to conceptually separate the object (the object is open, one sees its 
internal dynamics) and its interactions with its environment (the object is closed, it is a "black box" 
that interacts).  

 

5. Extensions 

 The general principle of three possible and successive extensions will briefly be outlined 
below, and then commented with respect to evolution. 

5.1. Stacking 

 In S. cerevisiae, the site of ER exit, as defined by the positioning of Sec12p, changes from 
one budding event to the next one. Consequently, the Golgi element that forms is remote from other 
Golgi elements. In contrast, in another budding yeast called Pichia pastoris, the sites of ER export 
are fixed at sites where Sec12p appears to be sequestered (this modifies only statement 2.3.1). 
Hence, consecutive Golgi elements are pushed away from the same site in rapid sequence. As they 



cannot diffuse fast in the very viscous cytoplasm, they consequently tend to pile up where they are 
formed, thus yielding the characteristic stack of Golgi elements. 

5.2. Stabilizing 

 In yeasts, as described earlier, stopping secretory function results in full consumption and 
consequent loss of the Golgi elements. This is not the case in plant and animal cells, where GA 
remnants are observed when secretory function is prevented by various means. The discrepancy 
may be ascribed to the existence in plant and animal GA of matrix proteins that play a role in the 
assembly of Golgi elements and confer to the GA some cohesiveness. In principle, there should 
exist both an inner (lumenal) "glue" to make the lumen a saccule with parallel membranes, and an 
outer (cytoplasmic) "glue" to assemble these saccules in parallel arrays. Both glues may be the same 
molecule, this is irrelevant for our purposes. The essential demonstrated fact is that when the animal 
GA is disrupted, its matrix proteins are still associated to the remnants, whereas its secretory 
content and its membrane enzymes are gone. These matrix proteins would constitute an addition to 
the basic molecular model. They would be activated after the last stage described within the basic 
model, as Golgi elements successively join a stack. 

5.3. Aggregating 

 While plant cells contain a few hundred small GA stacks, an animal cell typically contains 
one (or very few) giant GA. This discrepancy may principally be ascribed to the tethering of the 
animal GA to one type of directed intracellular skeleton called microtubules. This tethering is 
achieved via a microtubule motor that drags the attached membrane along the directed microtubule 
towards the MicroTubule Organizing Center, near one pole of the nucleus. All the small stacks 
aggregate there, which facilitates their fusion into a giant GA 3. Some recent data suggest that the 
stage of Sar1p-coated ER-derived tubules (2.3.4) is already proficient for attachment of the 
membrane to microtubules. 

5.4. Comments 

 As stated above, only animal cells display feature 5.3; animal and plant cells display feature 
5.2; animal, plant and some yeast cells display feature 5.1, while some other yeast species do not. 
These extensions to the model may thus be considered as three successive "inventions" during the 
course of evolution. The first invention of a simple way to stack up the GA precursors paves the 
way to the second invention that stabilizes partially the little stacks. This second invention, in turn, 
opens the possibility of the third invention: gathering the little stacks into a single (or very few) GA. 
In a simplified view, S. cerevisiae, P. pastoris, plants and animals may be considered as 
representing each of these evolutionary levels 4. 

 It is still not clear what process exactly is optimized by these inventions. For instance, 
fragmenting the single GA in animal cells with microtubule-disrupting drugs usually has no 
detectable effect on the secretory kinetics. 

 The second invention is interesting also from an evolutionary viewpoint on hyperstructures 
(see companion Course by Norris et al.). It may be interpreted as the advent of a structural protein 
                                                 
3 The recruitment of microtubules for chromosome segregation during cell division makes them unavailable for the GA, 
which consequently regresses into smaller and inactive fragments. This fragmentation facilitates proper segregation of 
the GA in daughter cells, and is followed by reconstruction of a functional giant GA per cell. Drugs that disrupt 
microtubules also fragment the GA, albeit it remains functional. Thus, GA inactivation during cell division involves a 
further layer of regulation, beyond microtubular interaction and beyond our scope. 
4 This is of course an oversimplification. For instance, plant and yeast cells make use of a different cytoskeleton than 
animal cells to optimize some of their membrane traffic, but they do not use it to aggregate a single GA. 



(the "glue") to stabilize an existing non-equilibrium hyperstructure (Pichia's informal stack) into an 
equilibrium one (plant's stack). 

6. Appendices for the biologist 

6.1. Other known facts 

6.1.1. Grafting the "pro" region of �-factor on ER resident proteins make them leave the 
ER and follow the secretory pathway. 

6.1.2. ER tubule formation is blocked by in vitro incubation with the dominant-negative 
Sar1p-GDP. 

6.1.3. Inhibiting GTP hydrolysis by Sar1p in vitro causes the accumulation of vesicles 
which are functional intermediates of ER-to-GA transport. 

6.1.4. Sec12p fails to be retained in the ER in the absence of Rer1p. 

6.1.5. A yeast sar1 mutant accumulates excess ER membranes. 

6.1.6. SAR1 overexpression suppresses the phenotypic effects of the sec12 mutation and 
results in increasing the soluble cytoplasmic pool of Sar1p. 

6.1.7. SEC12 overexpression results in vitro in making Sar1p dispensable for forming post-
ER vesicles which contain �-factor ! 

6.2. Other extensions 

6.2.1. Distinguish within COPII the individual roles of its components, Sec23p/Sec24p, 
and Sec13p/Sec31p. 

6.2.2. Bring into the picture additional players: Sec16p and Sed4p; Bet1p, Bos1p, Sed5p 
and other SNARES; NSF (Sec18p) and SNAP (Sec17p); p24. 

6.2.3. Consider the recycling of resident ER membrane proteins (Wbp1) and non-
membrane proteins (BiP) that have escaped from the ER. 

6.2.4. Take into account the overlapping localization of GA membrane enzymes. 

6.2.5. Bring into the picture the retrograde transport and COPI coat. 

6.2.6. Model the whole lifespan of a yeast GA, beyond its birth ! 
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Abstract 
 
New concepts may prove necessary to profit from the avalanche of sequence data on the genome, 
transcriptome and proteome and to relate this information to cell physiology.  Here, we focus on 
the concept of hyperstructures in which a variety of types of molecules are brought together to 
perform a function.  The processes responsible for hyperstructure formation include changes in 
enzyme affinities due to metabolite-induction, transertion, and elevated local concentrations of 
proteins and their binding sites on DNA and RNA.  We review the evidence for the existence of 
hyperstructures responsible for the initiation of DNA replication, the sequestration of newly 
replicated origins and for cell division.  We interpret cell cycle progression in terms of 
hyperstructure dynamics.  Finally, we speculate on how a variety of in silico approaches could be 
combined to develop new concepts in the form of an Integrated or Imaginary cell – I-cell – 
which would undergo selection for growth and survival in a world of artificial microbiology. 
 
1 Introduction 
 
Molecular biology and biochemistry have provided a wealth of information about how RNA 
polymerases transcribe DNA into RNA and how ribosomes then translate mRNA into proteins, 
about the nature of those proteins and lipids and form membranes, and about other important 
molecules.  Model organisms such as the bacterium Escherichia coli are invaluable in making 
sense of this information.  The 4.6 Mb genome of E. coli has been sequenced (Blattner et al., 
1997) and was found, at the time, to have 4288 protein-coding genes (cf 5885 in the eukaryote 
Saccharomyces cerevisiae) of which 38% had no attributed function.  But even when all genes 
are ascribed functions, how are we to interpret this information and use it to predict phenotypes?  
The challenge is to understand how cells organise their myriad constituents and processes.  To 
explain how the concept of hyperstructures may help us, here, we briefly review the bacterial cell 
cycle, focussing on the problem of division, and then discuss hyperstructures.  We do this in the 
light of different questions: Why might a hyperstructure language be useful?  What are 
hyperstructures?  How do they form?  How do they interact?  How might they guide cells 
through state space to control growth, adaptation, differentiation and the cell cycle?  We then 
discuss how the hyperstructure concept may help in exploiting the information provided by 
genome sequencing and how it may be tested.  Finally, we advocate the construction of an 
integrated cell, I-cell, as a new approach to the study of biological complexity. 
 
2 The bacterial cell cycle 
 
The principal events in the bacterial cell cycle include: 
 
• Initiation of chromosome replication from a single origin of replication 
• The sequestration of newly replicated origins of replication 
• Chromosome separation 
• Chromosome segregation 
• Cell division 
• Inactivation of the division site 
 
In the case of cell division, it is still not clear how this event is timed, positioned and coupled to 
other events.  The earliest known protein to act in E. coli is the tubulin-like FtsZ which migrates 
from the cytoplasm to a mid-cell location on the membrane where it assembles into a ring-like 
structure and where it recruits other division proteins.  What lies upstream of FtsZ?  Is it yet 



another protein or is it something else?  We have shown that FtsZ can interact directly with 
phospholipid membranes in the absence of other proteins  (Alexandre et al ., 2001).  This is 
consistent with a major role for membrane dynamics in the regulation of the cell cycle as is the 
finding that membrane domains around the chromosomes differ from the domain at the future 
site of division  (Fishov & Woldringh, 1999), this latter presumably being related to the large 
domains of cardiolipin observed at the division sites and poles  (Mileykovskaya & Dowhan, 
2000).  
 
The constraints on a solution to the division problem for E. coli are that the division site must be:  
 
• in the right place – midcell – to give daughters of similar sizes  
• between chromosomes to avoid producing a DNA-less cell 
• formed at the right time in the cycle – perhaps to give the right DNA/mass ratio?  
• formed at the right rate – to avoid, for example, cells getting bigger and bigger  
• of the right nature – to allow membranes to curve and fuse whilst controlling ion and lipid 
fluxes 
 
It is in the context of trying to find a solution to this problem that we present hyperstructures. 
 
3. Why invoke a hyperstructure language?  
 
Cells survive and sometimes grow by somehow orchestrating millions of molecules of thousands 
of types to adapt to the environment and to proceed through the cell cycle.  This entails cells 
solving the combinatorial problem of negotiating the immensity of state space since if each gene 
in E. coli were in either an on (transcribed) or an off (untranscribed) state, there would be 24000 or 
101200 on-off patterns of gene expression (Kauffman, 1996).  But there is more than this, there is 
also the epigenetic trap – cells in a population should not all have the same phenotype (else, for 
example, a single catastrophe would be more likely to wipe them all out).  Exploring state space 
effectively boils down to: How can cells be both efficient and robust?  We argue that the answer 
is that cells rely on an intermediate level of organisation – hyperstructures. 
 
4. What are hyperstructures?  
 
There are two sorts of hyperstructures: 
 
• Non-equilibrium hyperstructures are large structures of diverse molecules – genes, mRNAs, 
proteins, ions, lipids – that depend on a flow of energy/material for their existence.  These 
hyperstructures are assembled to serve a specific function and are disassembled when no longer 
functional (Figure 1). 
• Equilibrium or quasi-equilibrium hyperstructures are large structures that are not dependent on 
a flow of energy for their existence.  They are not assembled or disassembled according to 
whether they are required to serve a function.  Our discussion of equilibrium hyperstructures will 
be very limited here. 
 
Examples of possible non-equilibrium hyperstructures include: 
 
An initiation hyperstructure responsible for starting the initiation of replication of the 
chromosome.  This hyperstructure contains the DnaA protein and certain of the sites on DNA to 
which it binds (Norris et al., 2001).  DnaA is the key protein in initiation in E. coli and binds to 
9mer TTA/TTNCACA and 6mer AGATCT sites present in the origin of replication and in 



certain replication-related genes (Speck et al., 1999).  DnaA polymerisation (Weigel et al., 1999) 
and a fluid, acidic, membrane domain  (Castuma et al., 1993; Fralick & Lark, 1973) are required 
for DnaA to be active in initiation. 
 
A replication hyperstructure comprising the protein SeqA plus the key enzymes in DNA 
replication along with the genes that encode them (Norris et al., 2000).  SeqA sequesters newly 
replicated origins of replication and prevents them from being used more than once within a 
substantial portion of the cell cycle (hence preventing a flurry of initiations when a single 
initiation signal is given).  SeqA is found in clusters (Onogi et al., 1999).  It binds to GATC 
sequences and it polymerises. 
A cell division hyperstructure comprising the 10 or so division proteins (including FtsZ) plus 
enzymes involved in peptidoglycan synthesis together with the genes that encode them, many 
located together in the dcw cluster at the 2 min position on the chromosome (Buddelmeijer et al., 
1998; Norris & Fishov, 2001).  
 
Other hyperstructures include a DNA compaction hyperstructure possibly involving MukB 
which can form foci (Ohsumi et al., 2001); a nucleolus-like hyperstructure responsible for 
ribosome synthesis and assembly (Lewis et al., 2000; Woldringh & Nanninga, 1985); a 
chemotaxis hyperstructure comprising chemotactic receptors such as Tsr with the kinase CheA 
and the transducing protein CheA (Bray et al., 1998; Stock & Levit, 2000) plus, we propose, the 
genes encoding these proteins.  Factors in the formation of possible hyperstructures for transport 
and glycolysis (Mitchell, 1996; Norris et al., 1999; Velot et al., 1997) are discussed below. 
Examples of possible equilibrium hyperstructures: 
 
These include immiscible domains within the condensed chromosome.  This immiscibility occurs 
in the context of an ordered liquid, with the DNA closely layered by a regular twist (Bouligand & 
Norris, 2001), a situation that may minimize entangling and facilitate co-expression of the genes 
within a domain.  Our discussion of equilibrium hyperstructures will be very limited here. 
 
5. How do non-equilibrium hyperstructures form?  
 
There are several complementary possibilities: 
 
5.1 Metabolite-induction 
 
The idea is that: 
 
• Non-equilibrium hyperstructures form when the cell is actively engaged in processing 
substrates and disappear when they are not  
• These hyperstructures include enzymes in the same pathway and their genes 
• Formation of certain of these hyperstructures may involve an interplay between diffusion in 2-
D and 3-D in the sense that enzymes confined to domains in the 2-D membrane interact with 
other enzymes or groups of enzymes diffusing in the 3-D cytoplasm (Figure 1) 
 
The evidence consistent with this scenario has been advanced for the existence of metabolons 
which are assemblies of the enzymes that act in succession in a pathway (Velot et al., 1997).  Of 
course, such metabolons may themselves associate into larger hyperstructures.  In the case of 
secretion, substrate binding promotes assembly of the 3 components of the ABC exporters of 
Gram negative bacteria e.g. in Erwinia chrysanthemi the substrate (protease) binds to PrtD (an 
ABC protein) which then binds to PrtE (membrane fusion protein) and which binds to PrtF (outer 



membrane protein) (Letoffe et al., 1996).  In the case of glycolysis, the glycolytic pathway can 
be extracted as an equimolar complex of 1.65 megaDa that reveals compartmentation of 
substrates (Mowbray & Moses, 1976).  In the case of import, sugar-specific phosphotransferase 
system permeases consist of EIIC and EIID in the membrane and EIIA and EIIB in the 
cytoplasm; EIIA is phosphorylated by HPr in a reaction catalysed by EI with phosphate from 
phosphoenolpyruvate; E2s+E1+HPr probably form a complex (Norris et al., 1999).  The idea 
here is that successive enzymes in the same pathway can be activated to bind to one another in a 
vertical organisation.  A complementary idea is that a single species of enzyme can be activated 
to oligomerize by substrate (Torshin, 1999); indeed, the full enzymatic activity of 
glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate mutase and enolase – all 
glycolytic enzymes – results from their association.  Again, this horizontal organisation could 
help nucleate and stabilise hyperstructures (Figure 2).  
 
5.2 Local concentrations 
 
The phenomenon of oligomeric proteins binding to specific sites on DNA has been invoked to 
explain the operation of the lac and lambda repressors (Revet et al., 1999).  It might also be 
invoked to explain the sequestering of newly replicated origins of replication by the protein SeqA 
(Onogi et al., 1999).  There are variations of this theme with, for example, the possibility that 
proteins such as the histone-like protein HU, which binds to both RNA and DNA (Balandina et 
al., 2001), could play important roles (see below and Figure 3). 
 
5.3 Transertion 
Transertion is the coupled transcription, translation and insertion into and through membranes of 
proteins.  The cytoplasmic membrane is composed of a wide variety of lipids and proteins so, if 
these proteins have lipid affinities, small proteolipid domains form.  High rates of transertion 
may create a critical density of inserted nascent proteins that is sufficient for small proteolipid 
domains to fuse into large ones and so nucleate hyperstructure assembly (Norris, 1995) (Figure 
4).  For example, it might be supposed that the high density of transertion of the ATP synthetase 
components, which have lipid affinities (Arechaga et al., 2000; Ksenzenko & Brusilow, 1993), 
should result in assembly of an ATP synthesis hyperstructure.  
5.4 Translated mRNA is protected from RNases and enzymes in metabolons are protected from 
proteases  
 
It has been suggested that enzymes in complexes are more likely to escape the attention of 
proteases than when those enzymes are not in complexes (Miller, 1996).  An extension of this 
idea is that the partitioning of enzymes into a hyperstructure protects them from proteases 
(providing the latter are excluded from the hyperstructure).  Hence an enzyme which has been 
assembled into a hyperstructure because of its activity is thereby preserved (i.e. active enzymes 
are preferentially protected).  A similar argument is that mRNA translated within a 
hyperstructure could be preferentially protected from RNases on the outside of the 
hyperstructure. 
 
6. How do hyperstructures interact?  
6.1 Shared lipid affinities creates shared membrane domains  
 
It can be argued that proteins with lipid preferences may congregate with those lipids in a 
positive feedback fashion to form the membrane domain part of a hyperstructure (see 5.3 
Transertion).  Similarly, it might be expected that hyperstructures characterised by enrichment 
for a particular lipid would also tend to associate. 



 
6.2 Shared binding proteins create shared cytoplasmic compartments 
 
The idea is that certain abundant proteins may participate in the assembly of several different 
types of hyperstructures.  This would enable a synergy whereby the progressive formation of a 
group of hyperstructures responsible for a set of functions would aid the recruitment of other 
related hyperstructures fulfilling complementary functions.  Candidates for these proteins include 
the DNA-binding proteins IHF, FIS, and HU (for references see (Ussery et al., 2001)).  IHF can 
modulate the transcriptional activity of promoters by influencing the looping of upstream DNA; 
the consensus site of IHF binding, YAACTTNTTGATTTW, lies within many repetitive 
extragenic palindromic sequences.  FIS binding to upstream regions can enhance the 
transcription of highly expressed genes; the consensus for the FIS binding site is weak with 
estimates of its numbers ranging from 6 to 68000.  HU binds to DNA with no evident sequence 
preference and, in so doing, influences the interaction of regulatory proteins with their specific 
sites on the DNA (Bonnefoy & Rouviere-Yaniv, 1992); HU also recognizes certain specific 
structures of both DNA and RNA with very high affinity and, for example, binds to the mRNA 
for RpoS (Balandina et al., 2001; Kamashev & Rouviere-Yaniv, 2000).  In addition, there are 
over a 100 known activators and repressors of transcription in E. coli (Ouzounis et al., 1996) and 
it may be expected that these will control the synthesis of certain oligomeric proteins important 
in the assembly of different – but complementary – hyperstructures.  
 
6.3 Shared codon preferences  
 
There are strong compositional asymmetries in codon and amino acid usage depending on the 
orientation of the genes with respect to DNA replication and on the nature of the proteins 
encoded.  This has led to predictions of different compartments for the syntheses of different 
proteins (Danchin & Henaut, 1997). 
 
6.4 Water preferences 
 
Water exists as species with different structures and chemical properties that affect the 
distribution and activity of cellular constituents (Robinson et al., 1999; Wiggins, 1990).  An 
important but difficult question is the extent to which the water preferences of the constituents of 
hyperstructures might determine hyperstructure formation and interaction. 
6.5 Oscillations/vibrations 
 
The Min system, which is involved in the selection or inactivation of the division site, oscillates 
with a periodicity of around 1 minute in E. coli (Raskin & de Boer, 1999).  There are numerous 
oscillatory processes in eukaryotes of which the oscillation of protons and of NAD(P)H in 
neutrophils is particularly exciting (Petty & Kindzelskii, 2001).  Such oscillations are candidates 
for playing global as opposed to local organising roles.  Relating them to the dynamics of 
hyperstructures is a problem that has still to be addressed. 
 
7. Cell division 
 
The regulation of cell division can now be considered in terms of the dynamics of 
hyperstructures.  It has been argued that one of the functions of the bacterial cell cycle is to 
generate daughter cells with different phenotypes since this would allow the population to both 
explore all the possibilities for growth offered by the environment and be ready for a sudden 
catastrophic change (Norris et al., 2001; Segre et al., 2000).  In this scenario, during the run-up to 



initiation, the mass to DNA ratio increases and certain hyperstructures become ‘stronger’ by 
attracting ever more of the cell’s resources (such as the transcriptional and translational 
apparatus) whilst other hyperstructures are weakened and disappear (Norris et al., 2001)(Figure 
5).  This results in a drop in the diversity of hyperstructures, some of which release DnaA as they 
dissociate, a DnaA-initiation hyperstructure forms, and replication of the chromosome begins.  
Now suppose that short FtsZ polymers are associated with glycolytic and other hyperstructures 
so that FtsZ is effectively sequestered (noting that, at least in eukaryotes, tubulin is associated 
with glycolytic enzymes (Lloyd & Hardin, 1999)).  This leads us to consider two possibilities.  
One is that the FtsZ-sequestering hyperstructures are temporarily disrupted by chromosome 
replication to release FtsZ which can then participate in division.  The other, complementary, 
possibility is that the changing activity of the phosphotransferase system/glycolytic 
hyperstructure directly leads to its own disassembly (for example, its capacity might exceed 
demand and lead to feedback inhibition) and releases FtsZ.  This would be consistent with the 
advance in divisions in synchronous cultures of E. coli induced by addition of the non-
metabolisable, glucose analogue α-methylglucoside (Fishov, 1994) and the delay in divisions 
induced by transfer to a rich growth medium (Kepes & Kepes, 1985). 
 
Before trying to put it all together, we should bear in mind that, all else being equal, the rates of 
transcription of two copies of the same gene diverge if this gene is –vely regulated in trans but 
+vely in cis (Norris & Madsen, 1995).  The –ve regulation in trans could result from a repressor 
diffusing through the cytoplasm to each separate stretch of DNA whilst the +ve regulation in cis 
could result from an RNA polymerase transcribing a gene making this particular stretch of DNA 
accessible to another polymerase.  This leads to the conclusion, surprising for many 
microbiologists, that two identical chromosomes in the same cytoplasm (which contain many 
such genes) therefore have different patterns of gene expression.  The same argument can be 
made in terms of hyperstructures: a set of genes is expressed from one chromosome to form part 
of a hyperstructure; this assembly involves positive feedback between the constituent ions, lipids, 
proteins and nucleic acids since as the density of one constituent in a region increases, the 
probability increases that the density of another constituent will also increase.  In the context of a 
cell in which hyperstructures compete for existence (that is, negative regulation in trans), the 
result is a highly structured, asymmetric cell in which each future daughter cell has a different set 
of hyperstructures associated with it and these sets differ in their composition of lipids, ions, 
water structures, proteins, mRNA and expressed genes (Figure 6).  At present, it is difficult to 
discriminate between the different ways in which the principal proteolipid domains around the 
chromosomes could create a division site (red, dotted arrows in Figure 6).  In one scenario, the 
site would simply consist of the interface between the two domains whilst in the other scenario, 
the site would consist of a distinct domain between the principle two domains.  There are, of 
course, permutations of these possibilities.  The essence of our proposal is that hyperstructure 
dynamics could achieve: 
• separation of chromosomes during replication 
• differentiation of both chromosomes and membrane 
• the right place for a site to attract and activate division enzymes (between the chromosomes) 
• the right time for the creation of a division site (after chromosome segregation) 
• the right nature for a division site - a potential non-bilayer 
• coupling between replication, segregation and cell division 
• a calcium flux (down the concentration gradient) 
• orchestration of membrane-activated kinases, proteases etc. 



8. The advantage of organisation at the level of hyperstructures 
 
It has been observed that the difficulty of administering a laboratory is proportional to the square 
of the number of members of the laboratory, N2 (Bok, 1983).  This difficulty, D, is reduced if the 
individuals are put into N1 groups such that D equals the square of the number of groups (to 
reflect group interactions) plus the square of the number of individuals in each group N0

2 (to 
reflect interactions within groups) times the number of groups:   
 
D = N1

2+(N0
2)N1 

 
Hence D = (N/N0)2+(N0

2)N/N0 
 
And D = N2/N0

2+N0N 
 
To minimise D, 
 
δD/δN0 = -2N2/N0

3+N 
 
Hence the difficulty is at a minimum when  
 
N0

 = (2N)1/3 

 
This formula helps to give us a feel for the numbers of hyperstructures that may exist in a cell.  
Just considering proteins, for example, a bacterium containing of the order of a million 
interacting proteins would be expected to have around a hundred hyperstructures.  The existence 
of this intermediate level of organisation therefore means that the problem of generating a limited 
number of coherent phenotypes that are adapted to survival and/or growth is greatly simplified.  
Navigation through the immensity of state space becomes a choice between 100 or so 
hyperstructures rather than 4000 plus genes – 2100 on-off combinations rather than24000.  To 
generate a coherent phenotype, for example, enzymes appropriate for growth in cold oxygenated 
conditions should not be synthesized in the same cell at the same time as those for growth in hot 
anaerobic conditions.  Coherence can be achieved because cells can manage the relatively few 
common factors required to bring together a particular set of hyperstructures.  The existence of 
hyperstructures also allows, we speculate, bacterial cells to regulate DNA replication and cell 
division so as to create heterogeneous populations that can both grow and survive unexpected 
challenges.   
 
9. Using the hyperstructure concept to exploit sequence data 
 
Of the numerous in silico approaches possible, we focus here on cellular automata which are 
used to model many physical and biological phenomena (Vichniac, 1984).  Once the units that 
constitute the automata have been assigned initial states, the evolution of these states can then 
depend on both the previous history of the state and on the state of neighboring units.  Hence, 
cellular automata can be particularly suitable for modeling the dynamics of interactions between 
molecules in 3 dimensions.  We now use cellular automata to illustrate how they might be used 
to model the effects on hyperstructure assembly of the following: 
 
9.1 Metabolite-induction 
 



To determine the values of the parameters governing the formation of hyperstructures in bacteria, 
we have constructed a preliminary version of a cellular automaton program (with features of 
multi-agent systems) that simulates the dynamics of the localization of the PTS and glycolytic 
enzymes in both a 2 dimensional membrane and a 3 dimensional cytoplasm (Le Sceller et al., 
2000).  Each unit volume represents a 10nm*10nm*10nm cube in a cell that can have a 
maximum volume of 200*200*200 unit volumes or 8µm3.  This is more than sufficient to 
represent E. coli which in certain growth conditions has a volume of 2 cubic microns.  Each 
cubic unit volume in the membrane is surrounded by 8 other unit volumes and each unit volume 
in the cytoplasm is surrounded by 26 others.  At each time step, all enzymes are considered in a 
random order.  Each can move into a free neighboring unit volume.  In this preliminary study, 
there was a structuring of both membrane and adjacent cytoplasm and hyperstructures were 
generated containing up to 500 enzymes.   
 
9.2 Transertion 
 
To model the anchoring effect of transertion on nascent proteins (Figure 4), a proportion of the 
PTS Enzymes II (for example) could be permanently confined in silico to a patch of the 
membrane.  An important parameter may therefore be the area over which these proteins are 
inserted.  It is not easy to obtain this area experimentally with current techniques (but see the 
NanoSIMS below).  However, this may be an instance when the simulation reveals whether 
hyperstructure formation is very sensitive to the area of transertion and therefore whether energy 
should be invested in performing the relevant experiments.   
 
9.3 Lipid preferences 
 
The cosegregation of proteins with the lipids for which they have pronounced affinities is a 
potent way to produce domains.  This process may be simulated in the ‘membrane’ of cellular 
automata given these affinities.  Below (10.3), we suggest a series of experiments  that could lead 
to consensus sequences for lipid binding and hence a way, ultimately, to convert sequence 
information into the ‘lipidome’ and facilitate the simulation of the distribution of all membrane 
proteins. 
 
9.4 Local concentrations 
 
Using cellular automata to model local concentrations might exploit knowledge of DNA-binding 
proteins and their sites providing DNA can also be introduced into the model.  One way to 
achieve this would be to divide the chromosome into chunks comparable in size to proteins.  
Each chunk would be constrained in its diffusion by a function inversely proportional to the 
distance between the chunk in question and another chunk.  It may also prove necessary to make 
efforts to model reptation, the constrained movement of polymers in a crowded solution. 
 
9.5 DNA distribution 
 
DNA curvature, flexibility and stability have been analysed for 18 fully sequenced bacterial 
genomes (Pedersen et al., 2000).  This reveals many significant structural features including a set 
of 20 regions with identical and extreme structural properties that are proposed to function as 
topological domain boundaries.  These features are presumably related to the properties of 
proteins such as HU (see 6.2) which binds preferentially to unusual structures such as kinked or 
cruciform DNA (Bonnefoy et al., 1994; Kamashev & Rouviere-Yaniv, 2000).  The challenge is 
to translate this information into a dynamic 3-D model taking into account that much of the DNA 



is probably in a cholesteric form.  One model that might be tested via cellular automata (as in 
9.4) is that HU both binds to these curved regions and self-associates such that curved regions are 
stacked at the edges of twisted liquid crystalline regions.  In such a model, the terminus region, 
which has high curvature, low flexibility and low helix stability (Pedersen et al., 2000), might be 
expected to exhibit a distinctive packing. 
 
9.6 Parallel approaches  
 
In an activity-based vision of the cell, only a subset of its constituents is important in determining 
the phenotype of the cell at any one time (Norris, 1998). This subset comprises those constituents 
that are active where active is considered to mean being transcribed for a gene, being translated 
for a mRNA, and catalysing a reaction for an enzyme.  Belonging to this active subset requires a 
competition between constituents that were active in the previous time period (the status quo 
factor) and constituents that act in synergy with one another (the coherence factor). 
 
In this section, we describe a new implementation of cellular automata or units based on the 
related idea that only a few unit volumes are potentially active, that is either contain a molecule 
or a have a neighbouring unit containing a molecule.  The advantage is that memory is not 
needed to store these empty units.  This leads to a time and memory efficient approach for 
computing the successive generations of the units.  The overall state of the system is determined 
by the content of all the units at a given time.  Computing the next generation means determining 
the new state of the system after the application of all the local rules to each unit.  This process 
must not depend on the order the units are examined and, ideally, each unit is treated 
independently of all the other units.  The standard way to represent the 3-D space is to use a array 
of structures to address each unit that often contains only a number.  Using this method, it is easy 
to determine the neighbourhood of a unit by a simple transformation of its coordinates, and then 
access the array to get the values of the neighbouring units.  The major drawback is that we must 
store all the units, even the empty ones. 
 
In our approach, we also represent the space by a three coordinate system, but we store in the 
computer memory only the active or potentially active units (i.e. those that are filled or next to 
filled units).  This reduces the memory cost and allows us either to reduce the size of each unit to 
have a more accurate simulation, or to simulate a larger space. 
 
The potentially active cells are stored in a hash table which allows a very fast access time, 
comparable to the access time of a 3-D array, if a good hash function is used along with an 
adapted strategy to resolve collisions.  This low cost implementation of the state of the system 
can be used to reduce the time used to compute each generation if an extra cost is paid by 
duplicating the representation of the space: the local rules are applied to each active unit using 
the values from the first, current space and the result is stored in the second, new space. After all 
the units of the first space have been processed and the second space is complete, the second 
space becomes the current space and the next generation can be computed.   
 
Since the current space is only accessed for reading values whilst the new space is only accessed 
for writing results, the current space can be freely accessed by multiple processes without 
synchronisation.  The new space can be split into parts that can be computed separately on a 
multiprocessor with a consequent dramatic reduction in computation time.  Each process requires 
its own part of the current space but also acts on a surrounding layer of single units in the parts 
treated by other processes.  Since each process only accesses the part of another process at the 
boundary, each part can be stored locally in a multi-computer networked environment.   



 
In the 12 by 12, 2-D example (Figure 7), process P1 only needs to access the first 7 lines (0 to 6) 
of the current space to compute the first 6 lines of the new space, while process P2 needs to 
access the last 7 lines (5 to 11) of the current space to compute the other half of the new space. 
Since there is no read/write conflict between P1 and P2 no synchronization is needed.  This is 
another advantage of the inherent parallelism of this implementation. 
 
9.7 Hyperstructure movements and reactions 
 
Interactions between hyperstructures are proposed to result in a pre-divisional cell with one set of 
hyperstructures in one half the cell and a different set in the other half.  Such sets of 
hyperstructures may be formed on the basis of common lipids, ions, binding proteins and/or 
water properties.  Movements of hyperstructures are nicely illustrated by the SeqA-replication 
hyperstructure that, during the cell cycle, goes from a single focus to two foci that then migrate to 
the one-quarter and three-quarter positions (Ohsumi et al., 2001; Onogi et al., 1999).  To model 
how interactions between hyperstructures might lead to redistribution of hyperstructures within 
the cell, we consider a cellular automaton model in which several hyperstructures can be 
represented simultaneously in a coarse-grained way (so that the units are bigger than single 
macromolecules).   
 
The idea presented in this section entails providing local rules to reproduce molecular reaction 
and diffusion using cellular automata.  The difference between our approach and typical reaction-
diffusion processes is that the molecule concentration (in a specific position) is boolean: true if 
there is a set of molecules, false if there are none.  One of the simplest systems has only one type 
of molecule on a 2-D grid (environment ).  Focusing on a particular molecule and its 
neighbourhood, it is clear that a unit plus the 8 adjacent units is a square of side 3 units.  If we 
suppose that the molecule can move or stay in the same place, the molecule will have 9 possible 
positions (Figure 8).  With cellular automata, the state of a unit depends on its neighbourhood.  
Thus, a local rule must be used to determine whether a unit in the 2D-grid becomes true (has 
molecules) or false (is empty).  The idea is to invert the arrow direction in the previous figure. 
Thus, if an empty cell is adjacent to one filled cell, it has a probability of 1/9th to become filled.  
We can apply this to any neighborhood. 
 
Given a unit in a 2D-grid, the probability of the unit to become true (filled) is p = n / 9 where n is 
the number of filled units into its neighbourhood.  More generally, for a dim-dimensional 
environment (a grid of dimension dim), the probability of one cell to become true is: 
 
     p = n / N        (1) 
 
where N = 3dim.  Figure 9 shows the results of this local probabilistic rule (rule 1) with a 60x60 
grid at three different times. 
 
To construct a multi-molecule hyperstructure, the next stage consists in putting together different 
types of molecules.  In this case, the value of a unit is not a boolean but an integer included 
between 0 and nb (number of types of molecule).  In this way, rule (1) becomes  
 
p0 = n0 / N 
p1 = n1 / N 
p2 = n2 / N 
... 

(2) 



pnb = nnb / N 
 
where ni is the number of molecules of type i into the neighborhood and N = 3dim into the dim-
dimension grid. An empty cell is of type 0. 
 
To choose the future type of a cell among all the possibilities, we consider a real random number 
A bounded by 0 (included) and 1 (excluded). The decision rules are the following: 
 
if A ∈ [0, p0[ then the considered cell is of type 0 
if A ∈ [p0, p0+p1[ then the considered cell is of type 1 
... 
if A ∈ [p0+p1+...+pnb-1, p0+p1+...+pnb[ then the considered cell is of type nb. 
 
Figure 10 shows the results of this local probabilistic rules with a 60x60 grid at three different 
times and for two types of molecule. 
 
To study hyperstructures containing many different molecules that can perform chemical 
reactions, we allow two different molecules to react to produce another type of molecule:  
 

moli + molj → molk     (4) 
 
 
To do this, we add the following simple rule (5) to rule (3): 
 
 
if the considered cell is of type i (resp. j) and the type chosen thanks to rule 3 is j (resp. i) then 
the cell will have the type k (according to rule 4) 
 
Figure 11 shows the evolution of the system in a 60x60 grid at three different times, for two types 
of molecule and that react together according to rules (4) and (5) to produce a third type of 
molecule.  
 
To observe the formation of and interaction between hyperstructures, we introduce the notion of 
affinity between molecules.  In our example (Figure 12), molecules of type 1 are activated and 
can therefore bind one another. Molecules of type 2 and 3 have similar behaviours.  Moreover, 
molecules of type 1 can react with molecules of type 2 to produce molecules of type 3.  Figure 12 
shows fluxes of molecules leading to the formation of a hyperstructure: 
• Molecules of type 1 come from the top of the cellular automata and bind together 
• Molecules of type 2 come from the bottom of the cellular automata and bind together too 
• Molecules of type 1 react with molecules of type 2 to produce molecules of type 3 
• Molecules of type 3 bind together and with molecules of type 1 and type 2. 
 
10 Experimental aspects 
 
10.1 NanoSIMS 
 
Visualizing hyperstructures directly with conventional techniques has been difficult since it 
requires the co-localization of such disparate elements as proteins, mRNA, genes and lipids at the 
50 nm scale.  In secondary ion mass spectrometry, a section of biological material is subjected to 
a beam of ions that pulverizes it to release secondary ions that are filtered by mass spectrometry 

(3) 

(5) 



to allow an image to be obtained [Thellier, 1993 #1084].  Recent developments in NanoSIMS 
technology are very promising since the new generation of machines provides resolution at the 
scale required and allows detection of isotopically marked probes to proteins and nucleic acids.  
This opens up the exciting possibility of studying hyperstructures by imaging simultaneously 
both nucleic acids and up to 10 different proteins at a resolution intermediate between light and 
electron microscopy. 
 
10.2 Optical waveguide lightmode spectroscopy (OWLS) 
 
In the case of glycolysis, we lack details of the exact abundance of proteins such as 
phosphoglucose isomerase, fructose -1,6-P2 aldolase, triose-P isomerase, glyceraldehyde 3-
phosphate dehydrogenase A complex, and phosphoglycerate kinase.  Although we can obtain 
these via radioactive labeling and 2-D gel electrophoresis, there are attractive, recent techniques 
such as those based on isotope-coded affinity tags (Gypi et al., 1999).  More seriously, we lack 
details of the constants of affinity of the PTS and glycolytic enzymes.  These could be obtained 
using OWLS in experiments with purified proteins and substrates (Ramsden, 1993).  By 
introducing and removing the substrates, it may also prove possible in these experiments to 
estimate the period of time for which an enzyme remains active (i.e. has a higher affinity 
constant) once its substrate has gone (Ricard et al., 1998). 
 
10.3 MALDI-MS and ES-MS 
 
We are presently using sensitive techniques of mass spectrometry to explore the possibility that 
concomitant with overproduction of a membrane protein is a compensatory overproduction of the 
lipid for which it has an affinity (Arechaga et al., 2000).  If this approach is successful, a semi-
automated, general strategy might be developed in which bacteria are transformed with plasmids 
each containing a different peptide (from a random library);  the idea is to obtain thousands of 
colonies, each containing lipids resulting from the overproduction of a particular peptide.  Mass 
spectrometry and sequencing would then match lipids and peptides.  The data would be used to 
try to derive consensus sequences to be used to interpret the genome and construct a ‘lipidome’. 
 
10.4 Atomic Force Microscopy (AFM) and the Langmuir-Blodgett technique 
 
Langmuir-Blodgett monolayers of phospholipids, which assemble at the air-water interface, 
followed by transfer to a solid support and inspection with AFM, provide a powerful 
combination of techniques for studying FtsZ interaction with membranes and may constitute the 
beginnings of an in vitro division system (Alexandre et al., 2001).  The characteristics of the 
lipids used along with the values of parameters obtained for factors that interact with FtsZ, such 
as calcium, GTP and other division proteins, might be used to try to construct an in silico model 
of the division process. 
 
11. I-cell 
 
Developing new concepts may prove essential to a full understanding of how a cell works.  To 
test and develop such concepts, we advocate the construction of an Integrated or Imaginary cell 
– I-cell – which would undergo selection for growth and survival in a world of artificial 
chemistry (Dittrich & Banzhaf, 1998).  The unit volumes that constitute an I-cell would be 
inspected at each time step and, according to the molecule(s) found, the appropriate entry would 
be consulted in a table containing a large number of ‘biological’ functions (Norris & Le Sceller, 
2001).  These functions would determine the interactions of the molecule with its neighbours and 



also, via global functions, with distant molecules.  The I-cell would be fed according to different 
regimes and, depending on the functions implemented, would grow and eventually divide; I-cells 
would be analysed after selection over several generations.  Combinatorial problems would be 
reduced if an activity-based vision of the cell were adopted in which only a subset of constituents 
would be consulted at each time step; this subset would correspond to constituents that play an 
active role in coherent cell states via a mechanism based in part on global functions and termed 
competitive coherence (Norris, 1998).  An I-cell might, for example, offer a way to discover the 
importance of a particular organising process, for example, one based on water structure or 
tensegrity.  An I-cell might even be used to see whether new laws of complexity emerge as the 
number of organising processes in the system increases. 
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Figure 1 (see plate 6 at the end of the book) 
 
Formation of a non-equilibrium hyperstructure due to changes in the affinity of its constituent 
enzymes for one another.  Enzymes E1 can only diffuse in the plane of the membrane whilst the 
other enzymes, E2 to E7 diffuse in the cytoplasm.  The binding of a substrate, such as a sugar, to 
the E1 enzymes leads to an increase their affinity for one another and their assembly into an E1 
domain.  On binding its substrate, each enzyme in the pathway acquires an increased affinity for 
the following enzyme.  This results in the assembly of metabolons E1 to E7 and the assembly of 
the hyperstructure (here, a group of metabolons).  Note that transcription of the genes encoding 
E1 to E7 and the simultaneous translation of the mRNA may help the assembly of the 
hyperstructure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 (see plate 5 at the end of the book) 
 
Horizontal links aid the assembly of a hyperstructure.  Oligomeric protein E3 may bind together 
two identical metabolons (E1-E5 to E1-E5) or two different ones (E1-E5 to F1-F5).  In the 
former case, E3 plays a role in the assembly of an individual hyperstructure whilst in the latter 
case E3 plays a role in the interaction between two different hyperstructures. 
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Figure 3 (see plate 7 at the end of the book) 
 
Local concentrations of oligomeric proteins can promote hyperstructure assembly.  Protein E6 
binds to its site (green) present in DNA or RNA to produce a region of the cytoplasm enriched in 
both E6 and its sites. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 (see plate 8 at the end of the book) 
 
Transertion can nucleate hyperstructure assembly.  Transertion, alias the coupled transcription, 
translation and insertion into and through membranes of proteins, may enrich a region of the 
membrane in the lipids (green) for which the proteins have an affinity.  At a critical density of 
inserted nascent proteins, small proteolipid domains fuse into large ones and so nucleate 
hyperstructure assembly.   
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Figure 5 (see plate 10 at the end of the book) 
 
Cell cycle progress as a state cycle of hyperstructures.  Rectangles represent non-equilibrium 
hyperstructures each performing one function. Blue rectangles correspond to hyperstructures 
with a common set of lipid (or other) preferences whilst red rectangles correspond to 
hyperstructures with a different set of preferences.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 6 (see plate 9 at the end of the book) 
 
The spatiotemporal control of cell division by hyperstructures.  The hyperstructures (the green or 
blue polygons) form one of two sets depending on the common preference within a set for lipids, 
ions, proteins etc.  Each set is associated with a chromosome and is present in the future daughter 
cell.  The division site is in the cytoplasmic membrane (thin rectangles) at the interface between 
these sets indicated by the arrow.  Two possibilities for the structure of the division site (red 
arrows) which may be between the principal domains (blue and green) at either the interface or a 
separate, specific domain (red). 
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Figure 7 
 
A two process example of parallel processing.  Since each process does not need to access the 
space of the other one (except the boundary of the current space), each part can be stored locally 
in a multi-computer networked environment.  The boundary of each part is the only information 
to be shared (i.e. transmitted between the computers).  
 
 
 
 
 
 
 
 
 
 
 
Figure 8 
 
Movement on a 2-D grid.  A molecule at time t can choose between 9 positions at time t+1. a 
molecule at time t can choose between 9 positions at time t+1. 
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Figure 9 
 
Diffusion in a cellular automata system.  Empty units are black and filled units are yellow.  States 
at successive times (t=0, 10 and 100) are shown. 
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Figure 10 (see plate 11 at the end of the book) 
 
Diffusion of 2 types of molecule in a cellular automata system.  States at successive times (t=0, 
10 and 100) are shown 
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Figure 11 (see plate 12 at the end of the book) 
 
Diffusion of 2 substrates and a product in a cellular automata system.  Molecules of type 1 and 
molecules of type 2 interact to produce type 3.  At time t=0, there are only 2 types of molecules, 
type 1 (yellow) and type 2 (light blue).  At time t=3, type 3 (dark blue) appears 
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Figure 12 (see plate 13 at the end of the book) 
 
Formation of a hyperstructure compound with 3 types of molecules.  At time t=5 and t=20, 2 
simple molecular structures develop.  Molecules of type 1 are at the top and molecules of type 2 
are at the bottom of the cellular automata.  At time t=50, the two structures meet and produce 
molecules of type 3.  Then, at time t=100, a hyperstructure with 3 types of molecules appears. 
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Résumé 
 
L’existence de modifications épigénétiques commence à être admise en biologie, mais il 
n’existe pas de consensus quant à leur nature.  Nous présentons ici quelques évidences 
concernant  l’utilité d’un point de vue dynamique et de la notion de multistaionnarité, à 
travers un exemple pris en microbiologie. Cela permet de souligner l’importance des 
circuits de rétroaction positifs, et de présenter  l’utilité de la méthode d’analyse logique 
généralisée pour  les modéliser. 
 
Mots clef : épigenèse, multistationnarité, circuits de retroaction, analmyse logique 
généralisée. 
 
Abstract 
 
Biologists now accept the existence of epigenetic modifications, but are divided as to their 
possible nature. Here we discus the interest of using dynamical concepts such as 
multistationarity, through an example in microbiology. This gives an insight into the 
importance of positive feedback circuits. Generalized logical analysis as a handy tool to 
model these circuits is presented. 
 
Keywords : epigenesis, multistationnarity, feedback circuits, generalised logical analysis  
 
The word epigenesis was first coined by Harvey as long ago as 1651, to describe the 
gradual formation of the  different parts of an embryo. But a new meaning emerged when 
modern genetics developed the notions of genotype and phenotype. Epigenetic 
modifications arise and can be transmitted from a cell to its progeny in the absence of any 
genetic or environmental modification. They may be triggered by an environmental signal 
but do  not disappear with this signal. This means that several stable phenotypes  may arise 
from the same genome in the same conditions, which is equivalent in biologist’s 
terminology to the physicist’s statement that there exists multiple steady states [1]  

Numerous cases of epigenetic modifications are known and epigenesis meetings are 
held to increase their number and try and understand their nature. However, most « 
epigeneticits » are interested in chemical mechanisms among which DNA methylation was 
most thoroughly studied.  We shall see here that the use of the concepts issued  from the 
study of non linear dynamical systems, such as multistationarity, and positive feedback 
circuits, may also help understanding at least some aspects of epigenesis and open quite 



new prospects. Although not yet very popular, these ideas are not new however, since as 
early as 1949, Delbrück [2]  already proposed to ascribe differentiation to a 
multistationarity process.  And the first well established epigenetic modification that can 
best illustrate the interest of using the concept of multistationarity, involves the catabolism 
of lactose by Escherichia coli   [3] .  

Epigenesis and the lactose operon: importance of a positive feedback circuit.  
The experiment was reported by Novick and Wiener in the famous journal 

“Proceedings of the National Academy of Sciences US” [4].  Lactose utilisation by the 
bacterium E. Coli  had been studied for some time in the Pasteur Institute. It was known 
that lactose catabolism required both an enzyme (the β-galactosidase) that degrades lactose 
and a permease that facilitates its penetration into the cells. Both proteins were not 
synthesised by the bacteria unless lactose, designated hence as the “inducer” of this 
synthesis, was present in the culture medium. Novick and Wiener evidenced an epigenetic 
modification when the bacteria were grown in the presence of a low concentration of 
lactose, which was not sufficient to induce the synthesis of the two proteins. However if the 
cells had been  previously induced (by a high concentration of lactose in the medium, but 
for as short as 10 minutes), they could synthesise the proteins in the presence of the low 
lactose concentration for (at least) 150 generations. Thus the phenotype of the  same 
bacteria with regard to the production of  β-galactosidase, was different in this culture 
medium (with a low concentration of lactose) depending on whether they had or not 
experienced during 10 min, 150 generations ago, a high concentration of lactose. This is a 
wonderfully simple but quite typical epigenetic modification. And the consequences are not 
trivial. It means that the phenotype of this extremely well known bacterium, whose genome 
has been fully sequenced, is still not predictible, when the bacteria are in a medium 
containing a low lactose concentration if the history of the culture is not known!  

Now, as everybody knows, the mechanism of the induction by lactose of the 
synthesis of the proteins required for its metabolism was unravelled by Jacob and Monod 
[5], who were awarded the Nobel prize for their now famous “operon model”. Fig 1 depicts 
the mechanism as it is established now. In the absence of lactose a negative regulator, 
protein LacI, which is always produced due to the constitutive expression of gene lacI , is 
active and prevents the expression (transcription followed by translation) of three genes 
including gene lacZ encoding the β-galactosidase, and lacY, encoding the lactose permease. 
In  the presence of lactose, a derivative of this sugar (allolactose) has a high affinity for 
protein LacI and provokes an allosteric modification of this protein that looses its affinity 
for the promoter of the operon, which can thus be transcribed. When there is no more 
lactose, protein LacI resumes its active conformation, and the synthesis of the enzymes is 
rapidly interrupted. But how does lactose enter inside the cells? When the external 
concentration is high, it can diffuse through the cell wall, but this process is not sufficient at 
low lactose concentration. This explains why, in general, bacteria cannot be induced by low 
lactose concentrations.   

Let us now go back to the Novick and Wiener experiment. At low lactose 
concentration, the cells cannot be induced, but pre-induced cells have produced a permease 
that allows lactose transport into the cells even at low concentration! So all that is to the 
epigenetic behaviour is that the permease allows the entrance of lactose that allows the 



synthesis of the permease etc…From this simple fact, arise all the properties of epigenesis: 
the phenotype (with regard to β-galactosidase synthesis) depends on the history of the 
culture, a short pulse of a high concentration of lactose (or a transitory removal of lactose) 
suffices to change one of the phenotype into the other, and there is  hysteresis, since the 
concentration required to induce the culture is much higher than the concentration below 
which the cultures is “de-induced” (fig 2).  

All these properties are those of a bistable system, a  non linear dynamical system 
with two steady states. And all these properties result from the fact that the lactose 
permease promotes its own synthesis under low lactose concentration, that is, lactose 
permease is part of a positive feedback circuit.  

Now, if you will agree that epigenetic modifications are plenty in the living world, 
the main question to ask is how useful to the understanding of epigenesis are these two 
concepts, multistationarity and positive feedback circuits, that we have borrowed from the 
physicists and the engineers. But for this we shall borrow one more tool, from the 
mathematicians now, logical analysis. 

One additional tool: logical analysis. 
Another epigenetic modification was discovered shortly after the first one, and its 

study as a dynamical non linear system was to yield a major advance. It still involves the 
bacterium E.coli, and a virus (phage λ) endowed with a very special behaviour. When 
phage λ  meets a population of bacteria of the species E.coli some of the cells are infected 
as with every ordinary (virulent) phage and eventually lyse, but some cells  do not lyse, and 
become immune to a further infection by phage λ.  It was shown that the phage’s DNA has 
inserted into the bacterium genome, at a specific location. The cell has become lysogenic, 
and the phage’s DNA is termed “prophage”. A negative regulator  (CI)  produced from the 
phage‘s genome is responsible for the inability of this DNA to express its lytic functions, 
and is positively self regulated [6], forming a positive feedback circuit . Thus, the same 
phage’s DNA, entering the same bacteria can bestow two completely different states. 
Genetic studies have unravelled the genes responsible for this phenomenon (fig 3a), but not 
the reason of the “choice”. 

René Thomas was a well known geneticists working in the field of phage λ,  when 
he became aware that logical analysis (or Boolean algebra), was likely to help solve this 
question. First of all, geneticists consider that genes are On or Off, and that the 
corresponding proteins are present or absent. This is a binary approach just as Boolean 
algebra is. And the reason is that the regulatory interactions between genes and proteins are 
steep sigmoïds in most instances. Therefore, it is possible to express the  (non linear) 
dynamics of a regulatory system in term of Boolean equations, in which X,YZ are functions 
that roughly corresponds to the order given to the corresponding genes by the regulatory 
proteins, x, y, z..  

X (t+1) = f (xt,yt,zt), etc… 

Where variables and functions have only the values 0 or 1. Fig 3b shows the 
Boolean functions corresponding to the (simplified) regulatory scheme of the early steps of 
phage λ  infection. Solving these equations shows that the system has indeed two steady 



states, corresponding to the regulator CI being present or absent (respectively the prophage 
and the virulent phage states). It shows that a model that simulates the phage’s infection as 
a non linear dynamical system can predict the two steady states, but does not give any new 
insight into the system.  

The main advance was performed when Thomas took into account the fact that in 
the living system, when a protein regulates two genes there is no reason why it should do it 
at the same speed. In the synchronous Boolean approach, if a state 00 is followed by a state 
11, this state is obtained in a single step. In the asynchronous analysis proposed by Thomas 
[7,8,9,10], state 00 is followed either by 01 or by 10, and the probability of having one or 
the other answer is a function of the speed with which each state is reached.  If, in a 
population, both speeds are roughly equal, then both states will occur and the population 
will be heterogeneous; why one individual will reach one state rather than the other will 
depend on the actual speed of the reactions in this individual. Fig 3c shows the results of 
this asynchronous analysis in the description of the phage’s infection. Now it is possible, 
not only to simulate the existence of two steady states, but to propose explanations 
amenable to experiences [11]  

Thus, on the one hand a positive feedback circuit, in a non linear dynamical system, 
is (again) responsible for the existence of an epigenetic phenomenon; on the other hand, the 
utilisation of a mathematical model able to simulate this non linear dynamical model 
allowed the authors to propose an explanation of the choice, and new experiments to 
ascertain it.  

Logical analysis is by no mean the only way to model non linear dynamic systems. 
Differential equations are most often used, and give the same qualitative results and better 
quantitative estimations. Asynchronised logical analysis, or the more recent generalised 
analysis [12,13] is most useful however when quantitative data are lacking, as it most often 
the case with genetical data which are mainly  qualitative (see also [14,15]). 

Epigenesis, feedback circuits and models. 
In these two quite different examples of epigenetic behaviour, a positive feedback 

circuit turned out to be the “motor” of the multistationarity. From this, and many other more 
theoretical studies, Thomas conjectured that a positive feedback circuit could be a necessary 
(although not sufficient) condition for multistationarity in a non linear dynamic system [1]. 
This was later on partially demonstrated mathematically [16,17, 18, 19]. In addition the 
number of steady states  does not depend on the number of elements in a circuit, but on the 
number  of circuits in the system (n circuits give 2n steady states). 

The consequence of this statement are very important  for biologists, since it means 
that an apparently quite complicated system may be explained by a very limited number of 
causes, and that feedback circuits may be of paramount importance for this [3,20]. The 
discovery of these feedback circuits requires analytical studies such as are routinely 
performed in modern biology. But once evidenced, it may be worth studying the dynamics 
of the system (either by generalised logical analysis, or by differential equations if 
possible), mainly if an epigenetic behaviour can be suspected. Thus numerous feedback 
circuits are already known in the regulatory nets of all living systems. But very few 
biologists have questioned their role or even wonder whether they really work. This comes 



from the fact that this dynamic approach has long been ignored, or even denied by 
biologists.  

Some other epigenetic modifications 
But feedback circuits  or epigenetic modifications are not restricted to genetic 

networks. Cell differentiation that occur during development of an egg to an organism can 
be viewed as an epigenetic modifications of the two daughter cells [21],  and studies are in 
progress to find positive feedback circuits responsible for these modifications. Thus, 
Kaufman  and Thomas [22] analysed the role of circuits in the evolution of lymphocytes 
populations, and Sanchez et al, [23,24] performed an analysis of such circuits during early 
development of the Drosophila embryo.  

Other properties have been briefly outlined with the Novick and Wiener experiment. 
In this system, the bacteria “remember”, after 150 generations, that they have experienced a 
10min exposure to a high concentration of lactose. This has been summarised by an 
hysteresis curve (fig 2). An other consequence of this hysteresis, is that a very short pulse of 
lactose can shift the non induced population of cells growing in low lactose concentration, 
into an induced population, and conversely, a rather short removal of lactose may shift the 
induced population to the non induced state. Thus some aspects at least of memory may 
also be due to positive feedback circuits in the information retention by plants, as well as in 
memory itself [25,26] . 

Finally, with phage lambda we have exemplified yet another important behaviour in 
biology, the heterogeneity of a population of genetically identical cells or organisms, may 
be of epigenetic origin and stems from a positive feedback circuit.  

Thus, an important new field in functional genomics may arise. Whenever 
epigenesis is suspected in a biological system, it may be worth looking for the feedback 
circuits in which some at least of the elements of the system are involved, at all possible 
levels of regulation. Then models should be run to know which circuit may be responsible 
of the epigenetic behaviour, using either generalised logical analysis, or differential 
equations, if data are sufficient. Last but not least, experiments must decide [27, 28], and a 
good model must lend itself to experimental validation (Cf Bernot et al, this book). 
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Figure 1 : the lactose operon : simplifies cartoon summarizing the regulation. 
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Figure 2 Hysteresis of the lactose induction curve 
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Figure 3  regulation of the early steps of phage lambda infection. (from Thomas 1979) 

a) logical graph of phage lambda early regulation (simplified) and the corresponding logical 
equations 

ρ, α1,  α2 represent the products of regulatory genes cro, cII and cI respectively, and r, a1 
and a2 are the functions associated, (roughly, the expression of the corresponding genes). 
An arrow indicates a positive regulation, whereas a negative regulation is noted as a -. AND , 
OR,, are  the logical operations. 

b) State table corresponding to the logical equation 

c) Pathways in the asynchronous logical description. 
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1. Introduction 
The key role of the coupling between mechanical forces and tissue growth and 

remodelling was suggested nearly twenty years ago (Trinkhaus, 1984), especially in the field 
of bone formation and remodelling. However, it is only recently that a large body of 
experiments highlighted the effects of physical forces such as tension, compression, gravity or 
shear stress at the cell level (Edwards et al., 1999; Huang and Ingber, 1999; Kaspar et al., 
2000). Indeed, direct application of mechanical stresses to cultured cells can induce or modify 
cell differentiation, growth and migration as well as gene expression (Fujisawa et al., 1999; 
Wang et al., 2000; Meyer et al., 2000). However, we do not still fully understand how 
individual cells perceive mechanical signals and orchestrate them to produce a particular 
behaviour, both individually and collectively, through the control of cooperative phenomena 
at the cell population or tissue levels. 
In some sense, the “cell challenge” is to sense all kind of signals but to generate a single, 
integrated response. Among these different cell signalling mechanisms, mechanotransduction, 
i.e. the conversion of a mechanical signal into a biological or biochemical response, has a 
kind of special status (Wang et al., 1993). Indeed, it already relies on the global structural 
characteristics of cells as opposed to biochemical events which can occur locally, for example 
near the cytoplasmic membrane or within an intracellular organelle. Mechanotransduction  is 
why the development of theoretical cytomechanical model of the living cell is crucial : it 
provides the only way to understand how many simultaneous extracellular mechanical inputs 
(adhesion to extracellular matrix (ECM) proteins, junctions with other cells, …) combined 
with heterogeneous mechanical properties (local softening or hardening of the cytoskeleton) 
are integrated with other stimuli to provide a specific physiological or pathological cellular 
response (Lelièvre et al., 1996; Janmey, 1998). 

We will briefly explore here some of these theoretical models, with special emphasis 
on the cell tensegrity paradigm proposed by D.E. Ingber (1993; 1997). Alternative 
cytomechanical models based on a simple elastic or viscoelastic continuum or stressed 
submembranous cortex will also be presented. Two issues will be presented. The first deals 
mainly with modelling the architectural  properties of the cytoskeleton (CSK) as a physical 
basis for analysing both the mechanical properties  of cells and the different way mechanical 
forces are transduced to yield an integrated cell response. The second is more concerned with 
cellular dynamics and related morphological changes since CSK remodelling is one of the 
intracellular factor controlling gene expression. Both presentations are based on the 
conviction that modelling how cells dynamically stabilise and self-organise their structure and 
shape is essential if we are to understand how cells sense their physical microenvironement  
and respond to mechanical signals through in/out bi-directional signalling pathways that 
connect the plasma membrane to the nucleus. 

After reviewing the main aspects of both discrete and continuous mechanical models 
of cells, this paper ends with some propositions for testing a virtual, integrated cell model. 
These will be discussed in connection with the concepts, possibilities and limitations offered 
by research programs on computational cells such as Virtual Cell and Electronic cell. 



  

 

2. Discrete mechanical cell models 
 
2.1. Cells as tensegrity structures 
 

Since the eighties, D. E. Ingber and coworkers have promoted and architectural view 
of the living cell and of larger biological entities based on the concept of tensional integrity or 
tensegrity, according to which the structure of cells depends on tensile forces for its integrity 
(Ingber, 1993 ; 1997). As explain by Ingber, this proposition draws on a close analogy with 
the architectural principles developed for the construction of buildings by R. B. Fuller and K. 
Snelson, as exemplified by geodesic domes and later discovered as underlying the 
organization of viral capsids. 

It seems worth emphazing in this introductory paragraph that the holistic approach 
proposed by Ingber has deep conceptual implications. First, it again drew attention to the need 
for unifying principles necessary to interpret the plethora of biological data successfully 
collected by a reductionism that cannot explain them on its own. Second, it strengthened the 
view of biological systems as non-linear systems with functions that are more than the sum of 
its parts. 

How is a tensegrity system defined? According to Ingber and Jamieson (1985) “ A 
tensegrity system is defined as an architectural construction that is comprised of an array of 
compression-resistant struts that do not physically touch one another but are interconnected 
by a continuous series of tension elements”. At the cell level, the tensegrity framework 
proposed by D. E. Ingber is based on several initial assumptions.  

The first assumption is that cell shape is stabilized by an internal mechanically active 
structure, the cytoskeleton. This assumption excludes both theoretical models treating the cell 
as a viscous fluid surrounded by a membrane, as well as mechanical models treating the CSK 
as a passive structure. Indeed, it is well-documented that living cells (and even non-muscle 
cells like endothelial or fibroblasts) can generate active tension through an actomyosin 
filament sliding mechanism similar to the one used in the contraction of smooth muscles. This 
is easily visualised, either at the cell level by the wrinkling of malleable substrata by cells 
(Dembo et al., 1996 ; Dembo and Wang, 1999), or at the population level via measurements 
of isometric tension or compaction rate of viscoelastic biogels (Kolodney and Wysolmersky, 
1992; Eastwood et al., 1996). This internal contraction capability creates within the cell a 
prestress upon which external mechanical loads are superimposed. Tensegrity cell models 
have thus been developed by considering elastic and contractile actin microfilaments as 
tension elements and microtubules as compression-resistant elements (Wang et al., 2001).  

The second assumption is that forces are not transmitted continuously across the cell 
but rather that transfer of mechanical loads and stresses take place at points where the cell is 
anchored to the extracellular matrix (ECM) and to neighbouring cells. Indeed, the cell anchors 
itself to the ECM by physically binding CSK elements to specific focal adhesion complexes 
(FACs) that cluster within localized adhesion sites. Such complexes include not only 
transmembrane proteins, mostly integrins, but also a scaffold of actin-binding proteins (talin, 
vinculin, α-actinin, paxillin, …) which form a molecular bridge between the CSK and the 
intracellular part of the integrin. Similarly, specific cell-cell adhesions molecules (CAMs), 
like cadherins, selectins, cathenins, …) insure the transmembrane coupling of neighbouring 
cells CSK at localised junctional sites (adherens junctions, desmosomes).  

Cellular architecture seen in this way defines a mechanical network that provides a 
physical support to biochemical signal transduction pathways and that allows mechanical 
signals to be propagated from mechanoreceptors on the surface (in the form of cell adhesion 
molecules and transmembrane receptors) to targets deep within the cell. 



  

 
2.2 Qualitative behaviour of cell tensegrity models 
 

Some basic, qualitative properties of cell tensegrity models have been illustrated by 
Ingber and co-workers by constructing a physical structure made of multiple wood dowels 
interconnected with a series of elastic springs (Ingber, 1997). This “cellular toy” has 
interesting properties: if it is not subjected to an external force and if not attached to a rigid 
surface, it has a round shape because of the internal tension. However, it can spread out and 
flatten along a rigid surface if an external force is applied vertically. Moreover, if the toy is 
attached to a flexible surface while in its flattened configuration, and if the external force is 
then removed, the toy contracts spontaneously and returns to the round shape characteristic of 
its rest state, again because of the presence of internal tension. This relaxation is accompanied 
by a progressive wrinkling of the flexible substratum which closely mimicks the formation of 
wrinkles observed when living cells are cultured on malleable substrates like silicon rubber. 

Simulations of tensegrity via the construction of virtual cells may eventually prove 
indispensable to understanding how the cell interprets its genome. In this context, an 
additional and particularly interesting feature of models of cellular tensegrity is their ability to 
fit naturally into a structural hierarchy. One can then include within such virtual cells smaller 
intracellular structures with their own mechanical properties. Of course, the cell nucleus is the 
first candidate. The nucleus has its own internal structure, the nuclear matrix, and a body of 
experimental findings are consistent with the nucleus being mechanically coupled to the rest 
of the cell. For example, when a cell spreads on a rigid substratum, its nucleus extends in 
parallel, even if some delay can be observed in migrating cells. The tensegrity model explains 
how the nuclei of living cells can respond directly to mechanical stimuli that are applied to 
specific surface receptors as those involved in cell adhesion. It thus provides a basis to 
understand how extracellular mechanical stimuli can modify gene expression through 
mechanical deformations of the nucleus (Maniotis et al., 1997). 
 
2.3. Theoretical properties of cell tensegrity models. 
 

Different theoretical studies have been undertaken to analyse the mechanical 
properties of cell tensegrity models. A minimal tensegrity structure composed of 6 
compressive elements (bars) and 24 extensible elements (cables) with frictionless joints has 
been analysed by Stamenovic et al. (1996). This study was extended by Wendling et al. 
(1999) who investigated wether such a pre-stressed geometric structure could account for the 
stiffening response observed in living cells. They showed that, under large deformations, the 
tensegrity structure exhibits a non-constant stiffening response which depends on the loading 
conditions (extension, compression or shear). They further demonstrated that, although the 
Young’s elastic moduli of each constitutive element stays constant, the apparent elastic 
modulus of the overall structure, the apparent elastic modulus of the overall structure does not 
stay constant. 
They analysed the deformation of the 30-element cell tensegrity model governed by the 
constitutive equation : 

 F } { = K[ ]  u }{  
 
which relates the vector of external forces {F} to the vector {u} defined by the displacement 
(distance between the deformed and the reference state) of each of the 12 nodes through the 
rigidity matrix [K] of the structure (cables and bars are assumed to be linearly elastic with 
Young’s modulus Ec and Eb respectively, with Eb>>Ec) . The external forces are applied at 
three upper nodes of the structure, while the contact of the structure with the inferior plane 



  

occurs through three fixed nodes : this latter condition is chosen to simulate a weak cell 
adhesion of a round cell onto a rigid substratum. 

At the unloaded (reference) state, mechanical equilibrium results from the balance 
between pre-stretching stress in the cables and in the bars. For the different loading 
conditions, the tensegrity model response is analysed by considering the apparent elasticity 
moduli derived from the stress-strain relation ship. With reference to continuous material, 
apparent elasticity modulus Es and shear modulus Gs of the tensegrity structure have been 
defined as the derivative of the polynomial functions fitting the apparent normal and shear 
stresses to the apparent normal and shear strains respectively.  

The numerical simulations of the tensegrity model response to extension and 
compression exhibit a non-linear mechanical response, characterised by linear relationship 
between the apparent elasticity modulus and the apparent strain. The modulus increases with 
strain during extension and is thus associated with a strain-hardening behaviour of the 
structure. On the contrary, a strain-softening occurs under compression, with decreasing 
values of the elasticity modulus as strain increases. This behaviour is qualitatively preserved 
when the length of the elastic elements or their pre-stress is changed by several orders of 
magnitude. Application of shear stresses lead to a more complex response, with initial stress-
softening followed by stress-hardening. 

This study illustrates how the response of the CSK of the living cell to applied stress 
might be a property of an integrated system and not a characteristic of individual components 
: even if each component of the tensegrity structure exhibits independently a linear elastic 
response with constant elastic moduli, the integrated response is non-linear with apparent 
elastic moduli that are strain-dependent. Such behaviour is related to the re-orientation of 
stresses which, even applied locally, are spatially distributed through the myriads of 
interconnected filaments composing the CSK. Evidence for such stiffening response of cells 
comes from several different, biological experiments. Moreover, these experiments provide 
additional information on the mechanical response of intracellular components such as the 
cell nucleus.  
 
2.4. Simulation of virtual cell models : the example of physically based 
computational models 
 

Despite the virtues of the tensegrity model, it should be noted that it cannot explains 
certain dynamic features of the CSK such as its remodelling. We briefly reported here a 
recently developed computational approach that provides an alternative way for simulating 
the mechanical response of virtual objects modelling living cells (Promayon et al., 2002) and 
that could be more extensible. This approach is inspired by the physically based 
computational framework proposed for simulating the respiration movements of the human 
trunk (Promayon et al., 1996 ; 1997). Based on algorithms operating within an object oriented 
programming language, this approach is able to take into consideration dynamic changes of 
objects properties and shapes. In this modelling framework, cells are considered as three-
dimensional elastic bodies submitted to internal cohesive forces as in the tensegrity approach. 
In addition, external attractive forces (gravity, chemo-attraction, …) are also considered as 
possible control factors of the virtual cell dynamical features.  

The virtual cell we have constructed within this framework is defined as a 3D 
incompressible object.  From a computational point of view, this virtual cell is considered as 
an entity with its own properties (elasticity, contractility,…) and history (interactions with 
other cells or ECM, …). To simplify the calculations, a cell is defined by a 3D closed surface 
represented by a triangular mesh and its associated contour nodes.  

Dynamical cell shape changes occur as a response to various forces (gravity, locally 
applied mechanical loads, …) applied to each node of the mesh. The dynamic of the local cell 



  

response is then determined by the mass initially assigned to each node. Since mass-spring 
networks are known to be rather unstable systems, cell elasticity properties have been 
modelled by defining a local shape memory (Promayon et al., 1996). This means that the 
elastic property of a cell object is simply its ability to recover its original shape once 
deformed. This property is modelled by defining a local shape coordinate system in which 
each node of the structure is defined relatively to its neighbours by three parameters. 

Some applications of this physically based computational approach are given below. 
First, as with tensegrity models, the mechanical response of specific cell architectures can be 
analysed. For example, one can simulate the effect of different intracellular organisation of 
the CSK which can mimic specific orientation of cell stress fibres. Figure 1 shows the 
simulated influence of transverse links within an elastic discrete envelope when the cell is 
submitted to uniaxial compression. The cell0 is defined as a strict elastic discrete envelop, 
with no internal links. In cell1, we considered a reinforcement of the cell architecture with 
horizontal elastic cross-links modelling CSK fibres. Finally, cell2's architecture includes 
internal diagonal elastic links connecting the apical and basal physical cell surfaces. 

 

 
Figure 1 : Influence of the "cytoskeleton" of the virtual on the mechanical response to 
vertical load. Three cell types are considered: no "cytoskeleton" (cell0), horizontal 
links (cell1), diagonal links (cell2). The first raw presents the initial 3D shape of each 
cell prototype. For a given fixed value kelas of the elasticity modulus of each cell 
object, the second raw in the figure indicates the equilibrium state which is reached 
when a vertical loading force Fc is applied on the 5 (cell0 and cell1) or 4 (cell2) 
nodes marked with arrows.. 

To make a closer comparison with real cells, we consider a virtual cell 
devoid of internal elastic links. This provides a model of living cells like 
human erythrocytes, where the cell membrane is entirely responsible for the 
elastic deformation of the cell, the inner cytoplasm being only viscous. The 



  

relevance of this modelling approach with regard to real experiments is 
illustrated in figure 2 where optical tweezers experiments of Henon et al. 
(1999) to deform nearly spherical erythrocytes have been simulated. In the 
experiments, a force F is exerted on two silica microbeads which are stuck to 
the erythrocyte membrane in diametrical position. By slowly incrementing the 
distance between the two trapped beads, an increasing stress is applied to the 
cell membrane. To simulate this experiment, a force Fs has been locally 
exerted on two opposite nodes of the physical cell membrane, pulling them 
apart. The simulation parameters are the elasticity of the cell, i.e. kela and the 
modulus of Fs. Fig ZZZ shows that kela could be approximated to that the 
modelled cell: the real erythrocyte have the same behaviour. 

 

 
 

Figure 2 : Simulated virtual spherical red blood cell (RBC) suspended in an hypotonic 
solution. Optical tweezers double trap is simulated by exerting locally  a force Fs on 
two opposite nodes of the cell object contour (upper insert). The variation with load of 
the cell object diameter D(Fs) in a plane perpendicular to the loading direction is 
simulated and compared to experimental data published by Henon et al. (1999) With 
appropriate scaling of the force, one can adjusted the parameter kelas such that the 
experimental mechanical response of RBC can be nicely fitted in the linear elastic 
regime. Increasing the elasticity modulus kelas induces a stiffer response which 
qualitatively reproduces the departure from the linear regime at larger traction forces.  



  

The microplate experiments of Thoumine et al. (1997 ; 1999 ; 2000) can also be 
simulated in a similar fashion (Sauvaget, 2001) (Fig. 3). Experimentally, the adhesion of a 
fibroblast is realised between two glass microplates, one of them being slightly flexible. The 
mechanical of the cell response to stretching is measured. To qualitatively simulate these 
experiments, a cell object was defined as a two-region object: a virtual plama and nucleus 
membranes, both of them being represented by triangulated surfaces. Each node of the 
membrane is elastically linked to its neighbours as well as to the corresponding node in the 
other membrane. Microplates are modelled by two circular rigid objects attached to the apical 
and basal part of the external membrane, one of them being translated vertically. The 
corresponding shape of the virtual cell and nucleus at equilibrium is shown in figure 3 right. 

 

 
 

Figure 3: Simulated stretching of a virtual cell and 
its "nucleus" which mimics microplates 
experiments. Left : rest shape of the two 
embedded structures. Right : simulated cell and 
associated nucleus deformations. 

 

 
 
For large amplitude deformations (hyperelastic behaviour),  a non-linear mechanical 

response of the virtual cell could be observed. This property indictaes that, as observed with 
the cellular model of tensegrity of Ingber and col , the global mechanical behaviour of this 
virtual cell is not the sum of its individual component responses. Further developments are 
needed to analyse the theoretical properties of such a virtual cell, especially with regard to 
mechanical properties exhibited by continuous finite elements models. However, the 
simulation of the microplates experiments reported here illustrates the capability of this 
approach to deal with multi-scale dynamical phenomena. For example, it is also possible to 
simulate cell population behaviours such as tissues (figure 4) or cell interactions during cell 
migration (Promayon et al., 2002)  
 

 
Figure 4 : Simulated contraction of an elastic substratum by a virtual adherent fibroblast linked to this 
extracellular film by localised "focal contacts"  



  

3. Oscillating cellular deformations and continuous virtual cell models 
 

The existence of a mechanical continuum within the cell means that oscillatory 
deformations could occur and affect gene expression. We therefore review some of the 
theoretical models proposed for analysing and modelling oscillations in cell shape. Each of 
them highlights a particular biophysical process as the central mechanism responsible for cell 
shape changes. Nevertheless, the common theme is that all the interactions considered are 
integrated into a single response, namely an oscillation of cellular protrusions. 

It has been shown for a long time that living cells change their shape by extruding and 
remodelling different types of membrane protrusions. Filopodia are finger-like protrusions of 
the plasma membrane while lamellipodia are sheet-like protrusions associated with 
Filamentous actin (F-actin) network . It was once generally believed that the cell membrane 
fluctuates without any particular direction in space and without any particular coherence in 
time. However, recent progress in cell imagery techniques and cell images analysis has 
revealed  the organised dynamics of cell protrusions (Germain et al., 1999). For example, 
Killich et al. (1994) have reported the existence of different organize patterns of 
morphological changes in the amoebae Dictyostelium discoideum. Ehrengruber et al. (1995) 
show that neutrophils undergo periodic cytoskeletal rearrangements that lead to cycles of 
shape change with period of 8-10s that is associated with sinusoidal oscillations of F-actin. 
Different hypotheses have been proposed to explain the formation of cellular protrusions. 
These hypotheses have considerable implications for our understanding of intracellular 
signalling and theoretical models of the types reviewed here are essential tools in the testing 
and refining of such hypotheses. 
 
3.1. Cortical F-actin solation/gelation models. 
 

In the early eighties, Oster and Perelson (1985) proposed a model of lamellipodial 
motion based on the physical chemistry of actomyosin gels. The model consists of a sheet of 
cytogel attached to the substratum by elastic tethers. The rhythmic activity of extending and 
retracting lamellipods is assumed to be driven by alternating phases of solation and gelation 
of the cortical actomyosin gel respectively. This phase transition is controlled by intracellular 
levels of calcium which is stored in intracellular compartments and which is released into the 
cytoplasm; this release is under the control of mechanisms that operate in a complex, non-
linear (autocatalytic) fashion known as the calcium-induced calcium release mechanism 
(CICR). In Oster and Perelson's model, raising levels of free intracellular calcium 
concentration activate solation factors which disrupt the F-actin gel network.  Factors such as 
gelsolin or severin can either break the actin chains themselves or break the cross-links 
between the chains or induce a depolymerisation of the chains. Such breakdown induces the 
swelling of the gel up to a point where the swelling pressure is balanced by elastic resistance 
of the network.  

One important aspect of this non-linear process is that calcium also triggers the 
actomyosin contractile machinery. There is thus a defined range of calcium concentration 
where contraction occurs. In addition to the CICR mechanism quoted above, it is clear, 
regarding non-linear systems theory, that the cell has all the physical and biochemical 
ingredients needed to induce spontaneous self-sustained oscillations above some critical 
threshold. The trigger is assumed here to be an initial leak of calcium at the leading edge of 
the cell membrane. Leaking can be induced by the bindings of extracellular factors to 
membrane receptors or by a mechanical stimulus exerted at adhesion site, with associated 
possibly accompanied by a modification of ion channels. 



  

3.2. Intercalation of actin monomers : the Brownian ratchet mechanism 
 

Peskin et al. (1993) formulated a theory to account for the force generated by the 
polymerisation process itself when the filaments are rigid. They proposed that the addition, 
below the cell membrane,  of G-actin monomers at the end of F-actin growing filaments could 
exploit the Brownian motion of any diffusing object in the front of the filament. Thus, random 
fluctuations of the plasma membrane would create a free sub-membrane space where this 
intercalation could take place (Abraham et al., 1999 ; Borisy and Svitkina, 2000). This ratchet 
mechanism could explain the formation of thin cell protrusions when F-actin filaments are 
perpendicular to the membrane surface, but it cannot satisfactorily explain the formation of 
lamellipodia.  

Molginer and Oster (1996) extend this model by further assuming that the bending of 
the filament tips drives the protrusion formation. This bending mechanism would therefore 
provide a mechanical explanation for the appearance of lamellipodia type of protrusions. 
Moreover, Molginer and Oster inferred an optimal angle of 96 degrees between to two 
branching filaments. 
 
3.3. Alternative to the ratchet model. 

 
The pathogen bacterium Listeria monocytogenes uses actin polymerization to propel 

itself through the cytoplasm and the membrane of infected cells (Theriot et al, 1992; 
Frischknecht and Way, 2001). Experimental data show that the cell motility results from 
cooperation between the bacterium and the host cytoplasm proteins. The bacterium surface 
protein ActB controls the activity of  the complex Arp2/3 that initiates actin polymerization 
(Welch et al., 1997). Actin dynamics is also controlled by an actin depolymerizing factor 
(ADF/cofilin) and capping proteins, which are in the cytoplasm host. The last two factors 
maintain a high level of actin monomers in the cytoplasm to achieve filament growth at the 
bacterium surface. In vitro studies proved that movement was possible with a limited number 
of proteins, including Arp2/3, ADF/cofilin and a capping protein (Loisel et al., 1999).  
Biophysical investigations demonstrate that the bacterium and its actin-tail are tightly bound, 
which rules out the ratchet model approach for this system (Gerbal et al., 2000). In addition, 
the same group measured the actin-tail Young modulus at a value of 103-104 Pa, a value 10 
times larger than the cytoplasm rigidity. Using the framework of elasticity theory, Gerbal et 
al. (2000) proposed that the mechanical stresses generated at the Listeria cell surface are 
relieved at the back of the bacterium pushing the cell forwards. Their model accounted 
satisfactorily for the cell speed (about 0.1 µm.s-1) and was extended to explain the hopping 
motion observed in a Listeria mutant 
 
3.3. Actin polymerisation, F-actin nucleation and reaction-diffusion models 

 
3.3.1. Some experimental data 
 
Actin dynamics plays a major role not only in cell movement (Condeelis, 1993) but 

also in cell adhesion or neuron plasticity (Colicos et al., 2001; Star et al., 2002). 
Characterisation of actin filaments growth proved the importance of the 
polymerization/depolymerization balance at the filament ends and the role of proteins in 
inducing actin polymerization (e.g. Arp2/3), severing actin filaments (e.g. gelsolin, 
ADF/cofilin) or protecting the filaments ends by capping proteins (Pollard et al., 2000).  Actin 
monomers associate to form filaments with a polarity (barbed vs. pointed ends).  At the 
barbed end, subunits associate rapidly, with a low equilibrium actin monomer concentration 



  

( MC Beq µ08.0, = ). In contrast, the dynamics is much more slower at the pointed end but with 
a larger equilibrium monomer concentration  ( MC Peq µ5.0, = , Carlier et al., 1997). At steady-
state, the actin monomer concentration is: 
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where  +
Bk and +

Pk  are the association rate of actin monomers to the barbed (B) or pointed (P) 
ends. At steady-state, the growth at the barbed end is exactly compensated by the disassembly 
at the pointed end, a dynamical state called treadmilling. However, the predicted treadmilling 
steady-state flux (i.e. ( ) ( )PeqeqPBeqeqB CCkCCk ,, −−=− ++ ) is too slow (0.2s-1) to account for the 
rapid turnover observed in vivo. This suggests that other cellular factors affect actin dynamics, 
including interactions with intracellular proteins (Carlier et al, 1997a, Pollard et al., 2000), 
intracellular signaling (Machesky et al., 1999; Mullins, 2000) and movement generation 
(Borisy et al., 2000). 
  

3.3.1. Models for actin network formation 
 
In marked contrast with the actin dynamics complexity, models were first addressed to 

analyse the polymerization and fragmentation of actin filaments alone in vitro (Edelsetein-
Keshet et al., 1998; Ermentrout et al., 1998). These models use the classical framework of 
kinetic differential equations without addressing the question of interactions between 
filaments and network formation.  In the next step, actin bundle formation was considered 
including the kinetic approach (Edelstein-Keshet, 1998). This model was developed to 
account for the length distribution of actin filaments in a lamellipod (Edelstein-Keshet et al., 
2001).  Actin filament orientation was also studied using a Boltzmann-like equation (Geigant 
et al., 1998).  However, these models are based on the kinetics of actin polymerization or 
actin filaments association without geometrical or mechanical constraints. A recent attempt to 
address the more complex question of actin network generation was done by Maly and Borisy 
(2001) who developed a model for the actin network formation as a self-organization process. 
They were able to account for the preferential direction of the actin filament bundle observed 
in vivo.  Finally, one should mention the analysis of the actin gel formation on bead surface 
both experimentally and theoretically providing insight in the actin network regulation in cells 
(Noireaux et al., 2000). 
 

Models for spatio-temporal F-actin interactions in vivo were developed by LeGuyader 
and Hyver (1997), who analysed the oscillatory dynamics of the cortical actomyosin ring of 
human lymphoblasts by interpreting it in terms of a reaction-diffusion process. They proposed 
a three-variable model that takes into account free and membrane-bound F-actin as well as 
nucleation proteins. By assuming the existence of a non-linear reaction in which the synthesis 
of F-actin is autocatalytic, their model generated oscillatory actin waves within a fixed area 
corresponding to the cell cortex. This theoretical behaviour is in agreement with the 
experimental work of Bornens et al. (1989) and more recent work showing that the disruption 
of the microtubule network by nocodazole induces cortical oscillations (Pletjushkina et al., 
2001). Bornens et al. (1989) suggested that oscillating concentrations of nucleation proteins 
between the two poles of the cell would indeed create a polymerisation/ depolymerisation 
wave of actin travelling through the cell. Such behaviour was also reported during the 
extension of pseudopods in Dictyostelium discoïdeum (Vicker et al., 2000). 

 



  

3.5. Protrusive dynamics due to the modulation of stress-strain relationships 
within the actomyosin cytogel. 
 

The cytomechanical model of Lewis and Murray (1992) extends the solation/gelation 
model by considering the stress-strain relationships within the actomyosin cytogel. The 
cytogel is modelled as a viscoelastic continuum submitted to active stress and osmotic 
pressure. In addition, the sol/gel transition is controlled by the resulting strain level within the 
cytogel. At high strain, the gelation rate is increased, while at low strain, the solation rate 
increases. The model dynamics is controlled by the non-linear stress-strain relationship 
defining qualitatively the contractile actomyosin stress. The inhomogeneous spatial solutions 
generated by this model have been specifically discussed with regard to the patterned  
formation of microvilli at the cell surface (Murray, 1993).  
 
 
3.6. Coupling of actin-dynamics with cell cortex curvature. 
 

In a series of papers, Alt and col. (1995; 1999) proposed a modelling approach in 
which cell protrusions dynamics are due to the biophysical properties (viscoelasticity, 
contractility,...) of the cortical network of actin and myosin filaments underlying the cell 
membrane. This more or less dense network is able (i) to disassemble at locations where it 
becomes too condensed, (ii) to reassemble in cell protrusions like lamellipodia. Thus, cell 
protrusions mainly result from a mechanical balance between stresses acting on the cell cortex 
(mechanical forces generated by the actomyosin complex, tension forces due to the local 
membrane curvature (Raucher and Sheetz, 2000) ) and associated F-actin polymerisation/ 
depolymerisation induced by intracellular network -free space variation in each moving 
protrusion. 

A minimal three-variable model has therefore been developed to describe the 
spontaneous, self-organized, dynamics of cell deformations. This model has been used to 
study the spatio-temporal deformations of keratinocytes (Alt et al., 1995) as well the 
morphological changes in L929 fibroblasts (Stephanou et al., 2002a, Fig. 5). The model takes 
into account (i) the dynamics of F-actin polymerisation/depolymerisation in the cell cortex, 
(ii) the contractile activity generated by the actin/myosin interactions, (iii) the F-actin 
convection. The local amount of F-actin also determines the intensity of the resistive stress 
applied on the membrane as the result of CSK-cell cortex attachments. This resistive stress 
plus the stress induced by the cell cortex local curvature is assumed to balance the 
intracellular hydrostatic pressure. 

The analysis of the morphological changes of adherent cells is at least a two-
dimensional free-boundary problem. However, a simpler one-dimensional problem can be 
considered by assuming that the F-actin density as well as its convective tangential velocity is 
constant in the radial direction. In a cylindrical coordinate system (r,θ), the remaining 
variables in the cytomechanical model are thus:  (i) the F-actin concentration in the cortex 
a(θ,t), (ii) the F-actin  tangential velocity v(θ,t), (iii) the cell membrane position or the width 
of cell cortex annulus L(θ,t) measured from an virtual cell body delimited by an inner circle 
with radius R0, with L(θ,t)<< R0 (Alt and Tranquillo, 1995).  

The spatio-temporal evolution of these three variables is given by a system of three partial 
differential equations which define respectively :  
• variations of cortical F-actin concentrations, where the net rate η of actin 

polymerisation/depolymerisation depends on the local value of F-actin concentration 
relatively to the chemical equilibrium value a*. 

   



  

∂(L.a)
∂t  + ∂(L.a.v)

∂θ  = η.L.(a*−a)  

 
• the balance of forces applied on the cell cortex in the radial direction. The model takes 

into account a viscous friction of the cell protruding over the rigid substratum, with 
coefficient φ1, the intracellular hydrostatic pressure β1, the resistive elastic stress of the 
cell CSK controlled by the elasticity coefficient γ1and a curvature-dependent stress due  to 
the surface tension of the cell cortex modulated by the coefficient τ1. 

 

a.φ1∂L
∂t  = β1 - γ1.L.a + ∂

∂θ τ 1.a.∂L
∂θ( ) 

 
• the balance of forces in the tangential direction. It includes the frictional drag of the actin 

cortex moving in the viscous cytosol, with magnitude controlled by the drag coefficient 
φ0, a viscous stress with viscosity coefficient µ and the membrane curvature induced stress 
with coefficient τ0.   

 

a.φ0.v = ∂
∂θ µ0.a.∂v

∂θ  + σ 0(a,asat) − ∂
∂θ τ 0.a.∂L

∂θ( )[ ] 

 
In addition, the contractile stress of the actomyosin network is modelled by the non-

linear function σ0 (a(θ,t), asat). Two mechanical states can be distinguished according to the 
value of the network F-actin concentration a(θ,t)). At low concentration values (a(θ,t) < asat ), 
the contractile stress increases, while above the saturation threshold asat, the contractile stress 
decreases exponentially as a consequence of the network swelling. The non-linear function σ0 
(a(θ,t), asat) proposed by Alt and Tranquillo (1995) is the following:   
 

σ 0 a,asat( ) = ψ 0. a2. exp(−a/asat)  

where the coefficient ψ0 controls the magnitude of the contractile stress. 
 
The existence and properties of protruding and retracting cell membrane protrusions 

are related to oscillatory solutions of the cytomechanical model. This theoretical analysis is 
performed in a standard way by looking for critical values of the model's parameters above 
which small random perturbations are amplified (Hopf bifurcation) until a coherent spatio-
temporal pattern emerges with typical unstable modes or wave length (Fig. 5). As it may be 
expected intuitively, high values of the cell cortex surface tension reduce the number of cell 
protrusions whilst high values for the contractile efficiency of the actomyosin network 
contractility increase the number of oscillatory cell protrusions by favouring the 
destabilisation of higher unstable modes (Fig. 5 right). In an extension of this model by 
Stephanou et al. (2002b), the influence of extra-cellular factors on protrusivity dynamics and 
cell migration have been analysed. 



  

 
Figure 5 : Simulated  evolution with time  ts of the length L(θ, ts) of the cell protrusion  along the cell 
periphery  for different unstable spatial modes  m. Left : mode m=2 corresponding to a single 
protrusion with apparent travelling motion around the cell body. Right : mode m=4 simulating 
oscillatory changes of cell shape with two protrusions alternatively occurring along to perpendicular 
directions. (see plate 19 at the end of the book) 
 

4. Artificial tensegrity 
Another approach to studying the coupling between mechanical forces and 

cytoskeletal dynamics is to construct an in silico system in which populations of artificial 
cells containing different proteins with cytoskeletal properties are subjected to selection for 
resistance to hydrostatic pressure. By allowing mutations to alter the properties of the proteins 
and by selecting the surviving cells, it might be expected that one or more types of CSK 
would evolve. In essence, the idea is to explore the parameters underlying the formation of 
tensegrity structures by feeding artificial cells and selecting for those that evolve the best 
structures. In our project, the initial cell consists of a lipid membrane in the form of a 
monolayer and several types of proteins, the membrane is under pressure and membrane units 
can diffuse. 
 
Two cases are explored: 

1. The cell does not grow but there is either turnover of cellular constituents or 
migration of the entire cell. 
2. The cell grows. The cell is fed by the random insertion of proteins and lipids. 

The following rules are applied: 
1. Turgor pressure results from the difference in concentration of molecules 
between the outside and the inside of the cell. 
2. A cell is maintained until it lyses where lysing is defined as having a breach in 
membrane integrity that cannot be repaired within a certain period. 
3. Two cells are compared and the one retained is either the one that lasts the 
longer or the one that maintains the higher turgor pressure or the one that can migrate. 
4. Mutations are made by introducing new types of proteins. 
5. Components that are used are less likely to be discarded than those that are not 
used (use is defined as forming part of a structure under tension or compression) 

 



  

Components include: 
• Membrane proteins that respond to curvature and to which other proteins can bind 
• Proteins that cause filaments to branch 
• Proteins that cross-link filaments 
• Lipids of two types (cone and inverted cone) that form a monolayer. 
• Calcium (in the form of a gradient that is higher outside the cell) 

Variables include: 
• Binding affinities that may depend on the tension in the system or on activation by 

another protein (equivalent of post-translational modification) 
• Proteases 

Mechanical aspects: 
Turgor is calculated from the density of molecules within the cell. Individual 

molecules produce more turgor than those that are in the form of polymers or aggregates 
(molecules with no free spaces around them generate no turgor). This turgor then acts at the 
membrane. The membrane can deform by movement of lipids normal to its plane. 
 

At this stage, artificial tensegrity is simply a gedanken or thought experiment 
Nevertheless,  several testable predictions can be made. Firstly, large cells should have less 
problem with turgor pressure than small cells. Secondly, calcium should have an important 
role in strengthening the CSK to resist lysis (hence a small leak is self-repairing). Thirdly, 
cells that do not grow or move have a CSK parallel to the membrane whilst those that can 
grow or move have one that is perpendicular. Fourthly, there should be a reserve pool of 
lipids and cytoskeletal components near the membrane in readiness for incorporation in the 
membrane in time of need. 

5. Discussion 
This brief presentation underlines the advantage and limitations of continuous versus 

discrete modelling approaches to cell behaviour. Continuous models can account for a large 
variety of cellular dynamics including the protrusive activity which is coupled to 
modifications of continuous mechanical properties such as membrane tension, cell cortex 
viscoelasticity or mechanical stresses developed by the F-actin network.. However, a more 
refined description of CSK organisation, including the orientation of filaments or the 
formation of stress fibres, is hardly compatible with a continuous formulation, although recent 
models bridge the gap between mesoscopic mechanical properties of the actin cortex and a 
description at the molecular level (Maly et al, 2001). Models for cell dynamics, including 
lamelipod formation, modification of the cell architecture or cell adhesion to a substrate 
should incorporate actin dynamics to allow cell reshaping and motility in response to 
extracellular signals. Conversely, discrete tensegrity models seem to provide a more adequate 
description of the cell as a physical object, as evidenced by the larger number of criticisms 
encountered by these models compared to others.  

Indeed, the tensegrity paradigm is still a matter of active controversy, as illustrated by 
recent papers (Ingber et al., 2000; Wang et al., 2001). For D. E. Ingber, the intransigence of 
the remaining critics seem to “… largely result from an overly strict definition of what 
tensegrity is and how it can be applied” (Ingber et al., 2000). As quoted above, the tensegrity 
model states that: (i) cells and tissues exhibit integrated mechanical behaviour through use of 
specific structural principles, namely the discontinuous-compression / continuous-tension 
construction submitted to a pre-existing tension or prestress (Pourati et al., 1998), and (ii) the 
cell has an elastic submembranous skeleton with its associated lipid bilayer which can be 
linked to the internal CSK depending on type of cell adhesion.  



  

Can we propose experiments to discriminate between the models? It seems worth 
reporting here the different interpretations of similar experiments such as the induction of cell 
deformation through a direct manipulation of transmembrane receptors. According to Ingber 
and col., application of mechanical stresses to integrins using surface-bound micropipettes 
pre-coated with fibronectin induces CSK reorganisation, nucleus elongation along the tension 
lines as well as reorganisation within nucleoli, i.e. deep inside the nucleus (Maniotis et al., 
1997). On the other hand, and as expected, such a reorganisation was not observed when 
similar mechanical stresses were applied to membrane receptors which are only linked to the 
submembranous F-actin CSK.  

Opposite conclusions were drawn by Heideman and col. (1999; in Ingber et al., 2000) 
based on the application of similar mechanical stresses to integrin membrane receptors with 
glass needles treated with laminin, an ECM adhesion protein. Formation of an actin spot was 
observed on the cytoplasmic side of the membrane, inducing a locally high deformation of the 
membrane rather than a global change in cell shape. Heideman and colleagues thus conclude 
that the elastic cortical CSK is not connected to the internal microtubule cytoskelton, which is 
in complete disagreement with the fundamental tenet of tensegrity. 

Analysing the argument in detail is beyond the scope of this paper. Maybe we should 
simply mention that Ingber’s reply is that experiments showing a lack of action at a distance 
when pulling on the cell via integrins before focal adhesion formation are not valid as proofs 
of the failure of the tensegrity model. It is certainly clear that the tensegrity paradigm highly 
stimulates both theoretical and experimental work, including the development of new physical 
methods of quantification. For example, this has led to experiments to determine the 
significance of the compression of microtubules compression for cell mechanics. Ingber 
(Ingber et al., 2000) reported that microtubules counterbalanced approximately one-third of 
the total cellular prestress within a cell whose activation has been stimulated by histamine, a 
chemical constrictor, whilst noting that cell attachment to a rigid substratum would decrease 
this prestress level. Prestress within the cell can be estimated from microbeads displacement 
when deformable polyacrylamide gels containing small fluorescent microbeads are used as 
cell culture substratum, but looking for other quantification methods is the subject of current 
investigations. 

From a theoretical point of view, a clear advantage of the tensegrity model paradigm is 
to provide an alternative view to cell engineering models that would only describe cell 
mechanical behaviour by ad hoc “data fitting” models, based for example on combination of 
rheological elements. Trough the cell tensegrity model, more specific questions can be 
addressed regarding specific cell behaviours such as strain-hardening or CSK stiffness 
(Volokh et al., 2000; Wendling et al., 2000), or the process of mechanotransduction. In the 
latter case, tensegrity-based predictions can be compared to theoretical predictions inferred 
from other cell models like the percolation model of Shafrir et al. (2000). This possibility of 
exploring various mechanistic hypotheses is a real advantage of the tensegrity model when 
compared to other cell simulation models such as Electronic Cell (http://e-cell.org/) or Virtual 
cell (http:// www.nrcam.uchc.edu/ vcell_development/ vcell_dev.html) where cytomechanical 
parameters are absent from the theoretical framework. That said, the dynamic remodelling of 
the cell is not yet taken into account in the current tensegrity model. This is one of the 
requirements for future modelling work in which the integration of mechanical and 
biochemical properties may provide an appropriate framework to simulate cells in a way that 
may ultimately enable a better interpretation of genomic data.. 
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1 Introduction

The relation between biology and computation has a long history reviewed by Langton [LIL89]. In
this paper, we classify the interactions between computer science and biology in three areas:

1. Bioinformatics develops the automated management and analysis of biological data.

2. Computational Biology looks at biological entities as information processing systems with the
final goal of a better understanding of nature using computer science notions.

3. Biological Computing goes in the reverse direction and studies how biological techniques can
help out with computational problems.

Bioinformatics consists of developing software tools to support and help the biologist in the anal-
ysis and comprehension of biological systems. A good example is the development of data-bases
supporting the genome project [Kan00].

Biological Computing imports some biological metaphors [Pat94] to develop new way of com-
puting and to design new algorithms. From the beginning of computer sciences, biological processes
have been abstracted to produce new computational models: formal neural networks inspired by natu-
ral neurons, evolutionary algorithm inspired by Darwinian evolution (see the “Parallel Problem Solv-
ing from Nature” (PPSN) conference series), parallel computer architecture (e.g. cellular automata)
inspired by biological tissues (see for example the “Information Processing in Cells and Tissues”
(IPCAT) conference series), DNA computing abstracted from biochemistry [Pau98a], cooperative
distributed algorithm (e.g. multi-agents) motivated by ethological behaviors or social interactions, ...

Computational Biology. Here we are mainly interested in computer modeling and simulation of bi-
ological processes. The computer simulation of a biological process implies the definition of a model
sufficiently rigorous to lead to a program. With such a formal model, it is possible to systematically
explore the system’s behavior and sometimes to make predictions. This kind of study is part of the
more general idea of simulated experiments (also called in silico experiment by biologists and numer-
ical experiment by physicists). These experiments are required when in-vivo or in-vitro experiments
are out of reach for economical, practical or ethical reasons. Note however that the simulation of a
computer model is only one of its possible use: because it is formal, it is possible to reason about it
and for example to infer some properties (existence of steady state, stability, phase changes, etc.) that
can be checked against the natural phenomena.

More generally, formal models can have a pedagogical, normative, constructive or ideological
role:� pedagogical and heuristic: the model is used to share knowledge about a given system or to

illustrate a set of complex relationships involved in a biological process.� normative: the model is used as a reference between scientists or to compare several systems.� constructive: the model is used as a blueprint in the design of a new biological entity. Biol-
ogy has reached the point where in addition to the study of already existing natural entities, it
has to design new biologicals artifacts (drug design, metabolic pathways, genetically modified
organisms, ...).



� ideological: a model illustrates some biological paradigm and constraints furthermore the in-
vestigated schemes. Biology has imported a number of notions developed in computer science,
for instance the notion of programs, memory, information, control, etc. [Ste88, Kel95], that
have then structured biological theories.

The transfer of concepts and tools between biology and computer science is not a one-way process
and often, a computing model inspired initially by a biological phenomena, leads to a formalism used
later in simulation of some (other) biological processes. A good example is given by the history of
cellular automata (CA): initially developed by J. Von Neuman [VN66], they abstract the idea of a
tissue of cells, to investigate the notion of self-reproducing programs. The CA formalism has then
been largely used in biological simulation, for example to model the growth of tumor (Eden’s models)
or in ecology (it has been also successful in numerous other application domains, like in physics).

The contributions of Computational biology in the area of molecular dynamics or ecological mod-
eling, are now well established. They are largely centered around the notion of dynamical systems.
What appears now, is that this kind of computational models can make connections between molecu-
lar mechanisms and the physiological properties of a cell. The theme

gene expression � � system dynamics � � cell physiology

is an emerging paradigm [JTN00] that becomes increasingly more important as we try to integrate the
exponential knowledge of all the cells components in a true understanding of the cell. However, this
schema from biology to dynamical system and back to biology, has long been advocated in the more
general domain of the development [Smi99, Kau95].

2   Dynamical systems

2.1 Basic definitions

Many natural phenomena can be modeled as dynamical systems. At any point in time, a dynamical
system is characterized by its state. A state is represented by a set of state variables. For example, in
the description of planetary motions around the sun, the set of state variables may represent positions
and velocities of the planets. Changes of the state over time are described by a transition function,
which determines the next state of the system (over some time increment) as a function of its previous
state and, possibly, the values of external variables (input to the system). This progression of states
forms a trajectory of the system in its phase space (the set of all possible states of the system).

Mathematical objects with diverse properties can be considered dynamical systems. For instance,
state variables may take values from a continuous or discrete domain. Likewise, time may advance
continuously or in discrete steps. Examples of dynamical systems characterized by different combi-
nations of these features are listed in Table 1.

In simple cases, trajectories of dynamical systems may be expressed using mathematical formulas.
For example, the ODE (ordinary differential equation) describing the motion of a mass on a spring
has an analytical solution expressed by a sine function (linear spring, in the absence of friction and
damping). In more complex cases, analytic formulas representing trajectories of the system may not
exist, and the behavior of the system is best studied using computer simulations.

By their nature, simulations operate in discrete time. Models initially formulated in terms of
continuous time must therefore be discretized. Strategies for discretizing time in a manner leading to
efficient simulations have extensively been studied in the scope of simulation theory, e.g. [Kre86].



Table 1: Some formalisms used to specify dynamical systems according to the discrete or continuous
nature of time and state variables.

C:
continuous,
D: discrete.

ODE
Iterated

Mappings
Finite

Automata

Time C D D
State C C D

Dynamical systems with apparently simple specifications may have very complex trajectories.
This phenomenon is called chaotic behavior, c.f. [PJS92], and is relevant to biological systems, for
example populations models [May75, May76].

2.2 Structured dynamical systems

Many biological systems are structured, which means that they can be decomposed into parts. The
advancement of the state of the whole system is then viewed as the result of the advancement of the
state of its parts. For example, the operation of a gene regulation network can be described in terms
of the activities of individual genes.

Formally, we use the term structured dynamical system to denote a dynamical system divided into
component subsystems (units). The set of state variables of the whole system is the Cartesian product
of the sets of state variables of the component subsystems. Accordingly, the state transition function
of the whole system can be described as the product of the state transition functions of these sub-
systems. Similarly to non-structured systems, structured dynamical systems can be defined assuming
continuous or discrete state variables and time. In addition, the components can be arranged in a con-
tinuous or discrete manner in space. Some of the formalisms resulting from different combinations
of these features are listed in Table 2.

Table 2: Some formalisms used to specify structured dynamical systems according to the continuous
or discrete nature of space, time, and state variables of the components. The heading “Numerical So-
lutions” refers to explicit numerical solutions of partial differential equations and systems of coupled
ordinary differential equations.

C:
continuous,
D: discrete.

PDE
Coupled

ODE
Numerical
Solutions

Cellular
Automata

Space C D D D
Time C C D D
States C C C D

Time management is an important issue in the modeling and simulation of structured systems [Lyn96].
For example, state transitions may occur synchronously (simultaneously in all components) or asyn-
chronously (in one component at a time). Furthermore, efficient simulation techniques may assume
different rates of time progression in different components [Jef85].



In many cases, the transition function of each subsystem depends only on a (small) subset of the
state variables of the whole system. If the components of the system are discrete (i.e., excluding
partial differential equations, or PDEs), these dependencies can be depicted as a directed graph, with
the nodes representing the subsystems and the arrows indicating the inputs to each subsystem. We
say that this graph defines the topology of the structured dynamical system, and call neighbors the
pairs of subsystems (directly) connected by arrows.

The topology of a structured dynamical system may reflect its spatial organization, in the sense
that only physically close subsystems are connected. A dynamical system with this property is said
to be locally defined. Locality is an important feature of systems that model physical reality, because
physical means of information exchange ultimately have a local character (e.g., transport of signaling
molecules between neighboring cells). On the other hand, physically-based models need not to be
rigorously local. For example, when modeling plants, it may be convenient to assume that higher
branches cast shadow on lower branches without simulating the local mechanism of light propagation
through space.

When the number of components in a structured dynamical systems is large, the exhaustive listing
of all connections between the components becomes impractical or infeasible. This limitation can
be overcome in several ways. For example, if the components are arranged in a regular pattern, the
neighbors of each component need not to be listed explicitly. This is the case of cellular automata
(e.g. [TM87], in which cells are arranged in a square grid). Group-based fields [GM01b] are a gener-
alization of this idea, allowing for a wider range of connection patterns. Large structures can also be
defined by simulated development, discussed next.

2.3 Dynamical systems with a dynamic structure

A developing multicellular organism can be viewed as a dynamical system in which not only the
values of state variables, but also the set of state variables and the state transition function change
over time. These phenomena can be captured using an extension of structured dynamic systems, in
which the set of subsystems and/or the topology of their connections may dynamically change. We
call these systems dynamical systems with a dynamic structure [GM01b], or � DS ��� -systems in short.

For example, let us consider a model of a multicellular organism, defined at the level of individ-
ual cells. When a cell divides, the subsystem that represents it is replaced by two subsystems that
represent the daughter cells. Furthermore, the topology of the whole system is adjusted to:� remove connections (neighborhood relations) between the mother cell and the rest of the organ-

ism,� create connections between the daughter cells,� insert connections between the daughter cells and the rest of the system.

These operations make it possible to gradually create a large network of interconnected cells.

2.4 A Taxonomy of Formalisms

From a computer science (or a mathematical) point of view, the problem raised by the simulation of
dynamical systems with a dynamical structure is that of the programming paradigm (or the modeling
language) well fitted to the specification of such systems. For instance, the PDE formalism is not a
relevant solution because it prescribes an a priori given set of relations between an a priori given set



of variables. Consequently, these two sets, which embed implicitly the structural interaction between
the entities or the system parts, cannot evolve jointly with the running state of the system [Mic96, pp
6, 85], [GM01b, chapter 1].

However, there exist several formalisms that can be used. The criteria used to classify the DS

formalism in section 2.1 and 2.2 are still valid and the representation of time and state can be discrete
or continuous for � DS � � as for standard DS. Here we propose an additional criterion to distinguish
between the topological nature of the system structure. Table 3 presents some formalisms for the
discrete time case.

Table 3: Some formalisms used for the modeling of � DS ��� , according to the underlying topology of
the state.

Topology Multiset Sequence Uniform Combinatorial

Formalism multiset
rewriting

L-systems GBF
map L-systems,

Graph-grammars,
MTG, MGS

In this table, the first line gives the type of the topology used to connect the subcomponents of
a system. In a multiset, all elements are considered to be connected to each other. In a sequence,
elements are ordered linearly; this case includes lists and extends also to tree-like structures. Uniform
structures represents a regular neighborhood: for example, in a rectangular lattice (Von Neumann
neighborhood), each element has exactly four neighbors. Combinatorial structures are used to define
arbitrary connections between the components.

Considering solely the type of the topology underlying the structure of a state is only a partial
caracterization that does not emphasize other several important points. Let us mention some of them.� The relationship between the components can take place in an a priori structure. This approach

is also known as the Newtonian conception of space where phenomena take place in a prede-
fined scene. The other approach, which has been promoted by Leibniz, considers the topology
as the result of the connection between the existing entities. In this point of view, the topology
results from the dynamic connection between the system elements. This distinction is found in
biology with the notions of space oriented or structure oriented models. For instance, accretive
growth (growth on the boundaries) is an example of a space oriented process and intercalary
growth (growth from the inside) is an example of a structure oriented process.� There are several degrees in the dynamic of the structure. In the simplest case, the type of the
topology remains the same during the evolutions of the system. An example is the growth of
Anabaena filaments (Cf. section 4.2) where the system is always described as a sequence of
cells. In addition, once a cell is connected with two neighbors, these connections remain the
same. On the other hand, during the development of an embryo, several domains of cells change
dramatically their shapes. For instance, the neural tube is formed dorsally in the embryonic
development of Vertebrates by the joining of the 2 upturned neural folds formed by the edges
of the ectodermal neural plate, giving rise to the brain and spinal nerve cord. In this process,
which implies cell migration, the connections of a cell change over time and the global shape
changes from a sheet to a tube.



� We have assumed that the interaction between the system parts can be described by a graph. Im-
plicitly, this implies that elements interact two by two, which is not always the case. More elab-
orated interaction may imply more participants (e.g. a chemical reaction between two chemicals
that requires also a catalyst; or the many-to-one relation between a subsystem and its decompo-
sition). An interaction between � participants can be modeled by an � -edge in an hypergraph.
An alternative representation is to use a � -simplex in a simplicial complex [GV01]. In the last
case, the dimension of the simplex is directly linked with the number of participants.� The notion of dimension also appears in the interactions between components in the following
way. Often, the components of a system have a physical nature and the logical neighborhood
established by the component interaction is the same as the spatial neighborhood implied by
the physical structure of the system. For example, the topology implied by the representation
of the cell sub-structures is tridimensional (compartments), bidimensional (membranes) and
zero-dimensional (molecules). Obviously, the interactions that must be described depend of
the dimension of the invoked entities: for instance, a flow of molecules can be conceived only
through a membrane boundary between two compartments, not between a filament and another
molecule; conservation laws depend on the topological nature of the entities, etc. From this
point of view, multiset corresponds to a trivial topology (two points are always neighbors),
L-systems corresponds to one-dimensional topologies and a GBF described by � fundamental
generators (cf. below, section 5) describe � -dimensional topologies.

2.5 Outline

Following table 3, the next sections and chapters presents some formalisms usable for � DS �	� Modeling:� Section 3 reviews the use of multisets to model biological state and multiset rewriting to specify
the evolution function.� Section 4 sketches the L-system formalism. This formalism is an effective approach for the
modeling of linear and branching structure. For instance, it as largely been applied in the field
of plant growing.� Section 5 presents a general framework, instantiated in a programming language, that is able to
unify several approaches by using a topological point of view.� The chapter ?? “Cellular automata and multi-agent” in this document gives some examples of
the use of the computational device in the field of biological modeling.� “Neural networks” are a special kind of dynamical systems. A large part of the considerations
presented here, apply. Their importance has motivated numerous investigations and a lot of
results are available. They are presented in ??.

3 Multiset Rewriting and the Modeling of Biological Systems

3.1 Basic Concepts

Consider a simple chemical system of two molecules types 
 and � . We suppose that only determin-
istic second-order catalytic reactions are allowed, that is: a collision of two molecules will catalyze



the formation of a specific third molecule and the two colliding molecules are regarded as catalysts.
The possible reaction rules are given explicitly as follows:���� 
���
 � � 
���
��������� 
���� � � 
������������� ����� � � ��������

A simulation in which every molecule is explicitly stored and every single collision is explicitly
performed can easily be implemented if the chemical reactor is abstracted as a multiset. Unlike a
set, an element can occur several times in a multiset. In the following, we denote a multiset using
braces: ��
��! "�#
$�!%&�!�'�# )( is a multiset * with elements 
 and  occurring twice, and elements �
and % occurring only one time. To simulate the chemical reaction, we simply interpret each rule as
a transformation of the multiset. For instance, the rule �+ specifies that two molecules 
 taken in the
multiset have to be replaced by the three molecules 
 , 
 and � . For example, if reaction �, occurs
in * at a given time step -/. , then * is transformed in ��
$�! "�#
��!%0�!�'�! "�!�1( (one additional � is
produced). See figure 1.
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Figure 1: Illustration of one occurence of a reaction �+ occuring in a test tube considered as a multiset
of molecules.

Because several chemical reactions can occur in parallel (which means that several reactions
involving different elements occur in the same time step), the strategy is to apply in parallel as many
transformations as possible to the multiset. Such transformations are iterated to model the evolution
of the state of the reactor. However, several competing rules may apply at the same time step: for
instance consider a chemical reactor described by ��
��#
$�!�1( at time -#. and subject to the two reactions�� and ��� . If �� occurs, then there is no longer 
 at -3. to proceed with ��� and vice-versa. The two
reactions cannot occur together because there are not enough resources. In this case, we consider that
one of the two rules is chosen in a non-deterministic manner. No assumption is made on the order on
which the reactions occur.

The “ � ” sign that appears in the left and right hand side of the rules means that the linked
molecules are present together in the chemical reactor. Thus, the left hand side of rule ��� can also be
equivalently written �4�5
 . From a mathematical point of view, it is very convenient to consider � as
a formal commutative-associative operator used to construct multisets: a multiset ��
$�! 6�7
��!%&�#�'�! 8(
is simply a formal sum 
9�4 :�9
;�9%<�9���9 . The associativity and the commutativity properties
are simply the expression that the elements of this last sum can be rearranged in any order. Then,
rules like the �>= rules can be interpreted as rules for rewriting such formal expression. Abstractly, we
can say that a chemical reaction can be modeled as a multiset rewriting system.



This modeling paradigm can be extended from this chemical example to other situations and its
biological relevance is advocated in several recent papers [Man01, FMP00]. To quote1 Fisher et
al. [FMP00]: “A biological system is represented as a term of the form -  �4- � �@?A?A?>�:-�B where each
term - = represents either an entity or a message [or signal, command, information, action, etc.] ad-
dressed to an entity. [The simulation of the physical evolution of the biosystem] is achieved through
term rewriting, where the left hand side of a rule typically matches an entity and a message ad-
dressed to it, and where the right hand side specifies the entity’s updated state, and possibly other
messages addressed to other entities. The operator � that joins entities and messages is associative
and commutative, achieving an ‘ associative commutative soup ’, where entities swim around looking
for messages addressed to them.”

3.2 Division, Growth and Diffusion Processes

To illustrate this paradigm in a biological situation, we consider the multiplication of a mono-cellular
organism in a test tube. A cell exists in one of two forms 
 or � . Type 
 and � can be used to
characterize a phase of the life cycle of the cell, or as a cell polarity, etc. The division of a cell of type
 produces one cell of type 
 and one of type � . In contrast, a cell of type � does not divide but
evolves to give a cell of type 
 . This can be summarized by the two rules:��C� 
 � � 
��������� � � � 

Starting from a test tube with three initial cells, abstracted as a multiset *&.1DE��
��!�1�!�1( , the first
three evolutions are:FHGJILK7MONQPRNSMTNSMVUWILK#MTNQP�NQMONQPRNSMTNSPRNQMTUWILK7MONQP�NQMTNSPRNSMTNQP�NQMONQPRNSMTNSMTNQMTUWIYX3X/X

There exists several software environments that support multiset rewriting (see next paragraph).
So the previous two rules directly turn to a computer program that simulates the growing and division
processes of this hypothetic mono-cellular organism. In fact, these rules fit well the development of
Anabaena, which is described more in details in the next section, if we neglect the sequential orga-
nization of the cells. However, this model admit also other interpretations. For example, Fibonacci
studied (in the year 1202) about how fast rabbits could breed under some ideal circumstances. Sup-
pose a newly-born pair of rabbits, one male, one female, are put in a field. Rabbits are able to mate
after one month so that at the end of its second month a female can produce another pair of rabbits.
We simplify the model assuming that rabbits never die and that a female always produces one new
pair (one male, one female) every month from the second month on. We model by symbol � a newly-
born pair of rabbits and by symbol 
 a mature pair of rabbits. Then the rule �Z expresses that a mature
pair produces a newly-born pair and survive and rule �[� specifies the maturation of a new pair.

The simulation of this process can be used to determine, for example, the relative ratio of 
 and �
types in a population after some time. However, as mentioned in the introduction, the use of a formal
model is not restricted to simulation and can be used to prove formal properties of the system without
looking at the results of the simulation (e.g.: Fibonacci was able to prove that the ratio between �
and 
 converges to the golden section as the time goes).

In the previous examples, each entity (a molecule, a cell or a pair of rabbits) is represented as
an element of a multiset. In addition, the multiset structure allows objects to interact in a rather
unstructured way, in the sense that an interaction between two objects is enabled simply by virtue of

1with adaptations in the terminology, brackets are our comments



both being present in the multiset. In other word, there is no localization of the entities. Here is an
example of another approach, where multiset rewriting is used in another way to take into account a
geometric information. The problem is to model the diffusion of a set of particles on a line. The line
is discretized as a sequence of small boxes, indexed by a natural integer, each containing zero or many
particles. At each time step, a particle can choose to stay in the same box, or to jump to a neighboring
box, with the same probability. See figure 2. The state of a particle is the index of the box where it
resides. The entire state of the system is represented as a multiset of indices. The evolution of the
system is then specified as three rules:��C� � � � ������ � � � �\�@]����� � � � �^��]
where � is an integer and the operations “ � ” and “ � ” that appear in the right hand side are the usual
arithmetic operators. Rule �_ specifies the behavior of a particle that stay in the same box; rule �[�
corresponds to a particle that jumps to the box at the left; and rule �[� defines a particle jumping to the
right. Another solution is to factorize the three rules into one:�`� � � � �1� Random a/�6]+�!bc�>]�d
where the function Random a/e�e>e!d returns randomly one of its arguments. In the case of three compet-
ing rules, we must assume that there is some fairness in the choice of the rules �Z to ��� to be applied,
i.e., they have the same probability of being chosen. If there is more chance to stay in a box than to
leave it, then the underlying formalism must be able to express some finer control over the rule appli-
cation. As a matter of fact, specifying an application strategy of the rules that respect the symmetries
of the system can be very difficult.

0 1 2−1−2
Figure 2: Diffusion of a particle along a line

3.3 Applications, Theories and Tools for Multiset Rewriting

Multiset rewriting has inspired several applications leading to the emergence of a new field: Artificial
Chemistry. The home page [Dit00] and reference [DZB00] are a good introduction to this new area.
There is a growing body of applications in artificial life, chemical and biological modeling, infor-
mation processing and optimization. More specifically, Artificial Chemistry has been advocated as a
productive framework for the study of pre-biotic and bio-chemical evolution, and for the study of the
evolution of organization in general.



Multiset rewriting has also been used to extend other formalisms. For example, a multiset of L-
systems is used to model an ecosystem (a multiset) of individual plants (modeled using L-system),
see [LP02].

From the computer science point of view, the use of the chemical metaphor as a computing model
has been investigated by Gamma [BM86, BCM87] in the middle of the eighties. A good review of the
research done about Gamma can be found in [BFM01]. The CHemical Abstract Machine (CHAM)
formalism extends these ideas with a focus on the expression of semantic of non deterministic pro-
cesses [BB90]. The CHAM is an elaboration on the original Gamma formalism introducing the notion
of sub-solution enclosed in a membrane. It is shown that models of algebraic process calculi can be
defined in a very natural way using a CHAM: the fact that concurrency (between rule application) is a
primitive built-in notion makes proof far easier than in the usual process semantics. The motivations
of Gamma and the CHAM are the development of a formalism to support the specification and the
programming of parallel and non deterministic programs. Multiset rewriting lies at the core of the
formalism.

From the point of view of term rewriting [DJ90], multiset rewriting is the special case where
the operators considered are both associative and commutative. In this domain, the perspective is
more logical and directed towards the concepts of rewriting calculus and rewriting logic. The ap-
plications considered are the design of theorem provers, logic programming languages, constraint
solvers and decision procedures. Several frameworks provide efficient and expressive environments
to apply rewrite rules following dedicated strategies. It is worth mentioning ELAN [ela02] and
MAUDE [mau02].

At last but not least, in the domain of formal language theory and computational complexity, P
systems [Pau98b, Pau00] are a new distributed parallel computing model based on the notion of a
membrane structure. This paradigm extends standard multiset rewriting introducing the notion of
membrane. A membrane structure is a nesting of compartments represented, e.g, by a Venn diagram
without intersection and with a unique superset: the skin. Objects are placed in the regions defined
by the membranes and evolve following various transformations: an object can evolve into another
object, can pass through a membrane or dissolve its containing membrane. In the initial definition
of the P systems, each region defined by a membrane corresponds to a multiset of atomic objects
which can evolve following evolution rules very similar to Gamma’s (the right hand side of each
rule is augmented to specify the destination of the results of the reaction). The membrane structure
enables the specification of some localization of the processes. For an example, see section 5. Several
alternatives have been devised and a region can be equipped with various computational mechanisms:
string rewriting, splicing systems (DNA computing), etc. From the calculability point of view, several
variants of such computing devices can compute all recursively enumerable sets of natural numbers.
When an enhanced parallelism is provided, by means of membrane division (and, in certain variants
where one works with string-objects, by means of object replication), NP-complete problems can be
solved in linear time (of course, making use of an exponential space).

4 L-systems

4.1 Basic notions

L-systems were introduced in 1968 in the landmark paper by A. Lindenmayer, Mathematical models
for cellular interaction in development [Lin68]. They provide a well developed and flexible tool
for modeling and simulating a restricted but biologically important class of dynamic systems with a



dynamic structure: linear and branching structures.
Originally, Lindenmayer described his formalism in terms of cellular automata, in which — in

contrast to the standard definition — the cells could divide. Subsequently he observed that L-systems
can be formulated in a simpler and more elegant manner in terms of formal language theory [Lin71].
That theory was originally proposed by Chomsky [Cho56, Cho57] to describe the syntax of natural
languages. Its fundamental notion is that of a (generative) grammar, which consists of productions
or rewriting rules. In general, a production replaces a symbol by zero, one, or several new symbols.
They may represent words in a sentence, as in the original interpretation by Chomsky, but they also
may represent cells or other components of a living organism, as was proposed by Lindenmayer.
The use of related formalisms in the description of such apparently distant notions as languages and
biological structures may seem surprising at first. In fact, it reflect the common dynamic nature of
sentences under construction and developing organisms.

Applications of L-systems to modeling have an extensive literature, last reviewed in [Pru98]
and [Pru99]. Below we outline one variant, called parametric L-systems [Han92, PH90, PL90] Within
this formalism, the individual subsystems are called modules. Each module is represented by a symbol
(letter) with optional parameters. This letter and parameters jointly characterize the module’s state.
For instance, the letter may represent a cell type, while the parameters may represent quantitative
attributes of the cell, such as its dimensions and concentrations of chemicals that it contains.

The assumption that the organism forms a filament makes it possible to represent it at any moment
of time as a string of modules, called a parametric word. For example, the string


8aQfgeih+d3�\akjcel]�mn�!bceif+d/ 6
`a/]+eojpd (1)

may represent an organism that consists of four cells. The first cell has type 
 and is characterized
by one parameter, the value of which is equal to 2.5. The remaining symbols have an analogous
interpretation.

An L-system model describes the development of the entire structure by operating on individual
modules. A production specifies the fate of a unit over a given time interval as a function of its current
state and, optionally, the states of its neighbors. For example, the production


8arqsd�tu�\awvs�!x+dzy� �  6�\arq)��v{�!xp|_f+d (2)

operates on a module � that appears in the context of a module 
 to its left and module  to its right.
The left and right contexts are separated from the strict predecessor � by the metasymbols (i.e., the
symbols that do not represent modules) t and y , respectively. In this example, module � divides into
a module  and a new module � . The arithmetic expressions in the production’s successor determine
new parameter values. Hence, when applied to string (1), production (2) will yield the string


8aQfgeih+d3 6�\aSh,ei}_mc�!bcel]�d3 "
8a	]+eij+d~e (3)

Simultaneous application of productions to all modules advances the state of the whole structure. If
the set of module types is finite, the corresponding finite set of productions provides a mechanism for
advancing the state of the entire structure independently of its size (the number of modules).

4.2 A sample model

We will illustrate the notion of genetic L-systems by constructing a model of heterocyst differenti-
ation in a growing filament of the cyanobacterium Anabaena. The following description is adapted
from [HP96].



The cells of Anabaena are organized into filaments which consist of sequences of vegetative cells
separated by heterocysts. The vegetative cells divide into two cells of unequal length and, in some
cases, differentiate into heterocysts which do not further divide. The organism maintains an ap-
proximately constant spacing between heterocysts: whenever the distance between two heterocysts
becomes too large due to the division and elongation of vegetative cells, a new heterocyst emerges.

What mechanisms is responsible for the differentiation of heterocysts and the maintenance of
the approximately constant spacing between them? Baker and Herman [BH70, BH72] (see also
[dL87, HR75, Lin74] proposed the following simulation model. The heterocysts produce a substance
that diffuses along the filament and is used by the vegetative cells. This substance inhibits the differ-
entiation of vegetative cells into heterocysts. When its level in a cell drops below a threshold value,
the cell detects that it is no longer inhibited and differentiates into a heterocyst.

Although the model of Baker and Herman is capable of reproducing the observed pattern of het-
erocyst spacing, it is very sensitive to parameter values. Small changes in these values easily result
in filaments with pairs of heterocysts appearing almost simultaneously, close to each other. This is
not surprising, considering the operation of the model. The gradient of the concentration of the in-
hibitor may be too small near the middle of a sequence of vegetative cells to precisely define the point
in which a new heterocyst should differentiate. Consequently, the threshold value may be reached
almost simultaneously by several neighboring cells, resulting in the differentiation of two or more
heterocysts close to each other.

The above model can be improved assuming that the prospective heterocysts compete until one
“wins” and suppresses the differentiation of its neighbors. This “interactive” model was originally
proposed by Wilcox et al [WMS73]. It can be formalized using the framework of the activator-
inhibitor class of reaction-diffusion models [Mei82]. In addition to the substance that inhibits the
differentiation, the cells are assumed to carry a substance called the activator. The concentration of
the activator is the criterion that distinguishes the vegetative cells (low concentration) from the hete-
rocysts (high concentration). The activator and inhibitor are antagonistic substances: the production
of the activator is suppressed by the inhibitor unless the concentration of the inhibitor is low. In that
case, production of the activator drastically increases through an autocatalytic process (an increased
concentration of the activator promotes its own further production). High concentration of the ac-
tivator also promotes the production of the inhibitor, which diffuses to the neighboring cells. This
establishes a ground for competition in which activator-producing cells attempt to suppress produc-
tion of the activator in the neighboring cells. For proper values of parameters that control this process,
only individual, widely spaced cells are able to maintain the high-activation state.

An L-system implementation of these mechanisms (a variant of the L-system from [HP96]) is
given below.
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Figure 3: Fragment of a simulated filament of Anabaena. Vertical lines indicate the concentrations
of the activator and inhibitor (above and below the cells, respectively). Notice the sharp peaks of the
activator concentration that define the heterocysts, and high levels of the inhibitor concentration in
the neighboring vegetative, which prevent their differentiation. The parameters used in the simulation
were: ��D�j ,  ¡D¢bgeib+bg] , �p.£D¤bceobc] , ¥�D¢bce�] , �n.£D¤bceob+bc] , ¦�D¤bce§mZh , %8��D¤bgeib+b�m , �+����D ] ,�1D�bceoj+¨c]A©+} , �>�W�	�ªD«] , � D�bceib_bpf , and ¬�D<bceob+bc] .
where
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The cells are specified as modules � , where parameter � stands for cell length, � is the concentration
of the activator, � is the concentration of the inhibitor, and � denotes polarity, which plays a role
during cell division. All productions are context-sensitive to capture diffusion of the activator and
inhibitor. It is assumed that the main barrier for the diffusion are cell walls of width ¬ . Production �À
characterizes growth of vegetative cells ( �'tu�,��� ), controlled by the growth rate � . A cell that reaches
the maximum length of ���W�	� divides into two unequal daughter cells, with the lengths controlled by
constant �@tÁbge�h . The respective positions of the longer and shorter cells depends on the polarity� of the mother cell, as described by productions �s� and ��� . Increase of the concentration of the
activator � to or above the threshold value �Z��� indicates the emergence of a heterocyst. According to
production ��� , a heterocyst does not further elongate or divide. The equations for � � , � � , and � � govern
the exponential elongation of the cells and the activator-inhibitor interactions [Mei82].

The operation of the model is illustrated in Figure 3. The vertical lines indicate the concentrations
of the activator (above the filament) and inhibitor (below the filament) associated with each cell.

It is interesting from the historical perspective that the interactive model of Wilcox et al. [WMS73]
and its subsequent L-system implementation [HP96] predicted the essential structure of the gene
regulation network that controls the development of Anabaena filaments in nature [Ada00]. The
activator corresponds to the protein HetR, which plays a key role in the maintenance of the heterocyst
state, whereas the inhibitor corresponds to the protein PatS (or a fragment of it), which diffuses
across the filament and maintains the spacing between the heterocysts. The character of interactions
captured by the simulation model is consistent with the postulated structure of the gene regulation
network, in which HetR upregulates its own production as well as the production of PatS, whereas
PatS downregulates production of HetR.

We believe that models of similar nature, integrating the action of genes into developmental mod-
els of multicellular structures, will become more widely used in the future, offering insights into



developmental processes that are difficult to obtain through observations and qualitative reasoning
alone.

5 The MGS Approach

5.1 Motivations and Background

The previous examples of formalisms do not fully address issues of structural interactions between
entities or system parts because of the lack of topological organization. The need to represent more
structured organizations (than sequence or multiset) of entities and their interactions has been al-
ready stressed [FMP00] and motivates several extensions of rewriting (see for one example amongst
others [BH00]). However, a general drawback with these extensions is that they work with a fixed
topology of entities, and it is not obvious at all how to extend this to systems where the relationships
between entities are drastically changing. This is precisely one of the main motivations of the MGS
research project2.

MGS is aimed at the representation and manipulation of local transformations of entities structured
by abstract topologies [GM01b, GM02]. A set of entities organized by an abstract topology is called
a topological collection. Topological means here that each collection type defines a neighborhood
relation specifying both the notion of locality and the notion of sub-collection. The collection types
can range in MGS from totally unstructured with sets and multisets to more structured with sequences
and GBFs [GMS95, Mic96, GM01a] (other topologies are currently under development and include
Voronoı̈ partitions and arbitrary combinatorial neighborhoods).

The global transformation of a topological collection  consists in the parallel application of a
set of local transformations. A local transformation is specified by a rewriting rule � that specifies the
change of a sub-collection. A rewrite rule � :

1. selects a sub-collection 
 in  ,

2. computes a new collection � as a function Â of 
 and its neighbors,

3. and specifies the insertion of � in place of 
 into  .

These steps are summarized in figures 4 and 5. The topology of � depends on Â and can be different
from the topology of 
 . For example, a set in a sequence can be replaced by a sequence. Moreover, the
topological structure of  can be changed through the application of transformations. These features
enables the modeling of � DS �Q� : states of a DS are represented by collections and transformations are
used to model transition functions on these structured states.

As a programming language based on topological concepts, MGS integrates the idea of topologi-
cal collections and their transformations into a general high-level functional programming language:
topological collections are just new kinds of values and transformations are functions acting on col-
lections. The approach is purely declarative: operators acting on values combine values to give new
values, they do not act by side-effect.

2MGS is the acronym of “ (encore) un Modèle Géneral de Simulation (de système dynamique) ” (yet another General
Model for the Simulation of dynamical systems). The MGS home page is located at url www.lami.univ-evry.fr/
mgs where additional informations are available.
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Figure 4: A basic transformation of a topological collection. Collection Ã is of some kind (set, sequence,
array, cyclic grid, tree, term, etc). A rule Ä specifies that a sub-collection Å of Ã has to be substituted by a
collection Æ computed from Å . The right hand side of the rule is computed from the sub-collection matched
by the left hand side Ç and its possible neighbors Ç � in the collection Ã .

T T(T(C))T(C)C

...

Figure 5: Transformation and iteration of a transformation. A transformation Ä is a set of basic transfor-
mations applied synchronously to make one evolution step. The basic transformations do not interact together.
A transformation is then iterated to build the successive states of the system.

5.2 Biological Examples in MGS

In this subsection, we sketch several examples in various domains to exemplify the versatility of the
MGS formalism.

The Eden Model

We start with a simple model of growth sometimes called the Eden model (specifically, a type B Eden
model) [Ede58]. The model has been used since the 1960’s as a model for such things as tumor growth
and growth of cities. In this model, a 2D space is partitioned in empty or occupied cells (we use the
white-space character and the C letter). We start with only one occupied cell. At each step, occupied
cells with an empty neighbor are selected, and the corresponding empty cell is made occupied.

The corresponding MGS model starts by defining the 2D partition using a group based field (GBF
in short). A GBF is an extension of the notion of array, where the elements are indexed by the elements
of a group, called the shape of the GBF [GMS95, GM01a]. This kind of collection can be used to
describe uniform and regular topologies. For example:

gbf Grid2 = < north, east >

defines a shape called Grid2, corresponding to the Von Neuman neighborhood in a classical array (a
cell above, below, left or right – not diagonal). The two names north and east refer to the direc-



tions that can be followed to reach the neighbors of an element. These directions are the generators
of the underlying group structure. The list of the generators can be completed by giving equations
that constraint the displacement in the shape:

gbf Hexagon = < east, north, northeast ;
east + north = northeast >

defines an hexagonal lattice that tiles the plane, see. figure 6. Each cell has six neighbors (following
the three generators and their inverses). The equation east + north = northeast specifies
that a move following northeast is the same has a move to east followed by a move to north.

The Eden’s aggregation process is simply described as the following transformation:

trans Eden = �q , v / ( q = "C") & ( v = " ") È q ,"C";(
the keyword trans introduce the rules of a transformation. A rule takes the following form:ÉcÊ_ËkË	Ì~Í�Î È Ì3ÏÐÉ{Í#Ì!Ñ!Ñ~ÒSÓ[Î
where pattern in the left hand side of the rule matches a sub-collection 
 of the collection  on which
the transformation is applied. The sub-collection 
 is substituted in  by the collection � computed
by the expression in the right hand side of the rule. Here, the pattern “ q , v ” filters an element v
neighbor of an element q such that the value of q is occupied and the value of v is empty. The
conditions on the elements matched are given by the expression after the “/” operator and the comma
operator “,” means that q and v must be neighbors. The right hand side specifies that the couple q , v
matched by the left hand side must be replaced by a couple q ,"C".

The transformation Eden defines a function that can then be applied to compute the evolution of
some initial state. One of the advantages of the MGS approach, is that this transformation can apply
indifferently on grid or hexagonal lattices (or any other collection kind). The meaning of the neigh-
borhood operator “,” in the pattern of a rule depends on the collection on which the transformation
is applied.

It is interesting to compare transformations on GBFs with the genuine cellular automata (CA)
formalism (see the corresponding chapter). There are several differences. The notion of GBF extends
the usual square grid of CA to more general Cayley graphs. The pattern in a rule may match arbitrary
domain, not only one cell as it is usually the case for CA. Moreover, the value of a cell can be arbitrary
complex (even another GBF) and is not restricted to take a value in a finite set.

Restriction Enzymes

This example shows the ability to nest different topologies to achieve the modeling of a biological
organization. We want to represent the action of a set of restriction enzymes on the DNA. The DNA
structure is simplified as a sequence of letters Ô , Õ , Ö and × . The DNA strings are collected in a
multiset. Thus we have to manipulate a multiset of sequences (this kind of nested structures has been
proved useful in other areas, e.g. [LP02]).

A restriction enzyme is represented as a rule that splits the DNA strings; for instance a rule like:

EcoRI = q + as Ø ,
( Ù�Ú�- + as  `Û�Ü /  8Û�Ü = "G","A","A","T","T","C"),v + as ÝÈ ( Ø , "G")::("A","A","T","T","C", Ý )::seq:()
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Figure 6: Eden’s model on a grid and on an hexagonal mesh (initial state, and states after the 3 and
the 7 time steps). The same transformation is used for both cases.

corresponds to the EcoRI restriction enzyme with recognition sequence GˆAATTC (the point of cleav-
age is marked with ˆ). The q + pattern filters the part of the DNA string before the recognition se-
quence and the result is named Ø (the + operator denotes repetition of neighbors). Identically, Ý
names the part of the string after the recognition sequence. The right hand side of the rule constructs



the two resulting parts as a sequence of two sequences (the :: operator indicates the construction of
a nested sequence).

We assume that all restrictions enzyme rules are collected into one transformation. We need an
additional rule, called Void for specifying that a DNA string without recognition sequence must be
inserted as such:

trans Restriction = �
EcoRI = ...;
...;
Void = q + as Ø = � flat=false ( => Ø(

The attribute “flat=false” in the body of the arrow of rule Void indicates that the Ø (which is
a sequence) must be inserted in the resulting multiset as one single entity. This contrasts with the
rule EcoRi whose right hand side computes a sequence of elements to be inserted in the enclosing
multiset.

The transformation Restriction can then be applied to the DNA strings floating in a multiset using
the simple transformation:

trans Apply = �«ÞZ���±È Restriction( Þp��� ) (
A Localized Signaling Network

At last but not least, we want to sketch the modeling of a spatially distributed biochemical network
in MGS. We rely on a model proposed by A. E. Bugrim [Bug00]. The example focuses on a small
signaling network that consists of cAMP and calcium signaling. See figure 7 for a more complete
description.

The corresponding topological structure mimics the spatial organization of the cell using nested
multisets, see figure 8. The MGS declarations:

collection Volume = bag;
collection Membrane = bag;

collection Environment = Volume;
collection Plasma = Membrane;
collection Cytosol = Volume;
collection EndoRetic = Membrane;

are used to introduce some new kinds of multisets (the bag keyword). This kinds are used here
mainly do describe the hierarchy of localization and compartments and can be used, if necessary, to
discriminate between multisets.

The main part of the corresponding MGS program consists in defining the ontology of this appli-
cation domain: there exists several molecules, each have a name; some exists in two state: active or
inactive; some are characterized as receptors; etc. Such ontology is described in MGS using subtyping.
These subtypes are then used in pattern-matching to select entities with or without some properties.
For example, a molecule is described as a record having or not some fields. Record type in MGS may
specify the presence or the absence of a field, or the value of a specific field. For instance:

state Molecule = � name ( ;
state Activity = � activation ( ;
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Figure 7: cAMP and calcium signaling pathways (this schema is reprinted from [Bug00]). The dif-
ferent components of the two pathways are localized at various places within the cell.
The first steps of the cAMP pathway occur at the plasma membrane, starting with the activation of
adrenegric receptors. Then, the cAMP molecules bind to a regulatory sub-unit of the protein kinase
A, with the effect of dissociating a catalytic sub-unit C. The localization of PKA depends of a family
of anchoring proteins AKAPs that target this kinase to different compartments. In this example, two
localizations are considered: the plasma membrane and an internal compartment (e.g., nucleus or
ER).
The calcium pathway starts by the activation of a channel in the plasma membrane. The fraction of
PhK associated to the internal compartment is the target of both pathways. A possible inhibitor I of
PKA is also considered.
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Figure 8: The reaction, diffusion and transport processes described in figure 7 are modeled as multiset
transformations taking place in a nest of multisets. This is reminiscent of the P system approach, see
section 3.



state Activated = � activation = 1 ( ;
state Inactivated = � activation = 0 ( ;
state ATP = Molecule + � name = "atp" ( ;

define five record types. The record type declaration is introduced by the keyword state. Molecule
is the type of any record having at least a field named name. Activated is the type of a record having
at least a field named activation and with value 1. This type is a subtype of Activity which only
requires the presence of the field activation. The type ATP corresponds to a molecule named
"atp".

Three kinds of transformations are used to define the processes of the Bugrim’s model. The first
class corresponds to some ancillary transformations. For example

trans ActivateReceptor = � � :Receptor � r + � activation=1 (L(
is a rule that updates to 1 the field activation of an entity � of type Receptor. This kind of
transformations is triggered by a rule of the sole transformation of the second class. This transforma-
tion summarize all the rule corresponding of the description of the biochemistry (they are about 10
reactions in this pathway):

trans Biochemistry = �
R1 = � :ActiveAgonist, � :PlasmaÈ � + � activation=0 ( ,ActivateReceptor(p);
...(

For example, rule R1 specifies that an active agonist and a plasma membrane interact to inactivate the
agonist and to transform the plasma with transformation ActivateReceptor (this transformation turn
on all the activation fields of the receptors anchored in the plasma membrane).

There is also only one transformation in the last class of transformations. It is used to thread the
biochemistry rules amongst the nested multisets:

fun Run( q ) = Thread(Biochemistry( q ));
trans Thread = �� :Membrane È Run(� );Ù :Volume È Run( Ù );(

The transformation Thread applies the function Run to each entity of type Membrane or Volume found
in the collection argument. The function Run consists in running the biochemistry transformation and
then iterating the threading.

The complete MGS program is approximatively 150 line long, including the building of the initial
system state. It describes 40 molecules in diverse states, uses of 5 auxiliary transformation to define
10 chemical interactions.

6 Multiscale graphs

The previous formalisms have been used to model the changes of structure that arise throughout time.
However, biological structures may change also due to a change in the scale of observations.



On the one hand, plants appear as complex structures due to the intrication of many sub-structures
at various levels of detail. On the other hand, plants are essentially spatially and temporally periodic
structures which gives an overall impression of simplicity. In such a paradoxical situation, the ques-
tion arises: what mathematical formalisms and what tools are necessary to model plants at several
scales ?

In this chapter, we analyse how biological systems, such as plants, can be formally represented
with combinatorial formalisms (see section 2). We particularly analyze how this formalism must
be designed in order to account for a new dimension, namely the scale dimension. We then briefly
describe the types of mathematical and computational tools that must be developed in this context.

6.1 Plants as modular organisms

The growth of a plant can be depicted as the result of two growth processes. This apical growth
process gives the plant the ability to develop in one direction. During their activity, shoot meristems
can give birth to distinct embryogenic cellular areas (always associated with corresponding leaves),
called axillary or lateral meristems. This defines the branching process. Plants make branching
structures if the meristems located at leaf axils enter an apical growth process. Using the branching
process, plants can develop shoots in more than one direction. The overall growth process is thus the
combination of both the apical growth process and the branching process. Growth is a fundamentally
repetitive process which creates various forms of patterns repeated as ”modules” throughout the plant
structure ([HRW86], [Bar91]). Figure 9 illustrates different types of modules that can be observed on
plants.

Figure 9: Different types of modularity in plants. a. nodes b. axes c. whorls d. branching systems e.
crownlets

For a given type of module, the plant can be split-up into a set of modules of this type. This defines
a particular plant modularity. A plant modularity, is caracterised by the type of modules considered
and their adjacency within the plant. This information can be represented by a directed graph.

A directed graph is defined by a set of objects, called vertices, and a binary relation between these
vertices. The binary relation defines a set of ordered pair of vertices, called edges. In plant represen-
tations, vertices represent botanical entities and edges adjacency between these entities. Edges are
always directed from oldest entities to youngest ones. Given an edge aQ���!ß~d , we say that � is a father
of ß and ß is a son of ��e Directed graphs representing plants have tree-like structures : every vertex,
except one, called the root, has exactly one father vertex. Morevover, in order to identify the different
axes of a given plant, two types of connections are distinguished : an entity can either precede (type
’ t ’) or bear (type ’+’) another entity (Figure 10). In order to describe different characteristics of



plant entities, vertices can have attributes, e.g. length, diameter, spatial location, leaf area, number of
flowers, type of branched entities, etc.

Figure 10: a. A tree b. The tree graph representation of its topology (at node scale)

6.2 Multiscale representations

Many modularities can exist on a single individual. Several types of modularity, stemming from either
natural or artificial decomposition of the plant into modules, can exist within a single individual at
the same time. For above-ground systems, at least the nodal (the plant is a set of leaves) and the
axial modularity (the plant is a set of axes) coexist. If, in addition, the plant reiterates, a modularity
by reiteration is superimposed on the previous ones. Thus, there always exist two or three types
of modularities expressed in a plant simultaneously. There can be more, depending on the number
of regular fluctuations that characterize the plant growth. This is the case, for example, for plants
containing growth unit or annual shoot modules. These types of module can exist simultaneously
in a plant, such as in apricot tree, evergreen oak or Aleppo pine. For a single plant, there is thus the
theoretical possibility of finding numerous types of modularity, each one corresponding to a particular
topological interpretation of the plant.

The existence of several modularities on the same plant can be illustrated by Vochysia guyanensis
[San92]. For this plant, the number of modularities stemming from natural decomposition is rela-
tively high. The highest scale corresponds to the description of the topological structure in terms of



internodes. At a lower scale, the rhythmic elongation of stems produces an alternate sequence of
cataphylls and developed leaves which enables the observer to define growth unit modules (11.a).
The final stopping of stem elongation, due to the death of their apical meristem, makes it possible to
group growth units into axes (11.a). The architectural unit of the young tree consists of a stack of such
axes (11.b). The plant continues its development by reiterating its architectural unit. The resulting
topological structure is described in terms of reiterated complexes. Eventually, at the lowest scale,
the crown of the adult tree is a set of crownlets, each of them made of reiterated complexes (11.c).
The plant can thus be represented by a specific topological structure for each possible scale. The
set of these topological structures defined at every scale and their relations characterizes the overall
topological structure of the plant, i.e. multiscale topological structure of the plant.

Figure 11: Nested modularities: a. nodes, growth units and axes. b. Architectural unit c. crowlets.

To formally represent the multi-modular structure of plants, extension od directed graphs, called
multiscale tree graphs (MTGs) [GC98], are used. The MTG formalism has been designed in order
to enable users to express both the modularity and the multiscale nature of plant structures. Each
scale of analysis corresponds to a modular structure which can be formally represented by a tree
graph. Entities at one scale are decomposed into entities at finer scales. For instance, internodes of
Figure 10.a can be grouped into growth units, leading to a more macroscopic description of the plant
topology (Figure 12).

A MTG integrates in a homogeneous framework the different tree graphs corresponding to plant
descriptions at different scales (Figure 13.a). Vertices at one scale are composed of vertices at a higher
scale. If an entity � is composed of � entities q  �7q � ��elele��7q�Bg� for every àOá:â�]+�7�sãQ�A� is called the complex
of q = , and q = is a component of � . The complex of any entity q = is denoted äOarq = d�e If the scale of �
is defined by the integer �+� then for every àHá�â�]_�#�sãQ� the scale of q = is �R�<] . The most macroscopic
scale ��. consists of a single vertex, representing the entire plant, and by convention has value 0. In
order to maintain coherence between the different tree graph representations of a same individual,
MTGs must respect the following consistency constraint : if there exists an edge arqå�#vcd in the tree
graph representing the plant structure at scale ���«]+� and if the complexes of q and v are different,
then there necessarily exists a corresponding edge awäOarqsd~�7äOawvnd3d between these complexes in the tree



Figure 12: a. Partitionning graph of Figure 10 into growth units (M). b. Topology of the plant at scale
M.

graph representing the plant at scale � (Figure 13.b) This expresses that the connection between two
macroentities results from the connection between two of their components.

6.3 Space of modularities

From a structural point of view, the relative position of two modularities in a plant can be of two
types.

� Firstly, one modularity is a refinement of the other (Figure 14.a). For example, a topological
structure represented in terms of growth units can be refined by considering the plant decompo-
sition in terms of internodes. Each growth unit is considered as a set of internodes. Similarly,
the axis structure of a plant can be interpreted as a refinement of the plant description in terms of
branching systems, since each branching system can be decomposed into a set of axes. Hence,
one modularity is a refinement of another if each module of the second can be decomposed into
a set of modules of the first and, reciprocally, each module of the first modularity is a part of a
module of the second. These modularities correspond to two topological structures representing
the plant at two different scales. The highest scale corresponds to the finest modularity, while
the lowest scale corresponds to the coarsest modularity. Within a plant representation, the scale
of internodes is higher than the scale of growth units which is itself higher than the scale of
axes.� Secondly, the two modularities are not a refinement of eachother : they are overlapping (Figure
14.b). This is the case if at least one module of one modularity shares a common part with one
module of the second modularity, whereas there is no inclusion of one into the other. Let us



Figure 13: a. Multiscale graph corresponding to tree of Figure 10. b. corresponding topology at S
module scale.

consider for example the topological structure of an apple tree in terms of both annual shoots
and axes (14.b). At the beginning of the vegetative period, the apical meristem of some branches
produces short shoots terminated by a flower, called ”bourse”[CL95]. During a second phase
of the vegetative period, a vegetative shoot may develop on some bourses. These are called
”bourse shoots”. A bourse shoot is part of the same annual shoot as the bourse, since it is
created during the same vegetative period. Therefore, some annual shoots are made of a bourse
bearing a bourse shoot. Such an annual shoot is thus straddling two axes : on one side the
axis terminated by the bourse and on the other side, the axis which begins with the bourse
shoot. Reciprocally, each axis is straddling two annual shoots. The modularities corresponding
respectively to axes and annual shoots determine two topological interpretations of the plant
which are not a refinement of eachother.

The different types of modularities that can be identified within a given plant define different
topological structures. These modularities are comparable if they are refinements of each other. The
refinement relation expresses the existence of a decomposition relation between the modules of the
coarsest modularity and those of the finest. In the opposite case, modularities are incomparable, i.e.
none of them is a refinement of the other. No decomposition relation exists between the modules of
both modularities since they overlap.

Now, if we consider a graph æ and different partitionning of the vertices of this graph, representing
different modularities (Figure 15.a). Let us assume that each modularity is represented by a square
element (Figure 15.b), and an edge is drawn from modulatities 
 to modularity � whenever 
 is a
refinement of �'e The graph obtained from this process is a lattice :

Let æ be a tree graph. Let ç�awæcd be the set of all partitions on æ{� such that the induced
macroscopic graph (quotient graph) is a tree graph.

ç�awæcd is a lattice



Figure 14: a. nested modularities. b. overlapping modularities

Figure 15: a. a general MTG. b. its corresponding modularity graph.

This proposition characterizes the space of all modularities that can be potentially defined on a
given individual by a remarkable algebraic property : it is a sublattice of the partition lattice (the set
of all subsets of a set). A multiscale graph is associated with only a subset of this sublattice. This
subset corresponds to the set of modularities that are actually taken into consideration by the observer
in the plant description. Multiscale graphs are thus a model of the observer’s subjective interpretation
of the plant.

6.4 Growing multiscale structures

From a temporal point of view, the analysis of the relations between the different types of modularities
is a delicate issue. Indeed, whereas the growth of a topological structure at a given scale seems to be a
relatively clear phenomenon, the simultaneous growth of different topological structures representing
a given individual, at different scales, raises the problem of understanding how these growth processes
are linked to each other [GC98]. Figure 16 illustrates such a problem.

Consider an adult tree bearing a well hierarchized crown (16, date -  ). At a subsequent date - � , a



possible development of the crown may preserve the original hierarchy of branches. Another possible
development is that one of the branches starts to compete with the trunk, yielding a reiterated complex
(16 dates -  and - � ). This phenomenon can be interpreted in terms of MTGs (lower part of 16) if we
assume that a component can belong to different complex entities throughout time.

Figure 16: a. (upper part) reiterated complex is produced througout time. b. (lower part) Correspond-
ing MTG interpretation

The growth of a multiscale structure illustrates an important aspect of the model : rather than
an objective plant topological structure, defined once and for all, a time-varying multiscale graph
actually represents the plant topological structure as a subjective object depending on the observer’s
goals, knowledge and means of observation.

6.5 Handling plant architecture databases

Multiscale tree graphs are currently used as the backbone of a general methodology for measuring
and analyzing plant topological structures, implemented in the AMAPmod software [GGC99]. Real
plants are encoded by the observer using a specific coding language designed for this purpose. The
multiscale plant topological structure can then be loaded into the computer. A set of dedicated tools,
gathered in the AMAPmod software, enable the user to access these virtual plants and to explore
them. They provide users with a methodology and corresponding tools to measure plants, create plant
databases, analyse information extracted from these databases. This methodology can be depicted as
follows (Figure 17).

Multiscale representation of plant architectures are described from either field observations or
plant growth simulation programs, using a dedicated encoding language. The resulting database can
then be analysed with various statistical analysis tools (e.g. [GBCC01]). Plants can be graphically
reconstructed at different scales and vizualised in 3 dimensions. Various types of data can be extracted
and analysed with different viewpoints. Different families of probabilistic or stochastic models are
provided in the system. These models are intended to be used as advanced statistical analysis tools
for exploring in greater depth the information contained in the database. All these tools are available



Figure 17: Synopsis of the AMAPmod system.

through a querying language called AML (AMAPmod Modelling Language) which enables the user
to work on various objects, i.e. multiscale representation of plants, samples of data or models. AML
provides the user with a homogeneous language-based interface to load, display, save, analyse or
transform each type of object.
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d’Esonne, Evry, France, 2001.

[GM02] J.-L. Giavitto and O. Michel. The topological structures of membrane computing. Fun-
damenta Informaticae, 49:107–129, 2002.

[GMS95] J.-L. Giavitto, O. Michel, and J.-P. Sansonnet. Group based fields. In I. Takayasu, R. H. Jr.
Halstead, and C. Queinnec, editors, Parallel Symbolic Languages and Systems (Interna-
tional Workshop PSLS’95), volume 1068 of Lecture Notes in Computer Sciences, pages
209–215, Beaune (France), 2–4 October 1995. Springer-Verlag.

[GV01] J.-L. Giavitto and E. Valencia. Diagrammatic Representation and Reasonning, chapter A
Topological Framework for Modeling Diagrammatic Reasoning Tasks. Springer-Verlag,
2001.

[Han92] J. S. Hanan. Parametric L-systems and their application to the modelling and visualiza-
tion of plants. PhD thesis, University of Regina, June 1992.

[HP96] M. Hammel and P. Prusinkiewicz. Visualization of developmental processes by extrusion
in space-time. In Proceedings of Graphics Interface ’96, pages 246–258, 1996.



[HR75] G. T. Herman and G. Rozenberg. Developmental systems and languages. North-Holland,
Amsterdam, 1975.

[HRW86] J. L. Harper, B. R. Rosen, and J. White. The growth and form of modular organisms. The
Royal Society, ”London, UK”, 1986.

[Jef85] D. Jefferson. Virtual time. ACM Transactions on Programming Languages and Systems,
7(3):404–425, July 1985.

[JTN00] K. Chen J.J. Tyson, M.T. Borisuk and B. Novak. Computational Modeling of Genetic and
Biochemical Networks, chapter Analysis of Complex Dynamics in Cell Cycle Regulation,
pages 287–306. MIT Press, 2000.

[Kan00] Minoru Kanehisa. Post-genome informatics. Oxford University Press, 2000. ISBN 0-19-
850326-1.

[Kau95] S Kaufman. The Origins of Order: Self-Organization and Selection in Evolution. Oxford
University Press, 1995.

[Kel95] Evelyn Fox Kelle. Refiguring Life: Metaphors of Twentieth-century Biology. Columbia
University Press, 1995.

[Kre86] W. Kreutzer. System simulation: Programming styles and languages. Addison-Wesley,
Sydney, 1986.

[LIL89] C. Langton, L. In, and C. Langton. Artificial life, 1989.

[Lin68] A. Lindenmayer. Mathematical models for cellular interaction in development, Parts I
and II. Journal of Theoretical Biology, 18:280–315, 1968.

[Lin71] A. Lindenmayer. Developmental systems without cellular interaction, their languages
and grammars. Journal of Theoretical Biology, 30:455–484, 1971.

[Lin74] A. Lindenmayer. Adding continuous components to L-systems. In G. Rozenberg and
A. Salomaa, editors, L Systems, Lecture Notes in Computer Science 15, pages 53–68.
Springer-Verlag, Berlin, 1974.

[LP02] Brendav Lane and Przemek Prusinkiewicz. Specifying spatial distributions for multilevel
models of plant communities. In proc. of Graphics Interface 2002, 2002.

[Lyn96] N. A. Lynch. Distributed algorithms. Morgan Kauffman, Los Altos, CA, 1996.

[Man01] Vincenzo Manca. Logical string rewriting. Theoretical Computer Science, 264:25–51,
2001.

[mau02] Maude home page, 2002. http://maude.csl.sri.com/.

[May75] R. M. May. Biological population models obeying difference equations: Stable points,
stalbe cycles, and chaos. Journal of Theoretical Biology, 51:511–524, 1975.

[May76] R. M. May. Simple mathematical models with very complicated dynamics. Nature,
261:459–467, 1976.



[Mei82] H. Meinhardt. Models of biological pattern formation. Academic Press, New York, 1982.

[Mic96] O. Michel. Reprsentations dynamiques de l’espace dans un langage dclaratif de simula-
tion. PhD thesis, Universit de Paris-Sud, centre d’Orsay, December 1996. N è#mZh�©+} , (in
french).

[Pat94] Ray Paton, editor. Computing With Biological Metaphors. Chapman & Hall, 1994.

[Pau98a] Gheorge Paun, editor. Computing with Bio-Molecules: Theory and Experiments.
Springer, 1998.

[Pau98b] Gheorghe Paun. Computing with membranes. Technical Report TUCS-TR-208, TUCS -
Turku Centre for Computer Science, November 11 1998.

[Pau00] G. Paun. From cells to computers: Computing with membranes (p systems). In Workshop
on Grammar Systems, Bad Ischl, austria, July 2000.

[PH90] P. Prusinkiewicz and J. Hanan. Visualization of botanical structures and processes us-
ing parametric L-systems. In D. Thalmann, editor, Scientific visualization and graphics
simulation, pages 183–201. J. Wiley & Sons, Chichester, 1990.

[PJS92] H.-O. Peitgen, H. J urgens, and D. Saupe, editors. Chaos and fractals. New frontiers of
science. Springer-Verlag, New York, 1992.

[PL90] P. Prusinkiewicz and A. Lindenmayer. The algorithmic beauty of plants. Springer-Ver-
lag, New York, 1990. With J. S. Hanan, F. D. Fracchia, D. R. Fowler, M. J. M. de Boer,
and L. Mercer.

[Pru98] P. Prusinkiewicz. Modeling of spatial structure and development of plants: a review.
Scientia Horticulturae, 74:113–149, 1998.

[Pru99] P. Prusinkiewicz. A look at the visual modeling of plants using L-systems. Agronomie,
19:211–224, 1999.

[San92] E. Sanoja. Essai d’application de l’architecture vgtale la systmatique. L’exemple de la
famille des Vochysiaceae. PhD thesis, USTL Montpellier France, 1992.

[Smi99] John Maynard Smith. Shaping Life: Genes, Embryos and Evolution. Yale University
Press, 1999.

[Ste88] Isabelle Stengers. D’une science l’autre. Les concepts nomades. Le Seuil, 1988.

[TM87] T. Toffoli and N. Margolus. Cellular automata machines: a new environment for model-
ing. MIT Press, Cambridge, 1987.

[VN66] J. Von Neumann. Theory of Self-Reproducing Automata. Univ. of Illinois Press, 1966.

[WMS73] M. Wilcox, G. J. Mitchison, and R. J. Smith. Pattern formation in the blue-green alga,
Anabaena. I. Basic mechanisms. Journal of Cell Science, 12:707–723, 1973.



 



Cellular Automata, Reaction-Diffusion and Multiagents Systems for 
Artificial Cell Modeling 

 
Abdallah Zemirline1, Pascal Ballet1, Lionel Marcé1, Patrick Amar2,3, Gilles Bernot2, Franck 
Delaplace2, Jean-Louis Giavitto2, Olivier Michel2, Jean-Marc Delosme2, Roberto Incitti4, Paul 
Bourgine5, Christophe Godin6, François Képès7 , Philippe Tracqui8, Vic Norris9, Janine Guespin9, 
Maurice Demarty9, Camille Ripoll9 
 
1 EA2215, Département d'Informatique, Université de Bretagne Occidentale, Brest 
2 Laboratoire de Méthodes Informatiques, CNRS UMR 8042, Université d'Evry, 91025 Evry 
3 Laboratoire de Recherche en Informatique, CNRS UMR 8623, Université Paris-Sud, Orsay 
4 Institut des Hautes Études Scientifiques, Bures, France & genopole®, Evry, France 
5 CREA - Ecole Polytechnique 
6 UMR Cirad/Inra modélisation des plantes, TA40/PSII, Montpellier 
7 Atelier de Génomique Cognitive CNRS ESA8071/genopole, Evry 
8 Lab. TIMC-IMAG, Equipe DynaCell , CNRS UMR, 5525, Faculté de Médecine, La Tronche 
9 Laboratoire des Processus Intégratifs Cellulaires, UPRESA CNRS 6037, Faculté des Sciences & Techniques , 
Université de Rouen, 76821, Mont-Saint-Aignan France 
 

Introduction 

Objectives of the simulation 
Simulation is the experiment on a model. A model represents a simplification of a real 

phenomenon. Only certain relevant parameters are taken into account and numerous others 
are untidy. The simulation of a model has sense only if its behavior is close to the real 
phenomenon, that is, if it can approach reality. So, by changing the parameter values of the 
model, the simulation allows to infer what would take place in reality under the influence of 
similar actions. 

The simulation has various objectives. First, when the model is validated by the real 
experiment, the simulation allows to make numerous and accelerated experiments, with a very 
accurate parameter control. Secondly, if the model is incomplete or insufficient, the 
simulation allows to test hypotheses. In that case, it participates in the settling of the model.  
Numerous fields of research and industry use the simulation, either for the model 
development, for the product settling or either for the forecast of complex phenomena. 
Aeronautics, motorcar, economy, chemistry, meteorology, astrophysics, cosmology, nuclear 
physics or more recently biology use it frequently. 

Simulation and biology 
The in-vitro experiment, constitutes for biology the most wide-spread type of 

simulation. Cells are taken apart from an organism, then are studied outside, generally in a 
test tube. Around the beginning of the 20th century, Michaelis and Menten described the 
biochemical phenomenon of enzymatic reaction using differential equations. So, 
mathematical models became an alternative to in-vivo or in-vitro experiments. This is the start 
of the computational biology. Several biological fields of research use the mathematical tool 
to describe or explain their phenomenon. For example, in 1966 the first mathematical model 
describing an immune phenomenon was developed [HEG66]. A few years later, by 1970 , the 



immune models based on differential equations became more complex. In 1974, Jerne 
[JER74] described his model of the idiotypic network. His model is highly non linear and no 
simple analytical solution can be found. The use of the numeric computation then became a 
necessity. At the same time, data processing evolves, both from the point of view of the 
calculation power and from the languages of development. Several paradigms appear like 
artificial life, cellular automata, reaction-diffusion system, object programming or multi-
agents system. Thus, it becomes possible to model and to simulate biological mechanisms not 
by using differential equations only. 

Today, data processing is a useful tool for biology and for the alive world exploration. 
We are convinced, and this course tries to show it, that the study of living cells can be made 
partially by means of computer, that is in-silico (also called in machina or in-virtuo). We will 
see how we can connect together different computational systems to build an artificial cell. 
Each system describes a level of detail for the cell (Table 1): 

- reaction-diffusion system allows to model the lower granularity of the cell, that is 
ionic and small molecules (from Angstrom to nanometer) 

- cellular automata represents the macromolecular level (few nanometers). Macro 
molecules are the basic components of hyperstructures 

- multiagents system will be used to model the hyperstructure level (several 
nanometers). 

- reaction-diffusion system could be used again to model some tissue morphogenesis. 
Perhaps, it could be use to model intra-cellular membrane too. 

 
Biological Level Dimension Model 

Ionic / Small molecules 10-10 m Reaction - Diffusion System 
Macromolecules 10-9 m Cellular Automata 

Hyperstructures & membranes 10-8 to 10-7 m Multiagents System 
Membrane & Tissues 10-7 m to 10-5 m Reaction - Diffusion System 

Table 1: different possible levels of granularity for an integrated artificial cell 
modeling 

 
Before the description of the different approaches, we will see a short state-of-the-art 

in software tools aiming to simulate intra-cellular mechanisms. First, we will see the global 
objectives thanks to the Microbial Cell Project, then we will focus on two advanced software 
applications: electronic cell and virtual-cell. 

Advanced applications 
 

Principle 
An advanced application in cell simulation offers software tools to model, simulate 

and interpret results. It must be used by biologists without any programming and it offers an 
intuitive interface. An advanced application must point out its own limitations, the robustness 
of the model parameters, the link between the model and the simulation and the results 
accuracy. An advanced application is integrated when it combines different means of 
modeling together. 
  

We will see two applications that are integrated and advanced: e-cell [ECE01] and v-
cell [VCE01]. They are based on a differential equation model (see example of Equation 1). 
The first one (e-cell) includes settled metabolic pathways which could be coupled with an 



hypothetic biologist pathway model. The second one (v-cell) uses images (from microscopy) 
to put the simulation into the « real » image. 

Integrated Project: Microbial Cell Project 
 
From Notice 01-21; Advanced Modeling and Simulation of Biological Systems [MCP01] 
  

“ SUMMARY (January 2001): The Offices of Advanced Scientific Computing 
Research (ASCR) and Biological and Environmental Research (OBER) of the Office of 
Science (SC), U.S. Department of Energy, hereby announce interest in receiving applications 
for grants in support of computational modeling and simulation of biological systems. 
The goal of this program is to enable the use of terascale computers to explore fundamental biological processes 
and predict the behavior of a broad range of protein interactions and molecular pathways in prokaryotic microbes 
of importance to DOE. This goal will be achieved through the creation of scientific simulation codes that are 
high performance, scalable to hundreds of nodes and thousands of processors, and able to evolve over time and 
be ported to future generations of high performance computers.  The research efforts being sought under this 
Program Notice will take advantage of extensive information inferred from the complete DNA sequence, such as 
the genetics and the biochemical processes available for a well-characterized prokaryotic microbe; for example, 
Escherichia coli (E. coli). This notice encourages applications from the disciplines of applied mathematics and 
computer science in partnership with microbiology, molecular biology, biochemistry and structural and 
computational biology to combine information available on a well characterized prokaryotic microbe with 
advanced mathematics and computer science to enable this new understanding. This announcement is being 
issued in parallel with Program Notice 01-20, the Microbial Cell Project. Together, they represent a planned first 
step in an ambitious effort to understand the functions of the proteins in a prokaryotic microbial cell, to 
understand their interactions as they form pathways that carry out DOE-relevant activities, and to eventually 
build predictive models for microbial activities that address DOE mission needs. 
 
Different goals of the project: 
Goal 1: Identify and Characterize the Molecular Machines of Life -- the Multiprotein 
Complexes that Execute Cellular Functions and Govern Cell Form  
Goal 2: Characterize Gene Regulatory Networks  
Goal 3: Characterize the Functional Repertoire of Complex Microbial Communities in Their 
Natural Environments at the Molecular Level  
Goal 4: Develop the Computational Methods and Capabilities to Advance Understanding of 
complex Biological Systems and Predict Their Behavior: 
 
 
Category Research Goal  
Sequencing Informatics �Automated microbial genome assembly  

�Laboratory Information Management Systems 
(LIMS)  

Sequence Annotation �Consistent gene finding, especially for translation 
start  

�Identification of operon and regulon regions  
�Promoter and ribosome binding-site recognition  
�Repressor and activator-site prediction  

Structural Annotation �High-throughput automated protein-fold recognition
�Comparative protein modeling from structure 

homologs 
�Modeling geometry of complexes from component 

proteins  
Functional Annotation �Computational support for protein identification, 

post-translational modification, and expression  
�Protein-function inference from sequence 

homology, fold type, protein interactions, and 
expression  



Category Research Goal  
�Methods for large-scale comparison of genome 

sequences  
�Mass spectrometry LIMS and analysis algorithms  
�Image analysis of protein interactions and dynamics 

New Databases �Environmental microbial populations 
�Protein complexes and interactions 
�Protein expression and post-translational 

modification  
Data Integration �Tools interoperation and database integration 

�Tools for multigene, multigenome comparisons 
�Automated linkage of gene/protein/function catalog 

to phylogenetic, structural, and metabolic 
relationships  

Microbial Ecology Support �Statistical methods for analyzing environmental 
sampling 

�Sequence- and expression-data analysis from 
heterogeneous samples 

�Pathway inference from known pathways to new 
organisms and communities  

Modeling and Simulations �Molecular simulations of protein function and 
macromolecular interactions 

�Development of computational tools for modeling 
biochemical pathways and cell processes 

�Implementation of computational tools 
�Structural modeling of protein variants 
�Computational tools for modeling complex 

microbial communities  
Visualization �Methods for hierarchical display of biological data: 

(System level > Pathway > Multiprotein machines 
> Proteins > mRNA > Gene)  

�Displays of interspecies comparisons 
�Visualization by functional pathways (e.g., DNA 

repair, protein synthesis, cell-cycle control)  
 
Technology Needs 
 
 The Human Genome Project taught that evolutionary improvement in existing technologies (e.g., DNA 
sequencing) can have a revolutionary impact on science. The systems approach taken by the Genomes to Life 
program dictates that existing technologies must evolve to a high-throughput capability. In addition, 
revolutionary technologies need to be developed, incorporating new modes of robotics and automation as well as 
advanced information and computing technologies. The following is a list of some key high-throughput 
technologies.  
 
DNA, RNA, Protein, Protein Machine, and Functional Analyses and Imaging  
 
· High-throughput identification of the components of protein complexes; mass spectrometry, new chip-based 
analyses, and capture assays 
· Parallel, comparative, high-throughput identification of DNA fragments among microbial communities and for 
community characterization  
· Whole-cell imaging; novel imaging technologies, including magnetic resonance optical, 
confocal, 
· soft X-ray, and electron microscopy; and new approaches for in vivo mapping of spatial 
proximity  
· New technologies for mapping contact surfaces between proteins involved in complexes or 
molecular machines (e.g., FRET and neutron scattering)  



· Functional assays; development of novel technologies and approaches for defining the 
functions of genes from uncultured microorganisms  
 
Sampling and Sample Production  
 
· Approaches for recovering RNA and high-molecular-weight DNA from environmental 
samples and for isolating single cells of uncultured microorganisms  
· Advances in separation techniques, including new techniques to capture targeted proteins, 
and high-affinity ligands for all gene products  
· Improved approaches for studying proteins that are hard to crystallize (e.g., membrane 
proteins)  
 
Informatics, Modeling, and Simulation  
 
· Algorithms for genome assembly and annotation and for bioinformatics to measure protein 
expression and interactions  
· Standardized formats, databases, and visualization methods for complex biological data sets, 
including expression profiles and protein-protein interaction data  
· Molecular modeling methods for long-timescale, low-energy macromolecular interactions 
and for prediction of chemical reaction paths in enzyme active sites  
· Methods for automated collection and integration of biological data for cell-level metabolic 
network analysis or pathway modeling; improved methods for simulation, analysis, and 
visualization of complex biological pathways; and methods for prediction of emergent 
functional capabilities of microbial communities. ” 

Advanced Application: Electronic Cell 
 This application is able to process differential equations that model a molecular 
transformation (A + E -> A' + E), a complex formation (A + B -> AB), a dissociation (AB -> 
A + B) and an enzymatic reaction (A + B + E -> C + D + E) (Figure 1). 

  
Figure 1: (1) concentrations in one compartment - (2) interactions(3) balance 

reaction - (4) speed of non enzymatic reactions (5) speed of Michaelis-Menten reaction 
 

Moreover, e-cell allows the grouping of molecules in compartments. Also, the 
molecules can be transported from one compartment to another (Figure 2). 

 

 
  Figure 2: (1) molecule transportation into the same compartment (2) molecule 

transportation between two compartments 



 
There are six metabolic pathways included into the system : nucleotide biosynthesis,  

phospholipid biosynthesis, amino acid biosynthesis, energy metabolism and gene expression 
System. Like this, the biologist can coupled its own metabolic pathway models to the whole 
system (Figure 3). 

 

 
Figure 3: pre-existing metabolic pathways in e-cell. 

 
The molecules, reactions and compartments are describe in a text file called “rule file”. 

The e-cell system analyzes this file (the source code looks like C or C++) and allows a 
dynamic simulation of the molecule concentrations (Figure 4). 
 

 
Figure 4: Information flow in the E-Cell System. 



 
The interface permits the control and the observation of the system (Figure 5). 

(1)
(2)

(3)

(4)

(5)

 
Figure 5: 1) Simulator control, 2) switches for gene expression (on / off) 

3) curves of molecule concentrations - 4) one molecule information, 
5) activity of the molecular reactions. 

 

Advanced Application: Virtual Cell  
From the Virtual Cell web site [VCE01]. 
 
Introduction 

 
NRCAM (National Ressource for Cell Analysis and Modeling, USA) has created a 

remote user modeling and simulation environment utilizing Java's Remote Method Invocation 
(RMI). Users can create biological models of various types and run simulations on a remote 
server. A transparent general purpose solver is used to translate the initial biological 
description into a set of concise mathematical problems. The generated results are stored on 
the remote server and can be reviewed in the software and/or exported in a variety of popular 
formats. 

The Virtual Cell software is decomposed into three main components: 
 
1. Modeling Framework 
2. Mathematics Framework 
3. WWW Interface- 
  Biological Oriented Interface 
  Integrated Math Editor 
 
1. The modeling framework represents the physiological models of the virtual cell and 

allows for persistence and database support. 
 
2. The mathematics framework transparently solves an important class of 

mathematical problems encountered in the cellular modeling.  
 



3. The WWW accessible graphical user interface provides access to the technology 
mentioned above. The user interface has been developed using Java 2 Applets. 

 
The biologically oriented user interface allows experimentalists to create models, 

define cellular geometry, specify simulations, and analyze simulation results.  There is a Math 
Editor component which has been integrated within the biological interface. The design of the 
biological to mathematical mapping allows for separate use of biological and math 
components, and includes automatic mathematical simplification using pseudo-steady 
approximations and mass conservation relationships. This allows for direct specification of 
mathematical problems, performing simulations and analysis on those systems. Equations 
may still be generated automatically from the biological interface. The stand alone 
mathematics user interface is also a tool for modeling reaction-diffusion systems. 

 

 
 

Different steps needed to develop a simulation 
 

1. The BioModel contains all the necessary information needed to define the 
biological model, i.e. species, compartments, reactions, fluxes: 

 

 
2. The Geometry Editor is the main workspace for creating geometries. Create new 

Geometries from uploaded experimental images or from analytically defined Geometries. The 
Geometry Database displays the Geometries and any associated files, i.e. BioModels, math 
models. The following snapshot shows the Virtual Cell Geometry interface: 



 
To determine a geometry, it is possible to use a segmented experimental image: 

from a photo  to a segmented image  where the simu-
lation will take place. 

 
 

3. The Application establishes the relationship between the BioModel and Geometry: 

 
 
4. Creation of the mathematical code according to the Virtual Cell Math Description 
Language, VCMDL, in the Math Workspace. VCMDL is a declarative mathematics language, 
which has been developed to concisely describe the class of mathematical systems that are 
encountered in the Virtual Cell project. This language defines parameters, independent 
variables, differential/algebraic systems defined over a complex geometry including 



discontinuous solutions and membrane boundaries and the description of the task to perform 
on such a system: 

 
Currently six integration methods are available to solve differential equations: 
- Forward Euler (first order)  
- Runge-Kutta (second order)  
- Runge-Kutta (fourth order)  
- Adams-Moulton (fifth order)  
- Runge-Kutta-Fehlberg (fifth order)  
- LSODA (Variable order, Variable Time Step) 
 
5. Run Simulations for Compartmental and Spatial models: 

 
6. View Results for Spatial and Compartmental simulations: 

  



After these brief descriptions of advanced applications, it possible to say that one of the main 
problem of these applications is that they represent a cell like a “soupe” where spatial 
structuration and mechanical aspect are neglected. We think that these aspects are essential to 
understand the whole cell functioning. That why, the next chapters will introduce 
computational approaches that could be used to get a more realistic representation of a cell: 
reaction-diffusion systems, cellular automata and multiagents systems. 

Reaction-diffusion 
 

Principles 
 
In his article of 1952 " The chemical bases of the morphogenesis ", Turing proposes a 

mathematical theory of the interaction between cells via chemical substances [TUR52]. He 
shows that its system can express stable states and proposes it as a possible mechanism of  
development of cellular configuration (multi-cellular organisms) in forming. A reaction-
diffusion system shows how two or more chemical species diffusing on a n-dimensional space 
and reacting with one another can form many stable, cyclic or chaotic patterns. These patterns 
are formerly used to describe signals in multi-cellular organisms to control their growth.  This 
model is the source of developments as those of Meinhardt [MEI82] onto the forming of 
biologic patterns, of Linen [LIN88] on the chimiotactism, Bard [BAR81] on the generation of 
zebra fur, Murray [MUR81] on the forming of pattern in the wings of butterflies or De Boer 
[DEB89] on the cellular division. 

The basic form of a diffusion-reaction system involves two chemical species that 
diffuse in one or more dimensions and react together according to the following equations: 

 

 
where a and b represent the concentration of two chemical species. The first equation 

indicates that the variation of the a concentration during the time depends on a function F of 
the local concentrations of a and b plus the diffusion of a from places nearby. The constant Da 
indicates how fast a is diffusing (Da is bounded by 0 and 1). The Laplacian ∇2 determines 
how a is diffusing according to the nearby concentration of a. For example, if nearby places 
have lower concentrations, ∇2 will be negative and a will diffuse away from its location. 

To simulate this system, we have to digitize the different terms of the equations. The 
diffusion term becomes Da (ai+1 + ai-1 -2ai) and the reaction term depends on chemical 
equations. 

Let us go with a one-dimensional example from Turing: 
 
∆ai = s (16 - aibi) + Da (ai+1 + ai-1 -2ai) 
∆bi = s ( aibi - bi - βi) + Db (bi+1 + bi-1 -2bi) 
 
Here, the system is described using discrete equations. ai is the concentration of a at 

the position i. ai is the “cell” number i among cells putted linearly. 



The neighbours of ai are ai-1 and ai+1. The different parameters have the following 
values : 

 
i ∈ [0, 500[ to get 500 cells 
Da = 2-2 for molecule a diffusion 
Db = 2-4 for molecule b diffusion 
s = 2-10 to control the balance between reaction and diffusion 
βi = 12±0.25 for irregularities in chemical concentration along the cells. 
 
The figure 6 shows the evolution of the system up to 35000 iterations. We notice the 

formation of distinct peaks and valleys around step 10 000. If we increase the value of s the 
peaks and valleys become larger. For different values of βi , peaks and valleys are not at the 
same place, but are roughly similar. 

 

   
t = 0                                      t = 1000                                   t = 35000 

Figure 6: evolution of the system at 0, 1000 and 35000 iterations. In x there are the indexes of 
the different cells (from 0 to 360) and in y there is the concentration of each cell : ai at the top 

and bi at the bottom. We can see the formation of pic and valleys. 
 
A 2 or 3 dimensional reaction-diffusion system is more attractive for a cellular 

modeling. For example, it could be viewed as a multi-cellular tissue morphogenesis or as a 
membrane formation system. For example, using the Brusselator system (Figure 7), we can 
obtain tubular patterns. They could be used to describe the forming of a tubular network in a 
cell (see the F. Kepes & Al course in this book). 

 

 
Figure 7: tubular patterns obtained thanks the Brusselator system [DEC99]. 

(see plate 14 at the endof the book) 
 
An other example of the reaction-diffusion systems is the “chemical flower” [BOI01] 

(Figure 8). 
 



 
Figure 8: four stages of evolution of a chemical flower made using the Brusselator. We notice 

a Turing-like patterns formation. (see plate 15 at the end of the book) 
 
Inside a real cell, there are many concurrent and interacting processes. Thus, a multi-

models approach seems to be adapted for cellular simulation in absence of unified theory. For 
instance, we can imagine that the reaction-diffusion matrix could be an environment for 
entities like agents representing hyperstructures. Moreover, these agents could represents 
nucleation centers or skeletons for the reaction-diffusion process. 

So, before the descriprion of hyperstrucure, let us deal with an interesting related field 
of research: cellular automata. For our artificial cell, the cellular automata approach is used to 
model discrete molecules. These molecules are the basic shape of an hyperstructure. Into the 
next section, we will introduce the cellular automata concept which is used for the basis of 
hyperstructure forming. 

 

Cellular Automata 
 

Principles 
 
From the theoretical point of view, Cellular Automata (CA) were introduced in the late 

1940´s by John von Neumann [VNE66]. Before going further, let us clarify the functioning of 
a cellular machine on a simple but very rich example. 

A cellular machine is represented by a n dimensional matrix which contains integer 
values. Each value (at the (i,j) position for in 2D) depends on the values of its direct neighbors 
(at the (i ± 1, j ± 1) positions). According to these dependancies (rules) and the matrix at time 
t, the matrix at time t+1 is generated. 

The most popular 2D cellular automata is the John Conway's game of life [GAR70]. 
Here are the basic rules of this cellular automata : 

 
For a space (a matrix element) that is “populated” (value is 1) : 
       Each cell with one or no neighbors dies, as if by loneliness.  
       Each cell with four or more neighbors dies, as if by overpopulation.  
       Each cell with two or three neighbors survives.  
For a space that is 'empty' or “unpopulated” (value is 0) : 
       Each cell with three neighbors becomes populated.  
 
These operations are repeated as often as necessary to observe the evolutions of the 

matrix configuration and its patterns. This cellular automata is very rich in interesting 
patterns. We show four of the simplest ones (Figure 9). Every pattern seems to have its own 
“life” and generally are called boat, oscillator or glider. 

 



Oscillator

Block

Boat

Glider

 

Figure 9: Examples of patterns in the game of life 
 
More theoretically, “cellular automata are discrete dynamical systems and are often 

described as a counterpart to partial differential equations, which have the ability to describe 
continuous dynamical systems. The meaning of discrete is that, space time and properties of 
the automaton can have only a finite number of states. The basic idea is to describe a complex 
system by simulating interaction of cells following easy rules. Thus, macromolecules and 
their interactions between one another are locally defined to allow the emergence of 
hyperstructures. In other words:  

We do not describe a complex system with global equations, but let the complexity 
emerge from interaction between simple individual rules. 

Practically, the essential properties of a CA are: 
- a regular n-dimensional lattice, where each cell of this lattice has a specific state, 
- a dynamical behavior, described by neighborhood rules. These rules describe the 

state of a cell for the next time step [SCH99]. 
Cellular automata can be mathematically formalized (Equation 2). Therefore, some 

properties could be found a priori like symmetry, reversible rules, ising model, non-ergodicity 
or period doubling “ [VIC84]. 

 
(1) L={(i,j) | i,j ∈N, 0 ≤ i < n, 0 ≤ j < m} (2) Nij = {(k,l) ∈L | |k-i| ≤ 1 and | l - j |  1 }  

(3) zi j (t+1) = { 1, if (zi-1 j (t) + zi j-1 (t) + zi j (t) ) = C else 0} 
 

Equation 2: L is a m.n matrix, N is the neighborhood definition and z is the rule of cell 
evolution. 

 
Wolfram divides the cellular automata into 4 classes [WOL84]: 

�Class 1 - limit points ( Evolves to homogeneous state) 
�Class 2 - limit cycle ( Evolves to simple separated periodic structures) 
�Class 3 - chaotic - "strange" attractor ( Yields chaotic aperiodic patterns) 



�Class 4 - more complex behavior ( Yields complex pattern of localized structures) 

 
Many applications using cellular automata have been developed. An interesting choice 

for this course is a cellular automata modeling an artificial immune system. 
 
« A Computer Model of Cellular Interactions in the Immune System» F. Celada 

and P. Seiden [CEL92b]. 
F Celada and P. Seiden have developed since 1992 a simulator (ImmSim) allowing to 

study the humoral answer. The purpose of this cellular machine is to reproduce immune 
phenomena occurring within the lymphatic ganglions. It consists of a set of compartments 
arranged in a bidimensionnel grid. Each compartment can have various "values" according to 
what it represents (Figure 10). It can be the representation of a molecule or a cell. The 
modeled cells are B-cells, memory B-cells, plasmocytes, T-cells and antigen presenting cells. 
The modeled molecules are the molecules of antigens and antibodies.  Each cell has a receptor 
which is represented by a string of binary characters allowing a variety of the molecular 
diversity. Each of the entities is initially placed at random on the grid. Then, the interactions 
between nearby entities are estimated (the interactions are probabilistic and depend on the 
equivalence of both involved receptors. Then, the interactions become possible only for the 
entities being on the same compartment (it is about a modification of the rules of the cellular 
machines: here a compartment changes of state according to the entities which it contains). 
Finally, the entities can move from a compartment into another. This sequence is repeated as 
often as necessary. 

The simulator of Celada and Seiden was used in 1997 to check a theory on the paradox 
about the rhumatoide factor [STE97]. The simulation confirms the theory according to which 
the rhumatoide factor is auto-regulated without adding a pathologic entity in the immune 
system. 

 

 

Figure 10: Simulation of humoral answer at two different times. At the left, we observe the beginning of 
a immune response and at the right we see a clonal expansion of B-cells. B-cells  are in blue, T in red, 

macrophages in green and antigens in gray [ CEL92a] (see plate 16 at the end of the book) 

This example shows that cellular automata are relevant to model and simulate cellular 
and molecular phenomenon. In this book, there is a description of a cellular automata for 
hyperstructure modeling by Vic Norris & Al. 

 



However, many biological mechanisms are not easily modeled using this approach. 
For  example, to allow hyperstructure to move, a multiagent approach seems to be more 
relevant. The aim of such systems is to gather different basic cells of a cellular automata into 
a single and interacting entity named “agent”. Thus, a single entity compound with several 
molecular units could be used to describe the moving of an hyperstructure and their 
interactions. So, it allows the emergence of new complex structures. 
 

Multiagents Systems 
 

Principles 
In nature, numerous collective systems are able to carry out difficult tasks into 

dynamic and varied environments without any piloting nor external control like central 
coordination [BON94]. We notice it with ant colonies, swarms of wasps or the immune 
system. The researche in the field of Multiagents Systems has two major objectives. The first 
one concerns the theoretical and experimental analysis of the mechanisms of auto-
organization which take place when several autonomous entities interact. The second focuses 
onthe realization of distributed systems able to carry out complex tasks by cooperation and 
interaction [FER95]. 

This approach favours the local description, where the decisions are not taken by a 
global observer/controller which has the synthesis of the system, but by each of the system 
components. These components, called agents (Figure 11), have only a partial vision of their 
environment in which they evolve. Each agent has a cycle of execution during which it begins 
by perceiving its local environment by means of sensors. Then, according to the information 
resulting from the environment and according to its internal state, it takes one or several 
decisions. A decision can modify the internal state of the agent, its behavior or its 
morphology. A decision changes the  environment as well because an agent is able to act 
locally around it. For example the paws of an ant modify the position of the agent, its 
mandibles change the environment by taking or by putting down an object and, thanks to its 
pheromones, the ant changes its environment (and thus, its own future behavior and its 
congeners'). 

 

 

Figure 11: Cycle perception, decision, action of an agent 
 
An agent having superior intellectual abilities is called cognitive agent. A simple and 

basic agent is called a reactive agent. The limit between reactive and cognitive agents is not 
clearly established. The most used criterion is the environment representation used by an 
agent. An agent is said reactive if it does not have, or has only in a rudimentary way, a 
representation of its environment. On the contrary, an agent is said cognitive if it is able to 

2- Décision

3- Action

1- Perception



represent its environment and to make a map in order to plan its actions. The agents we use 
for our works are exclusively reactive because they do not have any representation of their 
environment and are unable to plan their decision. 

In spite of these limits, the collective, that is all the agents, has the possibility of 
making sensible/interesting decisions up to a certain limit. For example, ants build their hill 
on their own without any coordinator. Moreover, the immune system is able to defend an 
organism against numerous pathogenic factors without the help of a superior system. To sum 
up, these systems give evidence of a good adaptability, stability and robustness of this 
reactive and local approach. 

In spite of all these advantages, the reactive multiagent systems are not entirely 
reliable. For the immune system, cancers or auto-immune diseases proove it. As for the 
coagulation system,  haemophilia or  thromboses show us their limits. During these 
dysfunctions, the cells assume to make relevant decisions to assure the maintening of 
organisms whereas an outside observation shows that they do not. 

From a computer point of view, the multiagent system paradigm comes from the 
problem of the collective intelligence and from the emergence of structures by interactions 
[PES97]. Thus, the purpose is to create computer systems constituted of simple software 
elements having the ability to resolve one or few simple problems. For J. Ferber, the objective 
is to give birth to computer systems able to evolve by interaction, adaptation and self-
replication based on agents and working in physically distributed universes. With this kind of 
system, only the collective can, thanks to the multiple interactions between agents, lead to a 
solution. This qualitative break between the individual abilities and the collective potential is 
called emergence. 

The study of this emergence is difficult because the conventional logic does not allow 
to explain the observed qualitative break. Different descriptive and theoretical works [PES97] 
were led but without a mathematical formalization of the phenomena. However, the 
experimental characterization of the emergence is possible. Indeed, a qualitative change can 
be observed to point out strong differences in the potential of the collective with regards to the 
individual one. We notice such phenomenon even if all the entities have exactly the same 
abilities. One of the simplest illustration corresponds to the simulation of the ant sorting 
[DEN91]. Thanks to the same basic behavior, a population of artificial ants manages to sort 
out its brood. The brood represents the larvas of ants which are differentiated according to 
their stage of growth. 

What it is necessary to note above all, it is that this sorting intervenes only if the 
number of artificial ants is important enough. In other words, a single ant is unable to sort out 
on its own whereas several ants can. Here, the heaps made by ants allow to characterize the 
phenomenon of emergence. The emergence is one of the key of the agent approach. However, 
the systems where the emergence is really used remain marginal. Indeed, no rule of evident 
causality exists between the individual behavior and the collective one. 

The multiagent approach seems to be particularly adapted to the modeling and to the 
simulation of molecular and cellular phenomenon for different reasons. First, the notions of 
environment, autonomous entities, spatial distribution, distribution of roles are essential in 
biology and for a multiagent system. Second, interaction and cooperation are central both in 
biology and in the multiagent concepts. These similarities make the multiagent approach a 
natural bridge between the world of biology and that of computer simulation. 

The next section will describe the development of a multiagent system for 
hyperstrucure modeling. 
 



Applications 
 
To represent basic hyperstructure phenomena inside a cell, the model must take into account 
the aggregation and dissociation of molecular complexes. It must be computationally efficient 
to simulate numerous (> 104) interacting molecules and extensive enough to include enhanced 
phenomenon like dynamic molecular shapes, simplified molecular flows or electromagnetic 
fields. 
We propose such a system with the following properties: 
A molecule is represented by: 

�a deformable shape located into a 3D grid 

�a specific behavior according to the difference of chemical species 

The shape of a molecule represented by an agent (a molecule-agent) is based on a continuous 
3D shape or a dicrete 3D shape. To be efficiently simulated, a shape must be divided in many 
elementary cubes (Figure 12-b) that represents an approximation of the original shape (Figure 
12-a). 
 

  
(a)               (b)  

Figure 12: the left shape (a) is the original shape and the right one (b) is an approximation after a simple 
rotation. 

An agent has receptors into its shape to get information from its local environment (Figure 13-
a).  According to a local observation and its internal state, it takes decisions (Figure 13-b). 
 

  
(a)                                                                        (b) 

Figure 13: the shape has receptors to allow an agent to get information from its local environment (a). 
According to this information and its internal state, an agent can take decisions (binding, activating, moving, 

creating a deformation...) (b) 

 The figure 14 shows a binding/separation of two agents to create hyperstructures and the 
figure 15 represents a molecule activation. 

 
Figure 14: binding a separation of two agents. 

 
Figure 14: activation of a single molecule. 



The original shape can have two types of deformation: 

�with internal constraints: Original Shape + Constraints -> New Original Shape -> New 
Cube based Shape -> Shape possible into the environment ? -> If it is, acceptance of 
the new Original Shape, else cancelation. 

�With external constraints: Cube based Shape + Constraints -> Deformation forces 
applied to the Original Shape -> New Original Shape -> New Cube based Shape -> 
Possible into the environment ? -> If yes, acceptance of the new Original, else 
cancelation. 

 

 

Example of the transformation Original Shape -> Cube based Shape: 

 

 

Example of a deformation coming from internal constraints 

 

Example of a deformation coming from external constraints 

 
The basic behavior can modify the Original Shape of the molecule (internal or external 
deformation), the position of the molecule-agent (x, y, z, rx, ry, rz) according to its local 
environment (a molecule agent looks for 6 translations, 6 rotations and no move). 
More accurately, it calculates different stabilities for each choice and only one of those is 
applied. The specific behavior can be any type of algorithms. 
 

The molecule-agents live into an environment which is a set of 3D-grids. Each 3D-grid 
contains data shared by the agent-molecules and a molecule-agent can read data around itself 
to make decisions. For example, it can read into the grid the identification of each molecule-
agent to decide if they can bind together. It can also take into account an electromagnetic and 
other type of fields. 

An important part is the visualization of the 3D-matrix containing the hyperstructures. That is 
why, we have developed a 3D viewer to explore the in-silico environment (Figure 16). 



A classical 3D plotter is used to draw the simulation results and a basic simulation controller 
is included (play, pause, stop). 

 

 
Figure 16: 3D viewer of our hyperstructure simulator. (see plate 18 at the end of the book) 

 

 We have seen three possible approaches to model different cellular levels / systems. 
The next chapter explains how a reaction-diffusion system can be merged with a multiagent 
system into a multi-cellular simulator. 

Example of an integrated application 
 

From « A Simulation Testbed for the Study of Multicellular Development: the 
Multiple Mechanisms of Morphogenesis », Kurt Fleisher and Alan Barr [FLE94]. 

This paper presents a simulation framework and computational testbed to study multi-
cellular pattern formation. The approach combines several developmental mechanisms 
(chemical, mechanical, genetic and electrical) known to be important for biological pattern 
formation. The mechanisms are present in an environment containing discrete cells which are 
able to move independently (cell migration). Experience with the testbed indicates that the 
interactions between the developmental mechanisms are important in determining 
multicellular and developmental patterns. 

Each simulated cell has an artificial genome whose expression is dependent only upon 
its internal state and its local environment. The changes of each cell's state and of the 
environment are determined by piecewise continuous differential equations. The current two-
dimensional simulation exhibits a variety of multicellular behaviors, including cell migration, 
cell differentiation, gradient following, clustering, lateral inhibition and neurite outgrowth. 

 
 
 
 



The next table summaries the modeling framework: 
 

Modeling Framework 

(abstraction) 

Testbed 

(implementation) 
Discrete cells (allows cell migration) 

- cell geometry 

- cell substructures 

-growth cones 

- neurites 

 

- 2D circles 

- none 

- modeled as small cells 

- path of growth cone and communication link between cell 
and growth cone 

Genetic / Cell lineage 

- genetic control of cell operations 

- inherit state from parent cell 

- control over orientation of cell divisions 

- asymmetric cell division 

 

- Parallel Oes w/conditions 

- yes 

- yes 

- not implemented yet 
Extracellular environments 

- chemical 

- mechanical 

 

- 2D reaction-diffusion grid 

- mechanical barriers, viscous drag 
Cell-cell interactions 

- mechanical 

- chemical (membrane, proteins) 

- electrical (gap function, synapse) 

 

- collisions and adhesion between cells 

- adhesion and contact recognition 

- not implemented yet 
Cell-environment interactions 

- chemical 

- mechanical 

 

- emit, absorb, sense values in grid 

- cell-environment collisions and adhesion 
Table 1: the modeling framework and its implementation. 

 
Detailed implementation: 
 
Cell: A cell is modeled as a geometric shape (currently a circle, with optional neurites) 

with a given response to applied forces, as well as an array of cell state variables. 
 
Continuous cell behaviors: Cells exhibit several continuous behaviors, determined by 

the cell behavior functions 
- attempt to move in some direction (may be limited by collision, adhesion or drag) 
- attempt to grow in size 
- emit or absorb chemical from the environment 
- change amount of particular proteins in the membrane (eg. Cell adhesion proteins, 

which mediate how much this cell will adhere to another cell) 
 
Discontinuous cell behaviors (events): The cell provides functions which determine 

the timing of the following events. An event is a discontinuty in the solution, which stops the 
solver and may create or destroy data structures. The timing of events is determined by cell 
behavior functions: 

- split (cell division) 
- die 
- emit neurite with growth cone 



 
Cell state variables: An array of variables which loosely represent the amounts of 

proteins within the cell. The values of these variables affect the cell's movements, the timing 
of events and the cell's interaction with the environment. 

 
Environment: All the simulated cells interact within a single global environment. The 

environment contains diffusing, reacting chemicals, as well as physical barriers. Within the 
simulation, cells access information about their environment locally through an array of local 
environment variables. 

 
Local environment variables: An array of variables which represent the local 

environment of a cell. The values available to the cell as a function of time and they depend 
on the extracellular environment. Since each cell is in a different location, in general the local 
environment of two cells will differ. These variations can then lead to different behavior for 
the cells, even though their genomes”may be identical. 

 
The figure 17 shows an example of the development of a multicellular system using 

the Fleischer's simulator: 
 

   
Figure 17: Multicellular growth (discrete cells in blue (light)) and reaction-diffusion molecules in red (dark)) 
into a 2D environment (black). Three states of evolution of the same simulation are shown here. [FLE95] (see 

plate 17 at the end of the book) 
 

Conclusion 
 
 The field of cell simulators is quickly growing. Many applications or projects are 
launched or ready to start. They aim to treate the numerous data (numerous in size and 
diversity) coming from the high scale molecular biology to help biologists on the living cell 
understanding. We have seen three major modelers/simulators available for biologists to 
compute cell mechanisms and see some of their principal drawbacks: they do not include 
spatial and mechanical phenomenon nor self-organized molecular structures (like 
hyperstructures or membranes). Then, to avoid these drawbacks, we introduce, according to 
the granularity level of cell modeling, different approaches that could be used: reaction-
diffusion systems for ionic/atomic descriptions, cellular automata for small molecules 
representation and multiagents systems for membrane or hyperstructures modeling. One of 
the problem is to merge these different approaches into an integrated cell system. Thus, we 
have seen how a recent application couple a multiagents system and a reaction-diffusion 
system. 
The next step will be the design of multi-levels models to develop a realistic integrated cell 
software system. 
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 The development of neural networks had initially as objective the modeling information 
processing and learning in the brain, in order to understand how a population of interconnected 
biological neurons performs a cerebral function. Now, neural networks are used in several practical 
applications, in various fields including computational molecular biology [23, 24], and the artificial 
neurons are quite remote from biological neurons.  
 
1. Biological neural networks 
 A neuron [22] is a nervous cell having a cytoplasm body and several cytoplasm extensions 
(axons and dendrites) that allow it to dispatch (axons) and to receive (dendrites) signals. The 
exchanged information by two neurons is accomplished by means of electrical signals, which are 
the result of potassium-sodium ion exchanges. The electrical signal exchanges are made at the level 
of the synapses, which link the axons of neurons to the dendrites of other neurons. A neuron may 
have 1 000 to 10 000 synapses and can receive information from 1 000 other neurons. Besides, 
although the synapses are often constituted between axons of  cells and dendrites of other cells, 
there are other types of synaptic junctions : between axon and axon, between dendrite and dendrite, 
between axon and cellular body. The human brain may contain until 1011 neurons. 
 The complexity of biological neural networks (BNNs) is very variable. There are some BNNs 
like the ganglions that are constituted of heaps of neurons, as there exist sophisticated BNNs like 
the complex BNNs of the neocortex. These ones are able to modify their functioning and even their 
structures as well as they are capable of computing, memorizing and learning. Memorizing and 
learning of the BNNs are made by means of some modifications at the synaptic level. The synapses 
may modulate their activity, as exciting or inhibiting a neuron, and in this way to let possible the 
writing of an information in a memory area. In 1949, Hebb [2] made the hypothesis that the abilities 
of BNNs are the result of the self-organization of their connections : The efficiency of a synapse 
increases when the neurons that it connects are at the same time either all active or all inactive; 
otherwise the efficiency lessens.  



 
2. Artificial neural networks 
2.1. Neural network models 

  
An artificial neural network (ANN) can be described as a set of interconnected units evolving in 

time and operating in parallel; the units represent axons and dendrites and each connection (j,i) from 
unit j to unit i has a weight µij that modulates the influence of unit j on unit i. Thus, an ANN is a 
weight-directed graph in which to each node i are associated a bias or threshold si and a transfer 

function fi, so that unit i will produce an output yi of the form :   yi = fi ( ∑j
 µij xj – si ), where xj is the 

jth input of this unit and ∑
j
 µij xj is the sum of all its weighted inputs. If this sum is greater than the 

threshold si, unit i is activated for producing the output yi; otherwise unit i is in an inactive state 
(Figure 1). The parameters µij  and si can be adjusted so that the neural network produces some 
desired behavior. Namely, the neural network can be trained to achieve some particular job by 

adjusting the weight and bias parameters. 
 
 
 The transfer functions widely used are nonlinear, smooth, increasing and bounded such as 
sigmoid functions (so called from their “S” shape). However, sometimes the transfer function is 
linear like the identity function. When  fi(x) = 1 if x > 0 and  fi(x) = 0 otherwise, unit i is called a 
threshold gate. As threshold functions are discontinuous, they are often replaced by sigmoidal 
transfer functions that are continuous and differentiable, such as f(x) = arctan(x) and f(x) = tanh(x), 
or by other transfer functions such as  f(x) = 1 / (1 + e- x). 
 One drawback of this neuron model appeared when it was used to describe what electro-
chemical triggering phenomena takes place at the active cell membranes of biological neurons. It 
was noticed that the description of signal transformations in complicated neural networks needs an 
analysis computationally too heavy. Whereat T. Kohonen [13] suggested the following simple 
nonlinear dynamic model for a neuron (Figure 2) : 
 

 



In Figure 2, the  xj  and   yi   are nonnegative scalar variables, the input activation Ii is some function 
of the xj  and of some internal parameters. The function γ(yi) is the leakage term, a nonlinear 
function of output activity. In order to guarantee good stability in feedback networks  γ  must be 
convex (i.e., its second derivative with respect to  yi  must be positive). The leakage term γ(yi) takes 
in account all different losses and dead-time effects in the neuron, as a progressive function of 
activity. 
 
2.2. Network architectures  
 Usually, three important architectures are considered for the ANNs : layered architecture, 
feedforward architecture and recurrent or feedback architecture. A recurrent architecture contains 
directed cycles; therefore, the signal paths can return to a same node. The feedback ANNs are 
difficult to implement. A feedforward architecture is devoid of directed cycles, thus the signal paths 
never return to a same node. A layered architecture is an architecture where the units are partitioned 
into classes, called layers, and where the connectivity patterns are defined between the classes.  
 Besides, the unit set is partitioned into visible units (those in contact with the external world 
such as input and output units) and hidden units. Often, the input units are grouped in an input layer 
and the output units in an output layer. A hidden layer is constituted of hidden units. 
 
 
 
2.3. Three main categories of ANNs 
 It is customary to distinguish three categories of ANNs : adaptive signal transfer networks, 
state transfer networks, and competitive-learning or self-organizing networks. 
 The signal transfer networks have their output signals depending uniquely on input signals. 
These are often layered feedforward networks such as the multilayer Perceptron [3], the Madaline 
[4], the feedforward network in which learning is defined by means of an error propagation 
algorithm [5], and the radial-basis-function networks [6]. 
 The state transfer networks are recurrent ANNs in which the feedbacks and nonlinearities are 
very strong so that the activity state quickly converges to one of its equilibrium points (attractors). 
Indeed, input information sets the initial activity state and once the network is in operation the 
output is fed back as the input until the network output will settle on one of its stable values. 
Typical representatives of these ANNs are the Hopfield network [7] and the Boltzmann machine [8]. 
 The cells of the competitive-learning or self-organizing networks, which generally receive 
identical input information, compete in their activities by means of lateral interactions. Each cell or 
cell group is sensitized to a different domain of vectorial input signal values, and acts as a decoder 
of that domain [9, 10]. Besides, both of the adaptive-resonance-theory models of Grossberg and 
Carpenter [11,12] and the Self-Organizing Maps of T. Kohonen [14] belong of course to this 
category.  
 
2.4. Phases of development of neural models 
 Three phases of development of models in ANN theory are distinguished : memoryless 
models,  adaptive models  and  plasticity-control models 
Memoryless Models : In this first modeling phase, which starts with the classical McCulloch-Pitts 
network [1], the transfer properties of the network were assumed fixed. And when feedback 
connections were added, such as in some interconnected networks [3] and also in some state 
transfer models [7, 8], only the relaxation of activity distributions was considered. There, the 
dynamic state equation is written as :  dA/dt = f(I, A) ;  where signal activity A is a function of 
location, I is the external input acting on the same locations, and  f is a general function of I and A, 
and of location. 
Adaptive Models : These models take in account the adaptation and memory properties that result 
from parametric changes in the network. The equations, which describe the adaptive signal-transfer 



circuits, are : dA/dt = f(I, A, M) , dM/dt = g(I, A, M) ; where :  M denotes the set of 
system parameters (M may be a function of location and represent an adaptive bias), and  f and g 
are general functions of I, A, and M . These equations were used in the first endeavors to model 
emergence of feature sensitive cells and elementary forms of self-organizing mappings. 
Plasticity-Control Models :  T. Kohonen [14, 15] was not convinced that a model with adaptive 
connectivity parameters is accurate enough to capture all aspects of self-organization, such as, for 
instance, the learning rate of a synaptic connection, which is called plasticity in neurophysiology. 
And in 1993, he [15] advanced the idea that the plasticity should be described and controlled by a 
third group of state variables called  P and wrote the system equations as : 

dA/dt = f(I, A, M) , dM/dt = g(I, A, M, P) , dP/dt = h(I, A, M, P)  ;  where f, g, and h are  
general functions and  where P does not take part in the control of activity A. 
 
3. Learning and Evolution 
 Adaptation refers to a control of parameters in order to optimize some performance measure, 
or to a behavioral modification that depends on experiences and that improves the performance of a 
system. In classical ANNs adaptation is called learning or also training. Besides, in evolution, 
adaptation is the adjusting of species to environment by natural selection or by behavioral change. 
Hence in evolutionary artificial neural networks (EANNs), which are a special class of ANNs, 
adaptation is called  evolution. Thus, in ANNs adaptation takes two fundamental forms : Learning 
and Evolution. 
 
3.1. Learning 
 Following the Hebb's assumption and in order that the ANNs may develop an associative 
memory, it is necessary that the efficiency of the connections, which link the artificial neurons, may 
be computed. Since the fifties, several rules appeared, especially the Perceptron rule [3] and the 
Widrow-Hoff learning rule [4]. These rules put the ANN on a supervised learning, which can be 
summarized as follows: After having presented to the input units what it must be memorized, the 
ANN answer is scanned. Since the correct answer is known then it is attempted to reduce the gap 
between these two answers by acting on the efficiencies of the connections that link the artificial 
neurons, more particularly on the thresholds si and the weights µij. When these efficiencies stabilize, 
the learning phase ends.  

More generally, Learning in ANNs can roughly be partitioned onto supervised, 
unsupervised, and reinforcement learning :  
Supervised learning makes a direct comparison between the current output of an ANN and the 
correct output, which is known. This comparison is often made by means of a minimization of an 
error function such as the total mean square error between the actual output and the desired output. 
In order to minimize this error, a gradient descent-based optimization algorithm such as 
backpropagation [4] can then be used to adjust connection weights in the ANN interactively. 
Reinforcement learning is a special case of supervised learning where the only known information 
is whether or not the current output is correct (the desired output is unknown). In this learning mode 
adaptive changes of the parameters due to reward or punishment depend on the final outcome of a 
whole sequence of behaviour. 
Unsupervised learning works only on the correlations among input data; there is not any other 
information for learning. It is without a priory knowledge about the classification of samples.  
 Sect. 3.1.2. describes the Perceptron learning algorithm. Sect. 3.1.3. is devoted to competitive-
learning networks and to an unsupervised learning which is used to get a representation of high-
dimensional nonlinearly related data items in a illustrative two-dimensional display [14].  
 Finally, notice that the essence of a learning algorithm is certainly its learning rule (i.e., for 
example, a weight-updating rule which determines how the signals should modify the adaptive 
connection input weights or other parameters of the neurons in learning) and that its correctness 
needs to make clear what the ANN submitted to learning is supposed to do (for instance, its 
function is associative memory or detection of elementary patterns).  



 
3.1.1. Some Learning Laws  
3.1.1.1 Hebb's Law 
Consider first the simplest classical learning law for neurons like the one defined in Figure 1. If the 
ANNs made of such neurons are supposed to reflect simple memory effects, especially those of 
associative or content-addressable memory, a model law that describes changes in the connections 
is based on Hebb's hypothesis [2] : 

"When an axon of cell A is near enough to excite a cell B and repeatedly or persistently 
takes part in firing it, some growth process or metabolic change takes place in one or both 
cells, such that A's efficiency, as one of the cells firing B, is increased" 

This means that the weight  µij is varying according to dµij / dt = α yi xj   (2) ;   
where xj is the jth input (the presynaptic "activity") of unit i,  yi is the output of unit i (the 
postsynaptic "activity"), and α is a scalar parameter named learning-rate factor. This law, 
generally called Hebb's law, has given rise to some elementary associative memory models, 
named correlation matrix memories [16-18]. In vector form, it can be written as :   

dmi / dt = α yi x    (2’) ;    where  mi = ( µi1 , … , µin )
 T

  ; yi  =  ∑
j
 µij xj  

=  mi
T x  =  xT mi ; xT = (x1 , … , xn)    and    n  the number of inputs of each unit. 

Notice that with this law the associative memory function is omitted. Moreover, as feature-sensitive 
cells have central roles in the classification functions both at the input layers of the neural networks, 
as weIl as inside them, some modifications of Hebb's law were considered : the perceptron learning 
law, the Riccati learning law, and the principal-component-analyzer (PCA) law. 
 
3.1.1.2. Perceptron Learning Law  
   The perceptron learning rule is a modified form of Hebb’s learning law. It was proposed by F. 
Rosenblatt [3] in the late 1950s. It is the following :   dmi / dt = α (yi

c – yi) x    (3)  ; 
where  yi

c  is the desired output (i.e., the correct output). 
This rule is also known as back-propagation rule, LMS (least mean squares) rule, or as delta rule. 
 
3.1.1.3. The Widrow-Hoff Learning Law 
 This law, which stems from Widrow [4] , was introduced for multilayer feedforward 
networks. It can be also written as (3) and where the least mean of square error criterion is applied 
and the optimization is performed by Robbins-Monro stochastic approximation. 
 
 3.1.1.4. The Riccati-Type Learning Law 

  A major revision [14] made to Hebb's law introduces a scalar-valued plasticity-control 
function P that may depend on many factors  (activities, diffuse chemical control, etc …) and that 
shall have a time-dependent sampling effect on the learning of the signals xj. On the other hand, it 
was assumed that the weights  µij  are affected proportionally to xj. In this way, the first term of the 
learning equation is written as  P xj , where P is a general functional that describes the effect of 
activity in the surroundings of neuron i.  

 The second major revision is inclusion of an “active forgetting” term that guarantees that the 
µij remains finite. This involves the introduction of a scalar-valued forgetting rate functional Q, 
which is some function of synaptic activities of neuron i.  Therefore, the equation, which describes 
a kind of “active learning and forgetting” and where the plasticity control P affects the total learning 
rate, is the following : dµij / dt = P ( xj – Q µij)  . In this equation, P can be seen as describing 
extracellular effects and Q intracellular effects. Moreover, it seems proper to assume that the “active 
forgetting” effect at synapse j is proportional to  ∑

k
 µik xk , where the sum extends over the whole 



cell, including synapse j itself. Then the latter equation can be written as the Ricatti-type equation : 
 dµij / dt = P (xj –  µij ∑k

 µik xk)  ;  or in vector form  with  α = P   and    β  = P Q    as  

       dmi / dt = α  x –  β mi mi
T x   (4)    . 

 
3.1.1.5. The PCA-Type Learning Law 
  This learning law, which was introduced by E. Oja [19], is analogous to (4), except that its 
right-hand side is multiplied by the expression  yi  =  ∑

j
 µij xj  = xT mi . 

The differential equation of this law is the following : dmi / dt = α yi x –  β yi 
2 mi  or 

  dmi / dt = α xT mi x –  β ( mi
T x xT mi) mi  (5) .  

 
3.1.2. Perceptron Learning Algorithm [3] [5] [20] 
The perceptron learning algorithm obeys perceptron learning rule (3). It applies to feedforward 
neural networks where the neuron model is the one of Figure 1. Training patterns x are presented to 
the neural network; the output  yi  is computed. Then the weights µij are modified according to :   

mi(t + 1) = mi(t) + α (yi
c – yi) x   where mi = (µi1 , … , µin )

 T. 
Hereafter, the single-layer perceptron learning algorithm and the back-propagation perceptron 
learning algorithm are described. 
1) A single-layer perceptron neural network comprises one or more artificial neuron in parallel. 
Like in Figure 1 each neuron has n inputs and one output. The perceptron learning algorithm for a 
single-layer perceptron neural network is the following :  
 
    (0) Initialize the weights  µj  and threshold  s  to small random numbers;    t = 0 ;                

  (1) Present an input vector  x  = (x1 , … , xn)
 T = x(t)  and the desired output  y c, (where n is the  

      number of input units), and  calculate the output  y  = y  (t) according to    
   y  =  f(∑

j
 µj xj - s),  where  f  is a given transfer function  

     (f  can be the sigmoid function :  f(x) = 1 / (1 + e- x)  ); 
 (2) Update the weights µj according to :  µj(t + 1) = µj(t) + α (y c(t) – y (t)) xj(t)  
    j = 1, … , n  ;  where  0.0 < α < 1.0) ;  t = t + 1 ; 
 (3) Repeat steps (1) and (2) until the iteration error is less than a user-specified error threshold  
   or a predetermined number of iterations have been completed. 
 
2) Multi-layer Perceptron Learning Algorithm, or Back-Propagation Learning Algorithm : 
 The algorithm for multi-layer perceptron learning is based on the back-propagation rule (3) 
and on a gradient descent in error space. The error is defined as  
  E  =  ∑

p 
E

p
  (6)  

Where 
   E

p
=  ( ∑

i 
 (yi

c – yi )
2 ) / 2  (7) 

where  yi  is the actual output and  yi
c  is  the desired output  and where the sum is over the output 

units of the network.  
A change of weights can be made according to the gradient of the error :  
  ∆µ = - α ∇E   (8) 
where  α  is a constant scaling and  ∇ is the gradient operator. The weight change for the connection 
from unit j to unit i, of this error gradient can be written as :  
  ∆µij = - α ∇ij E  =  - ∂E / ∂µij           (9) 



But  
  ∂E / ∂µij  =  (∂E / ∂yj) (∂yj / ∂z) (∂z / ∂µij)  (10) 
with 
  z = ∑

k 
µkj yk . 

Hence 
 z / ∂µij = ∂ ∑

k 
µkj yk / ∂µij = ∑

k 
∂ (µkj yk ) / ∂µij  = ∑

k
 ( (∂µkj /  ∂µij )  yk  +   µkj (∂yk / ∂µij) )        (11) .  

Examining the first partial derivative, notice that    ∂µkj /  ∂µij   is zero unless  k = i .  And examining 
the second partial derivative  ∂yk / ∂µij  for observing that if  µkj  is not zero then there exists a 
connection from unit k to unit j,  which implies that   ∂yk / ∂µij    must be zero, otherwise the 
network would not be feedforward.   Therefore, we get from (11) :  ∂z / ∂µij = yi   (12)  
We now consider the middle partial derivative of (10) : ∂yj / ∂z  .    Since  yj = f(z)     then  
  f(z)  = 1 / (1 + e- z)   would imply that        ∂yj / ∂z   =  ∂  (1 + e- z) -1 / ∂z   =   (1 + e- z) -2 e- z    
  = (1 – yj )  yj  .  In this way :  ∂yj / ∂z   =   (1 – yj )  yj   (13)  
Now, return to the first derivative of  (10) :    ∂E / ∂yj      And  recall that   E =  ∑

p 
E

p
   and   

 E
p 

 =  
 
( ∑

i 
 (yi

c – yi )
2 ) / 2    where the sum is over the output units of the network.  

Two cases can be distinguished : j  is an output unit ;    j  is not an output unit. 
- If  j  is an output unit then the derivative  ∂E / ∂yj     can be computed as  : 
 ∂E / ∂yj  =   ∂ ( ∑

i 
 (yi

c – yi )
2 ) / 2 / ∂yj  =   ∑

i 
 (yi

c – yi ) ∂(yi
c – yi ) / ∂yj   =  - (yj

c – yj )   (14) 
- If  j  is not an output unit then we need to rely on the chain rule, applied over the units k connected 
to unit  j : 
  ∂E / ∂yj  =  ∑

k
 (∂E / ∂yk )  (∂yk / ∂z) µkj      (15)    

where  :  ∂yk / ∂z   is given by  (13)  and    ∂E / ∂yk  is computed recursively. 
We are now in position to describe the back-propagation learning algorithm : 
 
 (0) Initialize the weights  µij and threshold  s  to small random values;    t = 0 ; 

Present an input vector  x = (x1 , … , xn)
 T   and  a target output  yc  

where n  is the number of input units  and  m  the number of output units yc; 
(x and  yc represent the patterns to be associated) ; 

 
  (1) Calculate the actual output : Each layer calculates   yk  =  f(∑

j
 µij xj – s) ; 

   (where  f  is defined by   :  f(z)  = 1 / (1 + e- z)  ) 
  This is then passes this to the next layer as an input. The final layer outputs value  yv .  

    
  (2) Adapts weights : Starting from the output  yv  and working backwards, do  

µij(t + 1) = µij(t) + α yv E
j  

;  where  E
j

  is an error term corresponding to the input 
xj  of  node  j ; 

   such that :  for output units :  E
j
 = σ yv (1 - yv ) (yc - yv )  

     for hidden units :  E
j

  = σ yv (1 - yv )  
k
∑

1

 q E
k
 µkj      where the sum is  

            over all the  q  nodes in the layer above node  j . 
    (σ  is the steepness parameter in the sigmoidal function)  
 
3.1.3. The Self-Organizing Map (SOM) algorithm [14] [21] 
 The SOM algorithm, which stems from Kohonen [14], deals with the competitive learning 
and self-organizing networks. It operates as a nonparametric regression which involves fitting a 



number of reference vectors to the distribution of vectorial input samples (In regression some 
simple mathematical function is fitted to the distribution of sample values). The reference vectors mi 
are considered here to approximate the probability distribution of the input signals x and are also 
used to define the nodes of a kind of “hypothetical elastic network”. Indeed, the distribution of the 
vectors mi should reflect the probability distribution of the input signals x, which is not given 
explicitly but only through the sample of vectors x. 
 Given an ANN constituted of N neurons, where to every node (neuron)  i , i = 1, … , N , is 
associated a weight-vector  mi = (µi1, … , µin)

T ∈ |Rn. Between the units of the ANN there exists a 
set C, possibly empty, C ⊆ {1, … , N}2 of neighborhood connections supposed unweighted and 
symetric. Besides, from the connection set C, construct a two-dimensional grid G, having N nodes, 
so that  two nodes i, j are neighbors in G if and only if (i,j) ∈ C. Let  x = (x1, … , xn)

T ∈ |Rn  be an 
input vector supposed connected to each neuron i, via  the weight-vector  mi = (µi1, … , µin)

T. 
Vector  x  is compared with all the  mi  in some metric, the euclidean metric for instance, in order to 
determine a node  c ∈ {1, … , N} such that   ||x - mc||  =  min{||x – mi|| ;  i = 1, … , N}; unit c is 
called the winner. In this grid, a decaying topological neighborhood  Nc = { i ∈ {1, … , N}; (c,i) ∈ 
C} of node c is defined  such that  c ∈ Nc(t) for every t and  Nc(t + 1) is strictly contained in Nc(t); 
where t = 0, 1, 2, … is the discrete time coordinate (see Figure 3). During learning at time t, those 
nodes of the grid that are in Nc(t) will activate each other to learn something from the same input  x. 
 

 
Indeed, the following learning process is proposed in [14] : 
 mi(0) is arbitrary;    and for t = 0, 1, 2, … 
 mi(t + 1) = mi(t) + hci(t)  ( x(t) - mi(t) )   (16) 
where        hci(t)  must  → 0   when   t → ∞ ; otherwise the sequence (mi(t ))t ≥ 0 does not converge.                    
The form of  hci(t) and its average width characterize the “stiffness” of the elastic surface defined by 
the points  mi  of  |Rn. 
Frequently, hci(t) is taken equal to 0  if  i ∉ Nc(t)   and   hci(t) = α(t)  if  i ∈ Nc(t) .    α(t) is called a 
learning-rate factor and is such that  0 < α(t) < 1.  Furthermore, both  α(t)  and the radius of Nc(t)    
are decreasing monotonically in time.   
Another choice for hci(t) which widely occurs is the following :  
    hci(t) = α(t) exp ( - ||rc – ri||

2 / 2 σ2(t) )   (17) 
  where :  α(t)  is another valued learning rate factor ; 
rc  and  ri   belong to |R2  and  are respectively the location vectors of nodes  c  and  i  in the grid ; 
σ(t) denotes the width of  Nc(t). 
 
The self-organizing feature map algorithm is the following, where Nit is a predetermined number of 
iterations to be completed : 



 (0) Initialize the ANN  to contain  N units. Each unit  i  has n entries and an associated  
   reference vector  mi = (µi1, … , µin)

T  ∈ |Rn
 chosen randomly ; 

        Initialize the connection set  C to form a rectangular or a squared grid G ; t = 0;   
 
   (1) While (t < Nit) do 

     (1.1) Generate at random an input signal  x ∈ |Rn according to a continuous    

           probability density function  p(ξ),  ξ  ∈ |Rn ; 
 
        (1.2) Determine a unit  c ∈ {1, … , N} such that    
       ||x - mc||  =  min{||x – mi|| ;  i = 1, … , N}; 
      and  consider the topological neighborhood  Nc(t) ; 

     
(1.3) Adapt each unit  i ∈ Nc(t)  according to  (16)  and  (17) ; t = t + 1;  

      End while            
              
3.2. Evolution 
 Evolutionary artificial neural networks (EANNs) denote a special class of ANNs, where 
another form of adaptation, called evolution and distinct from learning, takes a prominent part. This 
evolutionary approach of adaptation applies evolutionary algorithms to ANNs for evolving weight 
training, evolution of architectures, evolution of learning rules, evolution of input features, etc. 
 
3.2.1. Evolutionary algorithms 
 An evolutionary algorithm (EA) refers to a population-based stochastic search algorithm 
inspired by natural evolution. Three mechanisms drive natural evolution (reproduction, mutation 
and selection) by acting on the chromosomes containing the genetic information of the individual 
(the genotype), rather than on the individual itself (the phenotype) : By the reproduction mechanism 
new individuals are introduced into a population, these offspring chromosomes inherit from their 
both parents a mixture of genetic information (crossover). The mutation process brings small 
changes into the inherited chromosomes. And the selection mechanism allows only the fittest 
individuals (the best adapted to their environment) to survive and reproduce.  
 To solve a problem  by means of an EA makes use of a metaphor of natural evolution : All the 
possible solutions constitute a population living in an environment that is the problem itself. The 
phenotype of each individual (each candidate solution) is encoded in some manner into its genome 
(genotype). The adaptability of each individual is measured by means of a fitness function. And the 
natural evolutionary mechanisms are modeled by appropriate genetic operators. Starting from an 
initial population and by applying genetic operators to introduce progressively “niece genetic 
material” into the successive populations, an EA produces step by step better solutions to the 
problem.  
 The EAs comprise several types : evolution strategies [25, 26], evolutionary programming 
[27, 28, 29], and genetic algoritms [30, 31]. All proceed as follows : 
 
 
  (0) t = 0; Generate the initial population G(0) at random;  
   (1) While (termination criterion is not satisfied) do  
      (1.1) Evaluate each individual of  G(t); 
      (1.2) From G(t) select parents P(t) based on their fitness in G(t); 
        (1.3) Apply genetic operators to P(t) to generate offspring which  
        constitute G(t + 1);  
      (1.4) t = t + 1; 
        End while. 



 
3.2.2. The Evolution of Connection Weights 
 Most learning algorithms, such as backpropagation [5], are based on gradient descent. This 
use of gradient descent let these algorithms have drawbacks : They are often incapable of finding a 
global minimum of the error function and get trapped in local minima. One way to overcome these 
shortcomings is to formulate the training process as the evolution of connection weights in the 
environment defined by the architecture and the associated learning rule. Indeed, EAs can be used 
in the evolution to find a near-optimal set of connection weights globally. Unlike the case in 
gradient-descent-based learning algorithms, the fitness (or error) function of an ANN does not have 
to be differentiable or even continuous.  
 The evolutionary approach to weight training in EANNs comprises two phases.  
The first phase deals with the choice of a representation of connection weights, either the binary 
representation or the real-number representation. In a binary representation, each connection weight 
is represented by a number of bits with a given length; then the concatenation of all the connection 
weights of the network encodes the ANN in the chromosome. In a real number representation, each 
connection weight is represented by a real number; in this way each individual (i.e., ANN) in an 
evolving population is encoded by a real vector. 
The second phase is the evolutionary process simulated by an EA, in which genetic operators such 
as crossover and mutation have to be decided in conjunction with the representation scheme. The 
evolution stops when the fitness is greater than a predefined value (i.e., the training error is smaller 
than a certain value) or the population has converged. 
A typical cycle of the evolution of connection weights is the following [32] :  
 
  (1) Decode each individual (genotype) in the current generation into a set of connection  
        weights and construct with the weights a corresponding ANN.  
 (2) Evaluate each ANN by computing its total mean square error between actual and target  
       outputs. The fitness of an individual is determined by the error. The higher the error, the  
     lower the fitness. The optimal mapping from the error to the fitness is problem 
   dependent. A regularization term may be included in the fitness function to 
   penalize large weights. 
  (3) Select parents for reproduction based on their fitness. 
 (4) Apply genetic operators, such as crossover and/or mutation, to parents to 
   generate offspring, which form the next generation. 
 
3.2.3. The Evolution of Architectures 
 The architecture of an ANN includes its topological structure (connectivity, and the transfer 
function of each node in the ANN). Architecture design is crucial in the successful application of 
ANNs because the architecture has significant impact on a network's information processing 
capabilities.  
 Like in the evolution of connection weights, two major phases involved in the evolution of 
architectures are the genotype representation scheme of architectures and the EA used to evolve 
ANN architectures. Encoding an ANN architecture implies deciding how much information about 
this architecture should be encoded in the chromosome. At one extreme, all the details, i.e., every 
connection and node of an architecture can be specified by the chromosome; this kind of 
representation scheme is called direct encoding. At the other extreme, only the most important 
parameters of an architecture, such as the number of hidden layers and hidden nodes in each layer 
are encoded; more details about the architecture are left to the training process to decide; this kind 
of representation scheme is called indirect encoding. The indirect encoding is used in order to 
reduce the length of the genotypical representation of architectures. 
After a representation scheme has been chosen, the evolution of architectures can progress 
according to the cycle shown hereafter; the cycle stops when a satisfactory ANN is found [32]. 
  



  (1) Decode each individual in the current generation into an architecture. If the indirect  
        encoding scheme is used, further detail of the architecture is specified by some   
    developmental rules or a training process. 
  (2) Train each ANN with the decoded architecture by a predefined learning rule (some  
     parameters of the learning rule could be evolved during training) starting from  
    different sets of random initial connection weights and, if any, learning rule    
    parameters. 
   (3) Compute the fitness of each individual (encoded architecture) according to the above  
    training result and other performance criteria such as the complexity of the  
    architecture. 
   (4) Select parents from the current generation based on their fitness. 
   (5) Apply search operators to the parents and generate offspring which form the next   
    generation.  
 
An example of the direct encoding of a feedback ANN is the following  (Figure 4) :  

 
3.2.4. The Evolution of Learning Rules 
 Designing an efficient learning rule is very difficult when there is little prior knowledge about 
the ANN's architecture, which is often the case in practice. Besides, what is often expected from an 
ANN is its ability to adjust its learning rule adaptively according to the task to be performed and 
also to its architecture. These two reasons, and certainly several others, let the evolution of learning 
rules be introduced into ANNs in order to learn their learning rules.  
 But, as the evolution of learning rules has to work on the dynamic behavior of an ANN, then 
one key issue is how to encode the dynamic behavior of a learning rule into static chromosomes. 
The answer to this requires the two following assumptions :  
(i) Weight-updating depends only on local information such as the current connection weight, the 
activation of the input node, the activation of the output node, etc; 
(ii) The learning rule in an ANN is the same for all its connections.   
 Thus, a learning rule can be expressed by the function [9’] : 
          
  ∆w(t)  =   k∑ 1

n   i1, i2, .. . ,ik
∑ 1

n  ( θ i1, i2, .. . ,ik
    jΠ 1

k  xij
 (t – 1)  )  (18) 

 
where t is the time, ∆w(t) is the weight change, x1 , x2 , … , xn  are local variables, and the θ’s are 
real-valued coefficients witch will be determined by evolution.  
In this way, the evolution of learning rules amounts to the evolution of real-valued vectors of θ’s.  
 On the other hand, the evolution of learning rules raises three questions [32] : 
(i) determination of a subset of terms described in Eq. (18) ;  
(ii) representation of their coefficients as chromosomes; 
(iii) the EA used to evolve these chromosomes. 
 The answers to these issues lead to the following cycle of the evolution of learning rules [32] : 
 
  (1) Decode each individual in the current generation into a learning rule.  
  (2) Construct a set of ANNs with randomly generated architectures and initial  
    connection weights, and train them using the decoded learning rule. 



  (3) Compute the fitness of each individual (encoded learning rule) according to the  
    average training result.  
   (4) Select parents from the current generation according to their fitness. 
   (5) Apply genetic operators to the parents and generate offspring which form the next   
    generation.  
 
3.2.5. Conclusion 
 Thus, evolution can be used in ANNs at several levels. The evolution of connection weights is 
quite competitive with regard to the gradient-based training algorithms. It can be also used to find 
quickly an efficient architecture as well as an efficient learning rule according to some architecture 
and to the task to be performed. 
 Furthermore, as it was noticed in [32], in many practical problems, the possible inputs to an 
ANN can be quite large. (There may be some redundancy among different inputs; a large number of 
inputs to an ANN increase its size and thus require more training data and longer training times). 
Preprocessing is often needed to reduce the number of inputs to an ANN. Given a large set of 
potential inputs, finding a subset,  which has the fewest number of features but the performance of 
the ANN using this subset is no worse than that of the ANN using the whole input set, is not trivial. 
However, this problem can be implemented using a binary chromosome whose length is the same as 
the total number of input features; each bit in the chromosome corresponds to a feature : "1" 
indicates presence of a feature, while "0" indicates absence of the feature. The evaluation of an 
individual is carried out by training an ANN with these inputs and using the result to calculate its 
fitness value.  
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